Design and Implementation of Web Forward Proxy with Shibboleth Authentication

KOMURA Takaaki

Institute for Information Management and Communication

Kyoto University, Kyoto, Japan

Email: komrua@media.kyoto-u.ac.jp

DEMIZU Noritoshi
OCTOPATH Corporation, Kyoto, Japan
Email: demizu@octopath.co.jp

Abstract—We propose a web forward proxy server with
authentication method using Shibboleth. With this proxy Single
Sign-On would benefit a user and also authentication using
Shibboleth protocol solves problems in basic access authenti-
cation and digest access authentication supported by existing
web forward proxy servers. In order to realize it, the proxy
needs to recognize attributes of shibboleth protocol and session
cookies and to modify session cookies. We implemented system
and evaluated it by accessing to electronic journals from a test
network.

Keywords-Security Assertion Markup Language (SAML);
Shibboleth; Single Sign-On (SSO); Web Forward Proxy

I. INTRODUCTION

Web proxy servers are commonly used to access from web
browser on an intranet to the web servers on the Internet.
A proxy server has a large variety of potential purposes,
however, in this paper we focus on the following two points
in case the proxy requires user authentication and logs user’s
accesses.

« Rapid incident response
e.g. Operators in the intranet could find easier which
client tries to attack to a web server on the Internet.

o Web access statistics
e.g. The log shows us that the number of web access
from individual department in the organization.

These features are often important for large organization.

Existing forward proxies support only basic access au-
thentication [1], [2] (Basic Auth) and digest access au-
thentication [2], [3] (Digest Auth) as a user authentication
method. We propose a web forward proxy which supports
an authentication by using Shibboleth [4] protocol. The
proxy provides Single Sign-On (SSO) access for users.
Furthermore the Shibboleth authentication solves security
problems in Basic Auth and Digest Auth.

We describe types of proxies and problems in Basic and
Digest Auth and our motivation in Section II. A Summary of
Shibboleth is described in Section III. We explain a design
and an implementation of our proposal web proxy with
Shibboleth authentication method in Section IV. Proposed

SANO Hiroaki
Kyoto University Library, Japan
Email: zuoye @kulib.kyoto-u.ac.jp

MAKIMURA Ken

OCTOPATH Corporation, Kyoto, Japan

Email: macky@octopath.co.jp

proxy is just going to be evaluated on the network in our
university in order that students and staffs in our university
access electronic journals (E-Journals) on the Internet. We
describe experiments to access to E-Journal and an evalua-
tion in Section V.

II. PROXY AND AUTHENTICATION
A. Types of Web Proxy

The proxies are classified into two types of behavior: for-
ward proxies and reverse proxies. In this section, we describe
that forward proxies are appropriate for our purposes after
showing the differences of them.

Forward proxy server is need to be set up for web browser
by one of following three ways:

o directly specify pairs of hostname and port number of
forward proxy

« specify URIs of Proxy Auto-Configuration (PAC) file
written in JavaScript

o use Web Proxy Auto-Discovery (WPAD) [5] protocol
to find PAC file automatically

Browser connects to the forward proxy and requests to
access contents on target web server using URI. Also the
browser chooses which forward proxy to be used or not
to be used according to target URIs which imply hostname,
port number, protocol, etc when it uses PAC. Forward proxy
relays the request without change from the web browser to
the web server specified in URI.

Reverse proxy server appears to web browser to be an
ordinarily web server. Web browser (or user) connects to
the reverse proxy explicitly targeted by URI. The reverse
proxy parses the URI and forwards to one or more origin
servers which handle the requested URI. The response is
returned as if it came directly from the reverse proxy.

A forward proxy is usually situated between the client
and the server(s) hosting the desired resources, and a reverse
proxy is usually situated closer to the origin server(s) and
generally only return a configured set of resources. Reverse
proxy is typically used for hiding servers, load balancing,

site integration, SSL acceleration, etc. The reverse proxy and
their origin servers are often belong the same organization.

The biggest advantage of forward proxy over reverse
proxy is that URL is not rewritten. Therefore, users are
not annoyed by URL rewritings and administrators need not
keep watching changes of contents and hostnames of origin
servers to keep URL rewritings correct. The disadvantages
are that users need set up proxy in browser and that
standard authentication methods are limited to basic and
digest authentications.

