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Grouping of structures for cluster expansion of multicomponent systems with controlled accuracy
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Control of errors over the whole range of structures is essential when we combine a large set of density-
functional theory calculations and the cluster expansion method for predicting the ground-state structures and
configurational thermodynamics of multicomponent systems. Minority structures that are far from a random
structure are important for such a prediction. In this paper, we propose a procedure based on the cluster analysis
of the structure population, which can adequately take into account the errors of minority structures as well as
those of random structures. The usefulness of the procedure is demonstrated by applying it to configurational
behaviors of MgAl2O4 spinel.
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I. INTRODUCTION

The cluster expansion (CE) method1–3 is a powerful tool
for predicting the ground-state structures, thermodynamics,
and configurational properties of multicomponent systems. In
order to make reliable thermodynamics with a high accuracy, a
combination of the CE method and density-functional theory
(DFT) calculations have mostly been adopted. An optimal
CE is generally constructed from the DFT results of many
ordered structures that are sampled from the total population
of structures. In principle, the CE can be made without losing
the accuracy of DFT calculations. To perform calculations at
such a level, however, it is essential to measure and control
the accuracy of the CE properly. Otherwise, the CE may
lead to a wrong prediction of the ground states and alloy
thermodynamics.

Figure 1 shows a distribution function of the structure
population in the configurational space. In the schematic map,
group 4 includes the largest number of structures. They corre-
spond to structures near a random structure. On the other hand,
group 1 includes the smallest number of structures, which are
far from a random structure. They will be hereafter called
“minority structures.” It should be emphasized that ground-
state structures are usually included in minority structures.
Indeed, on the basis of the inspection of existing structures
in binary compounds, Hart made a hypothesis that the energy
shows an extremum (maximum or minimum) in the “least
random” structure that has a high relative likelihood index.4 If
this holds true, the accuracy for predicting minority structures
should be very important. In this study, we propose a procedure
for measuring and controlling the accuracy of a wide range
of structures including minority structures on the basis of the
distribution of the total population of structures. The use of the
cluster analysis of the structure population (CASP) for estimat-
ing the accuracy of a wide range of structures will be shown.

II. CLUSTER ANALYSIS OF STRUCTURE POPULATION

A. Accuracy of conventional CE for minority structures

The CE method gives an effective representation of the
configurational energy. Within the formalism of CE, the

configurational energy E of a binary system is expressed using
the pseudospin configurational variable σi for the respective
lattice site i and the effective cluster interactions (ECIs)
V as

E = V0 +
∑

i

Viσi +
∑

i,j

Vij σiσj +
∑

i,j,k

Vijkσiσjσk + · · ·

=
∑

α

Vα · ϕα, (1)

where ϕα is called the correlation function of the cluster α,
which depends only on the atomic configuration. A principal
objective is to estimate unknown ECIs from DFT calculations
as precisely as the configurational properties can be predicted
within the accuracy of DFT calculations.

The cross validation (CV) score5,6 has been widely accepted
as a quantity for controlling the accuracy of the CE. The leave-
one-out CV score is obtained from the squared average over
NDFT input DFT structures as

(CV)2 = 1

NDFT

NDFT∑

n=1

(Ê(n) − En)2, (2)

where En denotes the DFT energy of structure n, and Ê(n) is
the energy of structure n predicted by the CE without using
the DFT energy of the structure n. For the accurate evaluation
of the CV score, an optimal set of many DFT structures is
necessary.7,8 In such a case, however, the errors of minority
structures are only a minor part of the CV score. When the
errors of minority structures are much larger than the average
error, as shown in Fig. 2, they tend to be underestimated in the
CV score.

Such a situation usually occurs when we truncate CE.
The truncation error, which is the major source of total
CE error, tends to be larger in minority structures in the
general use of pseudospin values of +1 and −1 since they
have larger values of correlation functions than a random
structure. To make an accurate CE of such minority structures,
an explicit evaluation of the errors of minority structures is
essential.
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FIG. 1. (Color online) Schematic illustration of distribution func-
tion of structure population in space of correlation functions.

B. Procedure of CASP

Cluster analysis generally means the classification of data
into meaningful subgroups. CASP enables us to classify
structures of similar correlation functions into the same group,
as illustrated in Fig. 1. Here CASP is performed by the model-
based cluster analysis.9,10 The likelihood of the correlation
functions of all structures in the structure population is
modeled by a Gaussian mixture. When the structure population
is composed of N structures with the correlation functions
(x1, . . . xN ), the likelihood L for a model with Nξ group,
given by

L(x1, . . . ,xN,τ1, . . . ,τNξ
,μ1, . . . ,μNξ

,�1, . . . ,�Nξ
)

=
N∏

n=1

Nξ∑

ξ=1

τξfξ (xn|μξ ,�ξ ), (3)

is maximized, where τξ denotes the probability that a structure
belongs to group ξ , and fξ (xn|μξ ,�ξ ) is a multivariate
Gaussian (μξ ,�ξ ) for the density of structure n from group ξ ,
centered at the means μξ . The other geometric characteristics
of the Gaussian are determined by �ξ .

