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Microplasmas have a number of potential roles to control propagating electromagnetic waves. This
report focuses on novel physics of periodic microplasma assembly for electromagnetic media, which
is verified by experimental results and analyzed by numerical methods. Using an assembly
composed of microplasmas, novel functions are expected due to its complex dielectric function
arising from dielectric and lossy properties. The dielectric property creates photonic band gaps, and
the lossy property drastically changes transmittance around the photonic band gaps, leading to an
attenuation gap. As a result, a “complex” dispersion relation or a band diagram in the
three-dimensional space of real and imaginary wavenumbers and wave frequency will open new
possibilities to control electromagnetic waves by complex-variable filters composed of microplasma
assemblies. © 2010 American Institute of Physics. �doi:10.1063/1.3314334�

I. INTRODUCTION

Microplasmas whose sizes are smaller than a few milli-
meters can give rise to functionality for chemical microreac-
tors, conversion fields for biomaterials, and interactive media
for photons.1,2 In particular, as far as interaction with photons
or electromagnetic waves is concerned, in addition to micro-
plasma generation and photon emission in an intensified
electric field of waves, microplasmas can also play a number
of potential roles of controllers for propagating waves. As a
related scientific concern, dispersion relation of electromag-
netic waves has been well understood in both magnetized
and nonmagnetized plasmas, where they are assumed to be
homogeneous, inhomogeneous within the regime of the
Wentzel–Kramers–Brillouin approximation, or have specific
parameter profiles in a cross section, such as that in a toka-
mak device.3–5 Recently, plasmas, which have abrupt spatial
and temporal changes or are arranged in periodic structure,
have attentions since they can serve as novel devices such as
a frequency upshift converter,6 antenna,7 or a photonic
crystal;8,9 we have already reported experimental verification
of plasma photonic crystals composed of a microplasma
array.9–12

Theoretical approaches to reveal wave propagation in a
periodical plasma assembly have been achieved so far in
various methods. The Kronig and Penny model was useful
for derivation of a band diagram in a one-dimensional �1D�
plasma array.6,13 To simulate two-dimensional �2D� spatial
periodicity, the plane-wave expansion method was modified
for plasma array10 as well as for metallic structure14 to derive
dispersion relation or a photonic band diagram, and this
modified method can deal with collision effects as a loss
term. Another method to calculate band diagrams of 2D
structure is the direct complex-field analysis,10 and this

method also allows us to analyze effects of a finite-size
array.11

On the part of the experimental verification, we
developed several types to realize 1D and 2D periodic
plasma assemblies, using discharge extension of a micro-
plasma array,9,15,16 a discharge assembly in multicapillary
electrodes,11,17 and discharges in cold cathode fluorescent
lamps �CCFLs�.18–20 Self-organized discharge patterns in
parallel-plate dielectric barrier discharges21–23 are simple and
also promising regimes to realize a homogeneous 2D plasma
assembly.

One missing point in the previous reports so far was
permittivity working as a complex variable. When we use a
collisional plasma instead of a collisionless plasma, the per-
mittivity becomes a complex value, and we expect a new
complex-variable filter made of plasma assemblies; colli-
sions in plasmas give rise to imaginary part of the permittiv-
ity, and so we can expect independent control of wave am-
plitude and phase shift by changing electron density and gas
pressure which determines electron elastic collision fre-
quency. In addition, since we can control the frequency of
the band gaps by varying spatial periodicity of the turn-on
plasmas, we will obtain an elaborate tool for control of wave
propagation.

This report focuses on novel physics of plasma assembly
in a periodic configuration for electromagnetic media. When
we make an assembly composed of microplasmas generated
in a discharge scheme in which the working gas pressure is
around the so-called Paschen-minimum condition, novel
functions are expected due to its complex dielectric function
arising from dielectric and lossy properties; the dielectric
property creates photonic band gaps and the lossy property
drastically changes transmittance around the photonic band
gaps. In such cases, a “complex” dispersion relation or a
complex band diagram describes electromagnetic-wave
propagation in the three-dimensional �3D� space of real and
imaginary wavenumbers and wave frequency, which will
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open new possibilities to control electromagnetic waves by
complex-variable filters composed of microplasma assem-
blies.