B. Authentication

Both forward proxies and reverse proxies support Basic
Auth and Digest Auth for user authentication. Their au-
thentication schemes have security problems respectively as
shown later in 1I-B1 and II-B2.

Reverse proxies can utilize additional authentication
schemes which are called Form Authentication, Client Cer-
tificate Authentication on HTTPS and so on. Although
reverse proxies have advantages in authentication, they have
disadvantages that all URIs need to be converted suitable
for reverse proxy.

We consider safe authentication for the forward proxy in
this paper.

1) Problem in Basic Auth: Basic access authentication
is a method designed to allow a web browser to provide
credentials which forms from a user name and a password
when making a request.

Before transmission, the user name and the password are
appended with a colon. The resulting string is encoded with
the Base64 algorithm.

credential = Baseb64(username : password)

For example, browser sends the user name 'Aladdin’

and password ’open sesame’, it would use
"QWxhZGRpb jpvcGVUIHNl1c2FtzQ==’ for the
credential. Where the string is Base64 encoded of

’Aladdin:open sesame’.

The Base64 algorithm is not encryption and security is
not the intent of the encoding step. This scheme is not
considered to be a secure method of user authentication, the
user name and the password are passed over the network as
same as cleartext.

Even if a browser uses SSL (HTTPS) to connect to a
web server, the credential for a proxy is not encrypted when
the proxy requires user authentication, because sending
the credential to the proxy has been done before starting
encryption by SSL between the web browser and the web
server.

2) Problem in Digest Auth: Digest access authentication
is a method a web server can use to negotiate credentials
with a web browser. It uses encryption by MDS5 crypto-
graphic hashing to send a password over the network and

is safer than the Basic Auth. A response of Digest Auth in
HTTP/1.0 is formed as follows [1]: !

response = MD5(MD5(A1) : nonce : MD5(A2))
Al = wusername : realm : password
A2 = method : digestURI

Note that a raw password is needed to generate response
on web server. In other words, the web server has to access a
raw password itself or a value of MD5(A1). Many directory
systems stored a hash of password instead of user’s raw
password and these systems can not use Digest Auth.

Though other systems which stored a raw password can
support it, security risks come in when web servers are able
to access user’s raw passwords. To decrease the security
risk, a directory system may generates a value of MD5(Al)
and the web server accesses it instead of a raw password,
however, operating expense increases.

C. Necessity of Web Proxy in our Environment

There are three major reasons of necessity of web proxy
at Kyoto University.

The first one is gateway from private network to servers
on the Internet. Most part of the network in Kyoto University
uses private IP addresses and NAT routers are not provided
for HTTP and HTTPS because of administrative reasons.
The forward proxies are provided for these protocols.

The second is for rapid incident response. When network
administrators receive incident report from site on the Inter-
net, they must analyze log files on the proxy server to find
a person whose accesses are regarded as attacks, guide the
person not to do again and respond to the report rapidly.
For example all of our user can not access the E-Journal
site till the E-Journal site accepts our response, because the
E-Journal site rejects accesses from whole network of our
university. User’s continuous downloading (intentional and
unintentional) from E-Journal cause almost all incidents in
our experience. There are a few incidents per year.

The last one is for statistics of web access. In our uni-
versity, license fee of E-Journals are planning to be charged
for departments depending on the number of downloading
papers and documents from E-Journal sites by users in each
department. We need statistics information about download-
ing by our users, however, few E-Journal sites give us them.
Thus the proxy is needed to authenticate a user and to log
about who download papers.

There are two types of forward proxy are installed in our
university. One is anonymous forward proxy for accessing
almost all web sites on the Internet. The other is Squid
[6] proxy which required digest authentication for accessing
E-Journal sites. Hence a PAC file is provided for uses to
automatically select which type of proxy to use.

IThe algorithm to generate response is more complex in HTTP/1.1. [2],
[3] and details of it are omitted here.

Border
~ External Discovery Service
~ hetwork (DS)
Internal >
network @)

Service Provider (SP)

S—— CH R

EntitylD of IdP 3y | front end document, |}

Web N o i [satekeeper application, | {
Browser SAMIL assertion (RT{P-POST] ()} O |iorigS Svere|

" |(origin servere)
s
N “,
Qg S S
N Y N
S N
e,
¢ (\dentity Provider \\
(1dP) N
N

Flow of Shibboleth federation

Figure 1.