We introduce individual CV scores in each group for
estimating the accuracy of a wide range of structures including
minority structures. The CV score in group ξ after CASP will
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FIG. 2. (Color online) Schematic illustration of typical distribu-
tion function of squared nonrandom errors.

be noted by CV-CASP(ξ ), which is defined as

(CV − CASP(ξ ))2 = 1

N
(ξ )
DFT

N
(ξ )
DFT∑

n=1

(Ê(n) − En)2, (4)

where N
(ξ )
DFT denotes the number of DFT structures belonging

to group ξ . To distinguish CV-CASP from the average CV
score, the latter will hereafter be called CV-AVE.

III. APPLICATION TO CONFIGURATIONAL
BEHAVIOR IN SPINEL OXIDE

A. MgAl2O4 spinel oxide

We examine the quality of CV-CASP by constructing CEs
to determine the configurational properties of cations between
fourfold-coordinated tetrahedral and sixfold-coordinated oc-
tahedral sites in an fcc oxygen sublattice of MgAl2O4 spinel
oxide. The MgAl2O4 spinel is a model system with complex
interactions.11 Although the MgAl2O4 spinel is a typical ionic
system, its electrostatic energy changes largely along with the
change in the internal coordinates of oxygens. This implies
that a large number of many-body clusters is required to
express the energetics related to the cation configurations in
the MgAl2O4 spinel. In such a system, errors associated with
cluster truncation are anticipated to be large.

B. Computational details

First, CASP is performed in the MgAl2O4 spinel. Since
the number of different structures in the total population is
countable infinity, we need to prepare the structure population
approximately. To construct an approximated structure popu-
lation, we search for all symmetrically independent structures
within the unit cell of the spinel containing 56 atoms in
which 24 are cations. The number of such independent
structures is 4222. An approximated structure population can
also be prepared by other techniques such as a method for
obtaining derivative structures.12 CASP is then performed by
model-based cluster analysis. Here, we consider the correlation
functions of 126 clusters up to quadruplets. The likelihood
is maximized using the expectation-maximization (EM) al-
gorithm for each of 100 kinds of Gaussian mixture models.
We regard the model with the lowest Bayesian information
criterion (BIC)13 among the 100 models as the best one. In
the best model, the structure population is divided into four
groups, which contain 114, 604, 1071, and 2433 structures,
respectively. The ground-state structure, i.e., the normal spinel
structure, belongs to group 1 (minority structures).

We then discuss how to find the optimal number of clusters
and the optimal set of clusters. Since the accuracy of CE needs
to be controlled mainly by four factors, namely, the number of
clusters (m), the combination of clusters, the number of DFT
structures (NDFT), and the combination of DFT structures,
we use all 4222 structures as an optimal set of input DFT
structures. First, CEs with up to 40 clusters are constructed
using a widely used procedure. The pseudospin values of Mg
and Al are assigned to be +1 and −1, respectively. The set of
clusters that minimizes CV-AVE is searched for from a pool
of 126 clusters up to quadruplets using the genetic algorithm
(GA)6 for each number of clusters. The ECIs of the selected
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FIG. 3. (Color online) Dependence of the minimized CV-AVE
on the number of clusters (open blue triangles). CV-CASPs (closed
red circles) and WCV-CASPs (closed green squares) with weights
proportional to 1/N

(ξ )
DFT for four groups are shown together.

clusters are estimated using the least-squares technique. We
use the clupan code14,15 to construct the CEs. DFT calcula-
tions are performed by the projector augmented-wave (PAW)
method16,17 within the local-density approximation (LDA)18,19

as implemented in the VASP code.20,21 The plane-wave cutoff
energy is set to 350 eV. The total energies converge to less
than 10−2 meV. The atomic positions and lattice constants are
relaxed until the residual forces become less than 10−2 eV/Å.

C. Quality of CV-CASP

Figure 3 shows the dependence of the minimized CV-AVE
on the number of clusters. When the CV-AVE gradually
converges with the number of clusters, a CE with a required
precision can be regarded as an optimal CE. For instance,
when we require an accuracy of 0.8 meV/cation in Fig. 3, the
optimal number of clusters can be found to be mopt = 14. The
CV-CASPs for all groups are shown in Fig. 3. The CV-CASP
for group 4 is close to the CV-AVE since group 4 contains the
largest number of DFT structures in this case. On the other
hand, the CV-CASP for group 1, i.e., minority structures, is
much larger than the CV-AVE. This indicates that the CV-AVE
does not take into account the errors of minority structures.
The difference between the CV-AVE and the CV-CASP can be
ascribed to the cluster truncation in this case. The averages of
the root-mean-square (rms) of the correlation functions for 126
clusters in groups 1 and 4 are 0.303 and 0.190, respectively,
which implies that the truncation error is larger in group 1.
The use of CASP is essential for obtaining the optimal CE in
such a case.