Such physical aspects of plasma assemblies are reported
in this article as follows. In Sec. II, we review dispersion
relation in a plasma and its assembly, and a new drawing
method of dispersion relation in 3D space of wave frequency,
real and imaginary wavenumbers, is described. Here, we can
explain fundamental properties on wave propagation, espe-
cially in a 2D periodic plasma structure. In Sec. III, experi-
mental results are demonstrated in two different polarized
waves. In Sec. IV, to reinforce theoretical prediction in
Sec. II and to analyze experimental data in a more detailed
manner, we show the finite difference time domain �FDTD�
method applicable to plasma media and discuss the proper-
ties of the wave propagation in plasma assemblies, which is
followed by a summary of this report in Sec. V.

II. COMPLEX DISPERSION RELATIONS IN A PLASMA
AND ITS ASSEMBLY

To describe wave absorption as well as phase shift
and/or reflection of the propagating waves, we here use a
drawing of dispersion relation in the space in three coordi-
nates consisting of wave frequency � /2�, real wavenumber
kr, and imaginary wavenumber ki. A propagating wave which
is launched at a spatial position x=0, or on the edge of a
given media, is expressed as

A�x�exp�j��t,x�� = A�x�exp�j��t − krx��

= A0 exp�kix�exp�j��t − krx��

= A0 exp�j��t − �kr + jki�x�� , �1�

where A�x� is wave amplitude with the initial boundary con-
dition of A0=A�x=0�, t is time, and ��t ,x� is phase of the
wave with the initial condition of ��0,0�=0. The dispersion
relation in a collisionless plasma is usually expressed in the
�-kr plane, and we can also obtain a useful information

about wave attenuation from ki as a function of � when
significant loss or wave attenuation takes place.

For instance, dispersion relation in a bulk nonmagne-
tized plasma is expressed by the permittivity � in the Drude
model in the form

� = 1 −
�pe

2

�2�1 + j�m/��
, �2�

where �pe is electron plasma frequency which is a function
of electron density ne and �m is electron elastic collision
frequency. Figure 1 shows � at a fixed wave frequency
�4 GHz� as a function of ne with various gas conditions on
the complex plane. Here, we assume that electron energy is
0.5 eV for a plasma in the afterglow and that cross section of
electron elastic collisions is 5.0�10−16 cm2 for He and
1.0�10−16 cm2 for Ar from literature.24 At 760 Torr of He,
Re��� is almost constant at unity for varying ne. On the other
hand, at 5 Torr of Ar, Im��� is almost zero while Re���
changes significantly in the negative polarity, and this feature
almost corresponds to a collisionless plasma. This figure in-
dicates that the change in gas species and pressure yields �
with Im��� /Re��� ranging from 0 to infinity for Re����1 on
the complex plane.

FIG. 1. �Color online� Permittivity in a lossy bulk plasma with various gas
condition and various ne.

FIG. 2. �Color online� Dispersion relation of electromagnetic waves in a
bulk plasma with ne=1�1013 cm−3 in the 3D space. �a� In a plasma at
5 Torr of Ar gas. �b� In a plasma at 120 Torr of He gas.
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Equation �2� gives us an understanding of dispersion re-
lation in the 3D space �� ,kr ,ki�. Figure 2 displays dispersion
relation in a bulk nonmagnetized plasma expressed by Eq.
�2�. In the case at 5 Torr of Ar, which is almost collisionless
as mentioned earlier, the trajectory on the �� ,kr� plane is
well known in literature. The working point is always on the
�� ,kr� plane or on the �� ,ki� plane, which can be understood
easily from Eq. �2�. However, in the case at 120 Torr of He,
the working point goes far away from the two planes below
�pe and leaves a trajectory on the �kr ,ki� plane; at such a
point, the wave suffers attenuation as well as phase shift, as
pointed out in Eq. �1�.

Drawings of dispersion relation in this 3D space reveal
significant physical parameters of electromagnetic media, as
shown in the following. Knowledge from microwave
engineering25 shows that

k = �����1 − j
	

��
, �3�

where � and 	 are permeability and conductivity of the me-
dia, respectively. From Eq. �3�, the following equation is
derived:

kr�ki� =
��

2
	 =

1


s
2 . �4�

Here 
s is skin depth of the wave into the media. kr�ki� indi-
cates area on the �kr ,ki� plane, and so a point projected on
the �kr ,ki� plane expresses conductivity of the media on the
assumption that � is constant. The inverse of the area on the
�kr ,ki� plane corresponds to square of 
s; as the area is larger,
the skin depth is shorter. Another physical parameter that is
visible in this 3D drawing is the metallic/dielectric boundary.
From Eq. �3�, we also obtain

kr
2 − ki

2 = �2�� . �5�

Comprehension of this equation gives us the following re-
sult. If kr� �ki�, � is positive when � is positive, leading to
the fact that the media is dielectric, and if kr� �ki�, vice versa,
and we can recognize that the media is metallic. The line of
kr=ki becomes the boundary between metallic and dielectric
media.