So, our remaining concern is authentication methods. We
need to record access logs with user ID for accounting and
trouble-shooting. But we do not want to keep thousands
of raw passwords in forward-proxy for administrative and
security reasons. This is our motivation to develop web
forward-proxy with Shibboleth authentication.

III. SHIBBOLETH FEDERATION

The Shibboleth enables secure access control for web-
based applications and provides web single sign-on function-
ality. The Shibboleth includes three major software compo-
nents: the Shibboleth Identity Provider (IdP), the Shibboleth
Service Provider (SP) and the Discovery Service (DS). These
three components are deployed separately but work together
to provide secure access to Web-based resources. The IdP
uses a web sign-on method which is a form authentication,
a client certificate authentication, etc. The Shibboleth SP
is a authentication module which behaves a wrapper for
original web server which is called back-end server. After
authentication at IdP, the IdP sends the message some
security information called an “assertion” that proves the
user signed on to the SP. Note that the assertion includes
no password and it lowers the security risk. The DS asks a
user to specify a home institution, then directs the user to
that institution’s IdP to authenticate.

We summarize here the process of sign-on using a shib-
boleth IdP and a shibboleth SP. Here is the typical procedure
of the Shibboleth SSO.

1) Browser sends an HTTP request to access con-
tent/application in SP. SP checks whether valid Shib-
boleth session cookie [7] exists. If Shibboleth session
has been established, goto the latter part of step 6.
Otherwise, SP redirects the request to DS.

2) DS shows a form to select an IdP in federation. When
user chooses his/her IdP, DS redirects the request back
to SP.

3) SP redirects the request to selected IdP with SAML
AuthnRequest issued by SP.

4) IdP authenticates user by username/password, physical
authentication key, etc. Then, it sends SAML assertion
back to SP by redirection or HTTP-POST.

5) SP checks the received SAML assertion. If it is
valid and the user is allowed to access the con-
tent/application, the request is redirected again back
to the original URL with the Set-Cookie header to set
Shibboleth session cookie.

6) Browser sends an HTTP request to access the same
URL with 1 accompanied by Shibboleth session
cookie. While the session cookie is valid, content or
application is provided for user.

IV. DESIGN AND IMPLEMENTATION

In this section, we propose a revised procedure of Shib-
boleth SSO for Shibboleth-capable forward-proxy.

Shibboleth SSO procedure was originally designed for
content/application server. In order to apply it to forward-
proxy server, the role of Service Provider (SP) in the original
design is split into two; origin server (OrS) and gatekeeper
(GK). Origin server is a term in the HTTP/1.1 specification
[3] and provides content and/or application. GK, which con-
sists of Policy Decision Point (PDP) and Policy Enforcement
Point (PEP), resides at origin server in the original design,
while GK resides in forward-proxy in our proposal. GK
checks Shibboleth session cookie and decides whether the
HTTP request should be accepted, rejected, or redirected to
DS or IdP.

Our goal in designing a revised procedure for Shibboleth-
capable forward-proxy are as following:

o It works with existing DS, IdP and browser implemen-
tations. Browser does not show uneasy message in the
procedure.

« The changes to existing Shibboleth SP implementation
is small so that it is easy to catch up future releases
of Shibboleth SP and easy to review codes to keep
secure and stable. Modified version of Shibboleth SP
supports both the original procedure and our proposed
procedure. Any existing feature of Shibboleth SP must
not be broken.

o It is easy to configure DS, IdP, forward-proxy and
PAC. Configurations of DS and IdP do not include
information on proxyed origin servers.

In order to achieve these goals, GK takes the responsibility
on behalf of origin servers to conduct browser to establish
Shibboleth session by interacting with DS and IdP.

When GK as a forward-proxy finds an HTTP request
without valid Shibboleth session cookie, it redirects the
HTTP request to a special URL whose host part is the
hostname of GK. Hence, the redirected HTTP request is
processed by GK as a web server, which acts as if it is
SP in the original procedure. That is, if redirected HTTP
request to it does not contain valid Shibboleth session cookie
associated with it, it initiates Shibboleth authentication by

redirecting the request to DS, then to IdP. When Shibboleth
session cookie associated with it is set to browser after
authentication, it diverts browser to a phantom URL whose
host part is the same as the one in the original request URL
and path part is a specially crafted phantom path. Phantom
URL is processed by GK as a forward-proxy, which sets
Shibboleth session cookie associated with origin server to
browser. Then, the HTTP request is redirected back to the
original request URL. While the Shibboleth session cookie
is valid, GK as a forward-proxy forwards HTTP requests to
the origin server.