When the errors for minority structures are larger than
the average error, the accuracy of the CE for minority
structures can be improved by the simultaneous optimization
of CE for all the groups. In order to do so, it is natural to
minimize the mean square of CV-CASPs as expressed by
[
∑

ξ (CV − CASP(ξ ))2]/Nξ . When ECIs are estimated from
the weighted least-squares fitting with weights proportional to
1/N

(ξ )
DFT, the RMS of CV-CASPs will be called the weighted

CV-AVE (WCV-AVE).

Here, we construct CEs that minimize WCV-AVE with
weights proportional to 1/N

(ξ )
DFT. CV-CASP to the weighted

fit (WCV-CASP) can also be defined by the same equation
as Eq. (4), although the predicted energy is obtained from
the weighted fit. The WCV-CASPs for all groups are shown
in Fig. 3. Compared with the error with the minimization of
CV-AVE, the error for group 1 is reduced. In other words,
the minimization of WCV-AVE improves CE particularly for
minority structures.

D. Practical procedure for constructing CE based on CASP

Although we have used the approximated structure popu-
lation as an optimal set of DFT structures so far, a smaller
set of DFT structures should be preferred for practical use.
In our previous paper,7 we proposed an iterative procedure
for obtaining an optimal set of DFT structures, where CV-
AVE minimization and structure selection were repeated. In
the procedure, structures that minimize the variance of the
predicted energy estimated by linear regression were selected
and were called “probe structures.” The variance-minimization
approach to structure selection was adopted.5,22 However,
since the variance-minimization approach is based on linear
regression, assuming that errors are distributed randomly, it is
less suitable when a system has a nonrandom error distribution,
as illustrated in Fig. 1(b). In such a case, DFT structures should
be uniformly sampled in a configurational space. We propose
a procedure that combines WCV-AVE minimization and DFT
structure selection based on CASP.

The uniform sampling of DFT structures can be achieved
by evenly selecting structures from all the groups divided by
CASP. Here, CEs are constructed from DFT structures sampled
evenly and randomly from all the groups. The number of
clusters is fixed at 17. ECIs are estimated by the weighted
fit with weights proportional to 1/N

(ξ )
DFT. The set of clusters is

optimized as WCV-AVE is minimized. Since DFT structures
are picked up evenly from all the groups, all the DFT structures
have the unit weight and WCV-AVE corresponds to CV-AVE.

To examine the quality of the CEs constructed by the
proposed procedure, CEs are constructed from two kinds of
DFT structures prepared by different sampling procedures.
One is composed of high-symmetry structures (HSs), which
have multiple symmetry operations. The other is composed
of randomly selected structures (RAs). The CE error is
approximately estimated from the RMS difference between
the DFT and CE energies for all the structures in the structure
population. Since the accuracy of the CEs made from the CASP
and RA samplings is dependent on the selected structures, we
perform CE ten times for each NDFT and estimate CE error
by averaging the errors of ten CEs. Figure 4(a) shows the
dependence of CE error on the number of DFT structures.
As can be seen in Fig. 4(a), the CEs with the CASP and RA
samplings are better than the CE with the HS sampling. In the
CEs with the CASP and RA samplings, the errors are almost
the same and converge at NDFT = 120.

In order to examine the accuracy for a wide range of struc-
tures from a different viewpoint, the dependence of CE error
on the DFT energy at NDFT = 120 is shown in Fig. 4(b). In the
CE with the CASP sampling, structures with a wide range of
energies can be most precisely predicted among three sampling
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FIG. 4. (Color online) (a) Errors of CEs constructed using three
types of DFT structure sampling. (b) DFT energy dependencies of
CE errors made from three types of 120 DFT structure. The number
of structures belonging to a group classified on the basis of the DFT
energy is also shown. The relative energy is measured from the energy
of the normal spinel.

approaches. On the other hand, the CE with the RA sampling
has a low accuracy for structures with a low energy. It can
reconstruct structures only in the energy range 50–125 meV.

When constructing an optimal CE on the basis of WCV-
AVE minimization without using the CE error estimated from
the DFT energies for the structure population, the convergence
of WCV-AVE should be examined using the probe structures
in the same way as reported in our previous paper.7 Structures
selected evenly from each group classified by CASP can
be adopted as the probe structures. When the WCV-AVE
evaluated with the probe structures of a trial CE converges, an
optimal CE with m clusters is obtained. Finally, by performing
the CE for various m values, the number of clusters can be
determined using WCV-CASP.

IV. SUMMARY

We have proposed a CE technique that is reliable for predict-
ing a wide range of structures including minority structures.
The procedure is particularly useful when the CE errors of
minority structures are larger than the average error. Such a
situation occurs when we truncate CE in Eq. (1). To find an
optimal CE in such a system, adequate estimation of the errors
of minority structures is essential. In the proposed procedure,
CASP enables us to distinguish structures and estimate the
errors in each group. The accuracy of CE over a wide
range of structures can be improved by optimizing CE in all
the groups simultaneously by WCV-AVE minimization. This
would lead to a more accurate prediction of the ground-state
structures, thermodynamics, and configurational properties of
multicomponent systems.
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