These characteristics arising from lossy plasmas are dis-
tinguishable from other electromagnetic media; unlike plas-
mas, any other material never has a variety of parameter sets
such as complex � and 	. Such a characteristic property can
be enhanced by spatial periodicity; a simple periodic �r dis-
tribution realized in a solid material makes a photonic or
electromagnetic band material, which includes photonic band
gaps. If we introduce the effects of �i in a plasma array, new
features can emerge with the complex-variable effects. A
plasma array also works as an equivalent metal, which also
affects photonic bands. We have already studied a part of its
effects in our previous report,19 in which 1D structure was
assumed. In the following, we investigated a 2D plasma as-
sembly as an electromagnetic media with effects of a
complex-variable filter.26

Before we consider a 2D plasma periodic structure, it
would be useful to review photonic bands in a 2D dielectric
periodic structure, where there is no frequency dependence
in � that includes no imaginary part. Figure 3 shows a band
diagram in a square lattice of vacuum holes formed in a bulk
dielectric material with �=1.8, calculated by the plane-wave
expansion method.27,28 Although this method includes com-
plicated formulas, the basic concept of the calculation is con-
sistent with the Bloch29 or Froquet theorem,30 expressed in
the forms of

FIG. 3. �Color online� Dispersion relation derived using plane-wave expan-
sion method in TE mode in a square lattice of 12 mm with filling factor of
0.18. Vacuum holes are surrounded by dielectric with �=1.8, and there is no
plasma. �a� Photonic band of kr. �b� Branch around lowest photonic band
gap in the �-X direction in 3D space.
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E�x0 + a� = E�x0�exp�− jkxa�,
�6�

E�y0 + a� = E�y0�exp�− jkya�

and

dE

dx
�x0 + a� =

dE

dx
�x0�exp�− jkxa�,

�7�
dE

dx
�y0 + a� =

dE

dx
�y0�exp�− jkya� ,

where E is an electric field of the propagating wave, a is the
lattice constant or the length of the spatial periodicity, and
�x0 ,y0� is a position vector x on the boundary of lattices.
Here, coordinates x and y are along perpendicular sides of
the lattice square. The calculated band diagram is an ordinary
one of a photonic crystal, as shown in Fig. 3�a�, and we
recognize the first band gap along the �-X direction in a
frequency band, in which a is around half wavelength in the
dielectric. We note that Fig. 3�b� indicates no fraction of ki;
in a 1D photonic crystal, there is a significant fraction of ki in
a dielectric photonic band gap, but in a 2D photonic crystal,
the practical flow of wave energy diverges to the �-M
direction.31

When we consider 2D structure composed of lossy mi-
croplasmas, the effects of dispersion in a plasma shown in
Fig. 2 and of 2D spatial periodicity shown in Fig. 3 merged
into distinctive photonic bands. A wave propagates in a 2D
periodic structure in either mode: TE mode, in which wave
electric fields are parallel to the 2D plane which is shown in
the inset in Figs. 3�a�, 4�a�, and 5�a�, and TM mode, in which
wave magnetic fields are parallel to the 2D plane. The mode
difference significantly affects photonic bands as shown be-
low. Here we use the modified plane-wave expansion
method10 to derive photonic bands analytically. Figures 4
and 5 show photonic bands in both modes propagating in a
columnar plasma array with a filling factor of 0.18, periodic
length of 12 mm, slab density profile of ne=1�1013 cm−3,
and �m=0.5�pe. In the case of the TE mode, as shown in Fig.
4�a�, a number of flatbands with very low group velocity are
found below �=�pe, arising from coupled surface-wave
propagation.10,12 The lowest photonic band gap in the �-X
direction, which here we focus on, is located at 9–12.5 GHz.
From Fig. 4�b�, which is in the form of the 3D dispersion
relation, this band gap also yields a kind of attenuation gaps,
where ki is discontinuous on the two sides of the frequency
band gap. Additionally, smaller ki is observed on the upper
band; this feature is not consistent with the case in the 1D
array.19 Such a behavior of the wave will be discussed
using experimental results in Sec. III and numerical results in
Sec. IV.