Because our proposal requires forward-proxy to observe
all HTTP requests, our current proposal cannot be applied
to HTTPS sessions.

The detail of process of our proposal is described bellow
and in figure 2.

1) a) Browser sends an HTTP request to access con-
tent/application in origin server (OrS) through
forward-proxy. Gatekeeper (GK) in forward-
proxy checks whether valid Shibboleth session
cookie exists. If Shibboleth session has been
established, goto the latter part of step 6. Oth-
erwise, GK as a forward-proxy redirects the
request to a special URL whose host part is the
hostname of GK.

b) GK as a web server receives the redirected re-
quest. If the request contains valid Shibboleth
session cookie associated with GK as a web
server, goto the latter part of step Sa. Otherwise,
the request is redirected to DS. In the query
string of the redirected HTTP response, “enti-
tyID” contains the hostname of GK and “return”
contains the URL of Sessionlnitiator in GK as a
web server.

2) DS shows a form for user to select an IdP in federa-
tion. After user chooses his/her IdP, DS redirects the
request back to GK as a web server, since “return” is
specified so in step la.

3) GK as a web server receives the response from DS.
GK checks whether valid Shibboleth session cookie
associated with GK as a web server exists. If it does,
goto the latter part of step 5a. Otherwise, GK redirects
the request to the selected IdP with SAML AuthnRe-
quest issued by GK. The “destination” attribute in this
SAML AuthnRequest specifies the URL of Assertion
Consumer Service (ACS) in GK.

4) IdP authenticates user by username/password, physical
authentication key, etc. Then, it sends SAML assertion
to GK by using HTTP redirection or HTTP-POST as
specified in SAML AuthnRequest.

5) a) GK checks received SAML assertion. If it is
valid and the user is allowed to access the con-
tent/application, Shibboleth session is established
and session key is generated.

Border

Discovery Service'

/’
L (1a)

L (5b) | Forward Proxy
Web 1,

Browser | g (1bj
EntitylD of IdP_, (3): b
SAML assertion o (5 i webserver

y
/411%)

%est

Internal
network

External
network

;‘Eatekeeper (G Ve

Web Server

Origin Server

(OrsS)

Figure 2. Flow of federation proposed proxy

Then, the request is redirected to a phantom
URL under the hostname name of the original
request URL with specially crafted path part
followed by a temporary key in its query string.
The redirected HTTP response contains the Set-
Cookie header to set Shibboleth session cookie
which will be checked at step 1band 3.

b) GK as a forward-proxy intercepts the HTTP
request to phantom URL. If it succeeds to restore
session state corresponding to the temporary key
in its query string, GK as a forward-proxy redi-
rects the request to the original request URL.
The redirected HTTP response contains the Set-
Cookie header to set the same Shibboleth session
cookie associated with GK as a web server.

6) Browser sends an HTTP request to access the same

URL with la accompanied by Shibboleth session
cookie.
While Shibboleth session cookie is valid, GK as a
forward-proxy forwards HTTP requests to OrS. GK
as a forward-proxy removes Shibboleth session cookie
before forwarding HTTP requests to avoid possible
confusion in OrS.

Note that the browser has to be able to access the IdP and
DS without authentication because an infinite loop occurs
if authentication is required when the browser accesses to
the IdP or DS. We solved the problem by using a PAC. The
PAC written in JavaScript indicates which proxy or no proxy
should be used according to the target URIs. We indicate by
PAC that a browser uses the proposed proxy only when it
accesses to origin servers that we expected to access with
authentication.

Table I shows an example of authentication processes
of ordinary Shibboleth and proposed forward proxy with
Shibboleth. Note that “302” and “200”, which are HTTP
status codes, mean ‘“redirection” and “OK (successful)”

Table T

THE COMPARISON OF AUTHENTICATIONS PROCESSES OF ORDINARY SHIBBOLETH WITH PROPOSED FORWARD PROXY WITH SHIBBOLETH

State Ordinary Shibboleth Proposed Forward-Proxy
1) a) Browser — OrS | GET http://ors.net/doc GET http://ors.net/doc
(forward-proxy intercepts the request and responses ..)
Browser < OrS 302 https://proxy.net/Shibboleth.sso/Proxy/proxy.net?state=xxxx
(GK in OrS intercepts the request and responses ..) Set-Cookie: _shibstate_<32bit>=<OriginalURI>
1) b) Browser — GK GET (above URL)

Browser «—— GK | 302 https://ds.net/DS/WAYF? 302 https://ds.net/DS/WAYF?
entityID=http://ors.net/shibboleth-sp& entityID=https://proxy.net/shibboleth-sp&
return="http://ors.net/Shibboleth.sso/DS&..” return="https://proxy.net/Shibboleth.sso/DS&..”
Set-Cookie: _shibstate_<32bit>=<OriginalURI>

(GK is in OrS. “entitylD” indicates OrS) (“entityID” indicates GK as a the proxy)
2) Browser — DS GET (above URL) GET (above URL)

Browser < DS 302 http://ors.net/Shibboleth.sso/DS? 302 https://proxy.net/Shibboleth.sso/DS?

entityID=https://idp.net/idp/shibboleth entityID=https://idp.net/idp/shibboleth
3) Browser — GK | GET (above URL) GET (above URL)
(GK is in OrS. OrS receives the request) (GK as a web server receives the request)

Browser «—— GK | 302 https://idp.net/idp/profile/SAML2/Redirect/SSO? | 302 https://idp.net/idp/profile/SAML2/Redirect/SSO?
SAMLRequest="<samlp: AuthnRequest..>’ SAMLRequest="<samlp:AuthnRequest..>’
RelayState="cookie: <32bit>" RelayState="cookie: <32bit>"

4) Browser — IdP | GET (above URL) GET (above URL)
Browser < IdP | 200 (HTML and SAML assertion) 200 (HTML and SAML assertion)
Browser < IdP (Browser POST the assertion immediately by JavaScript) (Browser POST the assertion immediately by JavaScript)
5)a) Browser — GK | POST: http://ors.net/Shibboleth.sso/SAML2/POST POST: https://proxy.net/Shibboleth.sso/SAML2/POST
Cookie: _shibstate_<32bit>=<Original URI> SAMLResponse=< ?xml..><samlp:Response.....>
SAMLResponse=<?xml..><samlp:Response.....>

Browser «— GK | 302 http://ors.net/doc (Original URI) 302 http://ors.net/Shibboleth.sso/Proxy/proxy.net?state=xxxx
Set-Cookie: _shibsession_<OrS-ID>=<128bit> Set-Cookie: _shibsession_<GK-ID>=<128bit>
Set-Cookie: _shibstate_<32bit>=""

5) b) Browser — OrS GET (above URL)
(the forward-proxy intercepts the request and responses ..)

Browser < OrS 302 http://ors.net/doc (Original URI)

Set-Cookie: _shibsession_<GK-ID>=<128bit>
Set-Cookie: _shibstate_<32bit>=""
6) Browser — OrS | GET http://ors.net/doc GET http://ors.net/doc
Cookie: _shibsession_<OrS-ID>=<128bit> Cookie: _shibsession_<GK-ID>=<128bit>
Browser «<— OrS | 200 (requested HTML) 200 (requested HTML)

respectively. The careful reader may have noticed that our
proposed procedure is almost the same with the original
procedure except step 1b and 5b. In both procedures,
GK takes the responsibility to establish and to maintain
Shibboleth session. The only difference there is that GK
resides whether in forward-proxy or at origin server. This
similarity will result the change to the current Shibboleth
SP implementation small.

Our current implementation is based on Shibboleth SP
2.4.2 and Apache http 2.2.17 running on Red Hat Enterprise
Linux Server release 5.6. All changes are made to Shibboleth
SP (written in C++) and our patch in the “diff -u” format is
approximately 880 lines.

V. EXPERIMENTS AND EVALUATION

In our experiments, we visited several EJ/DB sites by
using five popular browsers (IE8, Safari, Firefox, Opera and
Chrome) through shibboleth-capable forward-proxy (abbre-
viated to “’shibproxy” in this section) located in the network
of Kyoto University. We prepared PAC which directed
browser to shibproxy for restricted-access EJ/DB sites and
to university’s official forward-proxy for other sites.

When a user accesses a restricted-access EJ/DB site,
his/her request is redirected to Discovery Service, where the
user selects his/her IdP from two IdPs; the official IdP of
Kyoto University or the special IdP for guest users of Kyoto
University Library. Once the user is authenticated by IdP, the
user is allowed to access any restricted-access EJ/DB sites
without additional authentication.