In the case of the TM mode, as shown in Fig. 5�a�, no
flatbands are observed, and the photonic bands around the
lowest band gap in the �-X direction are similar to those in a
conventional dielectric photonic crystal. Figure 5�b� revealed
discontinuity of ki on the two sides of the band gap, although
this attenuation gap is different from that in the TE mode;
smaller ki is observed on the lower band. This feature will

also be discussed in Sec. IV. Another feature that was not
observed in the TE mode is cutoff frequency around
8.0 GHz. In a collisionless bulk plasma, there is a cutoff
frequency at �=�pe, as shown in Fig. 2�a�. In the TM mode,
this cutoff frequency is determined by a shield effect of the
plasma columns whose axes are parallel to the electric field
of the propagating waves; the cutoff mechanism is analogous
to the Faraday shield used in a high-power wave launcher
and to the long wavelength cutoff at a microwave wave-
guide. That is, this frequency is as a function of distance
between plasma columns. On the other hand, in the TE

FIG. 4. �Color online� Dispersion relation derived using modified plane-
wave expansion method in TE mode in a square lattice of 12 mm with filling
factor of 0.18 and ne=1�1013 cm−3. �a� Photonic band of kr. �b� Branch
around lowest photonic band gap except flatbands in the �-X direction in 3D
space.
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mode, electric fields can exist in a similar manner to the
perpendicular fields to the metal components of a Faraday
shield.

The common point in both modes is an effect of negative
� on photonic bands modified by 	 or imaginary part of �.
This plasma assembly is equivalent to dielectric in the gen-
eral frequency region even if the real part of � is negative,
and it turns into a metallic media around the band gap in
both modes and near the cutoff condition in the TM mode. In
Secs. III and IV, we will figure out these analytical predic-
tions in comparison with experimental and numerical results.

III. EXPERIMENTAL METHOD

A. Experimental setup

Since we investigate response of a plasma assembly in a
wide range of microwaves from several gigahertz to around
20 GHz, a wideband antenna with good directionality is re-
quired for launching and propagation of quasiplane wave in a
free space. Here we configured a new patch antenna based on
a design reported recently,32 which enables us to obtain a
fairly constant frequency spectrum from 4 to 18 GHz with
directionality of 	20° as a half of peak width in the main
beam. Using this antenna, we measured amplitude of the
microwaves propagating through a device under test consist-
ing of capillaries for plasma columns, as shown in Fig. 6.
From a signal generator �Agilent Inc., 83624B� through the
patch antenna, microwaves were launched, and they were
detected by a diode rectifier after received by the similar
patch antenna, and the output signal of the detector was re-
corded in a digital storage oscilloscope.

The amplitude of the transmitted waves was normalized
by that in the case without plasma generation, which was at
0 dB in the following experimental data. We refer to this
value as transmittance in this report, and we pay attention to
transmittance that is affected by both wave absorption and
wave reflection; wave absorption arises from a lossy property
of the plasma and reflection is a result of spatial discontinu-
ity of real part of � and a band gap. To reveal each contri-
bution to wave transmittance, we used phase measurement as
well as detection of the amplitude of a transmitted wave in
our previous report,19 although in this study we will use fre-
quency dependence of the transmittance in comparison with
numerical results.

A plasma column with diameter of 1.5 mm was gener-
ated in a CCFL capillary with outer diameter of 1.8 mm, in
which Ar and Ne gas mixture was contained with mercury
and the working gas pressure was tens of Torrs, depending
on vaporized mercury. Using similar CCFLs, we have suc-
cessfully observed 1D dynamic photonic band gaps19 and
surface-plasmon-like chains.20 To ignite plasmas in the cap-
illaries, we applied bipolar square-shaped voltage pulses,
where we fixed the monopolar pulse width to 7 �s, the rep-
etition frequency to 20 kHz, and the discharge current in one
capillary to 10 mA at maximum. In such an operational con-
dition, electron density varied in time to a certain extent,
although a plasma was continuously present.20 To obtain ex-

FIG. 5. �Color online� Dispersion relation derived using modified plane-
wave expansion method in TM mode in a square lattice of 12 mm with
filling factor of 0.126 and ne=1�1013 cm−3. �a� Photonic band of kr. �b�
Branch around lowest photonic band gap in the �-X direction in 3D space.