Through our experiments, we found cases where browsers
cannot retrieve some of resources in some pages. The cause
of the problems is that there are cases where browsers do not
accept cookies issued by shibproxy. Here are some examples
and solutions of those problems.

Ex.1 Some EJ/DB sites use multiple host names such
as www.example.org and portal.example.org. In such case,
our PAC directs browser to shibproxy for any host names
under example.org. Such sites often use resources of mul-
tiple sibling servers under example.org domain, such as
assets.example.org and analytics.example.org, to construct
one page. It is necessary for browser to accept cookies
of those sibling servers to retrieve all resources referred
by such pages through shibproxy. When browser is con-
figured to block third-party cookies, four of five browsers
accept cookies of sibling servers and successfully show
such pages while one browser does not accept them and
imperfectly shows such pages due to the lack of some
of images, JavaScript, CSS, etc. To solve this problem,
shibproxy can be configured to send Set-Cookie header with
domain=.example.org attribute.

Ex.2 Some EJ/DB providers use multiple domain names
to provide various kinds of EJ/DB. Their pages sometimes
refer to resources of third-party EJ/DB sites with completely
different host names but managed by the same owner.
When browser is configured to block third-party cookies, all
browsers do not accept cookies of those third-party sites and
they cannot access third-party resources. Since the number
of such third-party resources is limited, it can be solved by
configuring shibproxy to accept HTTP requests for those
third-party URLs.

Ex.3 Some browsers seem not to send cookies to retrieve
some resources described in the HTML <link> element
especially when those resources are loaded at the same time
with the main HTML page. For example, some browsers
seem not to send cookies to retrieve “favicon.ico”. Hence,
shibproxy is configured to forward HTTP request whose
URL matches to “/favicon\w*.ico$” to origin server regard-
less whether Shibboleth session cookie exists or not. For
another example, some browsers seem not to send cookies
to retrieve OpenSearch [8] description. Since their file names
vary, we have not solved this problem.

VI. CONCLUSION AND FUTURE WORKS

We proposed a web forward proxy server worked as
the Shibboleth SP. The proxy supported single sign-on and
resolved the problems inherent in basic access authentica-
tion and digest access authentication supported by existing
forward proxy servers. The proxy recognized attributes from
shibboleth IdP. The proxy also sets session cookies to control
HTTP sessions between a browser and the proxy. The proxy
forwards all of requests from the browser to an origin server
except for the cookies targeted to the proxy. The system
worked well.

As future work, we have to support to proxy of HTTPS
and to log individual HTTPS access. The proposed proxy
can not log HTTPS because information of target URIs
are encrypted between a web browser and a web server.
A reverse proxy can it. We will design the proxy by
combination of forward proxy for HTTP and reverse proxy
for HTTPS.

REFERENCES

[1] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext
Transfer Protocol — HTTP/1.0,” RFC 1945 (Informational),
Internet Engineering Task Force, May 1996. [Online].
Available: http://www.ietf.org/rfc/rfc1945.txt

[2] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart, “HTTP Authentication: Basic
and Digest Access Authentication,” RFC 2617 (Draft
Standard), Internet Engineering Task Force, Jun. 1999.
[Online]. Available: http://www.ietf.org/rfc/rfc2617.txt

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol —
HTTP/1.1,” REC 2616 (Draft Standard), Internet Engineering
Task Force, Jun. 1999, updated by RFCs 2817, 5785. [Online].
Available: http://www.ietf.org/rfc/rfc2616.txt

[4] “Shibboleth documentation,” https://wiki.shibboleth.net/.

[5] P. Gauthier, J. Cohen, M. Dunsmuir, , and C. Perkins, “Internet
draft: Web proxy auto-discovery protocol (work in progress),”
Internet Engineering Task Force, November 2000.

[6] I. Spare, “Deploying the squid proxy server on linux,”
Linux J., vol. 2001, March 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=364764.364769

[7]1 A. Barth, “HTTP State Management Mechanism,” RFC 6265
(Proposed Standard), Internet Engineering Task Force, Apr.
2011. [Online]. Available: http://www.ietf.org/rfc/rfc6265.txt

[8] “Opensearch,” http://www.opensearch.org.