FIG. 6. �Color online� Experimental schematic setup for wave
transmittance.
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perimental data shown in the following, we detected micro-
wave signals at 30 �s after the rising slope of the repetitive
positive monopolar pulse.

B. Experimental results

Figure 7�a� shows transmittance of the waves in the TE
mode through the plasma assembly. Here, the assembly had a
rectangular lattice of 3�6 mm2, and along the wavenumber
vector, in the �-X direction, spatial periodicity was 6 mm. A
photonic band gap was predicted to be above 20 GHz, and so
the propagation in the lowest band was observed in this fre-
quency range. The wave attenuation monotonously increased
as the frequency was raised, which is a similar tendency to

the predicted ki below �a /2�c	0.3 in Fig. 4�b�. Figure 7�b�
shows transmittance in the case of a rectangular capillary
lattice of 3�6 mm2 with the spatial periodicity of 12 mm
along the wavenumber vector; that is, plasmas were gener-
ated in every two rows. This case is roughly similar to the
wave propagation around the lowest band gap, i.e., for
0.2��a /2�c�0.6, examined in Fig. 4�b�. Figure 4�b�
shows discontinuity of ki around the band gap, and this phe-
nomenon was also observed for 11–13 GHz as a reduction in
wave attenuation in Fig. 7�b�.

Figure 8�a� shows transmittance of the waves in the TM
mode through the plasma assembly. The pattern of plasma
ignition in CCFLs was similar to that in Fig. 7; the assembly

FIG. 7. �Color online� Experimental data of transmittance in TE mode
�a� in 6 mm periodicity and �b� in 12 mm. The dots indicates numerical
results and we set ne in the center of the column=1.5�1013 cm−3 and
�m /2�=12.5 GHz if there are no specific notes.

FIG. 8. �Color online� Experimental data of transmittance in TM mode
�a� in 6 mm periodicity and �b� in 12 mm. The dots indicates numerical
results and we set ne in the center of the column=1.5�1013 cm−3 and
�m /2�=12.5 GHz if there are no specific notes.
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had a rectangular lattice of 3�6 mm2, and along the wave-
number vector the spatial periodicity was 6 mm. Since the
photonic band gap was predicted to be above 20 GHz, the
propagation in the lowest band was observed in this fre-
quency range. In comparison with the cases in the TE mode,
we observed a couple of different points; the wave attenua-
tion decreased as the frequency was raised, which is a similar
tendency to the predicted ki below �a /2�c	0.3 in Fig.
5�b�. Figure 8�b� shows transmittance in the case of a rect-
angular capillary lattice of 3�6 mm2 with the spatial peri-
odicity of 12 mm along the wavenumber vector, where the
plasmas were generated in every two rows. This case is also
roughly similar to the wave propagation around the lowest
band gap, i.e., for 0.2��a /2�c�0.6, examined in Fig.
5�b�. Figure 5�b� shows discontinuity of ki around the band
gap, and this phenomenon was also observed for 9–13 GHz
in Fig. 8�b�, where both enhancement as well as reduction in
wave attenuation were observed. This enhancement was sup-
posed to arise from the photonic frequency band gap itself.
In the following, in Sec. IV, we comprehend these experi-
mental and theoretical results described in Secs. II and III
using numerical results.

In these experimental results one may recognize that the
signal-to-noise ratio is not so large at some frequencies. This
is partially attributed to standing waves between the antenna
and/or glass capillaries with microplasmas. Another possibil-
ity is anisotropic directionality of our newly developed wide-
band antenna; the directionality depends on wave frequency
and so at some frequencies, excessive reflected waves from
outside objects may come into the receiver antenna. How-
ever, at general frequencies, the detected signals are fairly
consistent with numerical results, which will be described in
Sec. IV in detail.

IV. NUMERICAL ANALYSIS

A. Numerical method

As a numerical method for analysis of electromagnetic
waves propagating in a plasma assembly, we developed a
FDTD method33 applicable to plasma media. A FDTD
method has been widely used for analysis of waves propa-
gating in 2D or 3D structure, and we introduce a couple of
points to a conventional FDTD method to treat plasma ef-
fects in a rigorous manner.

Maxwell equations are linearized according to Yee’s
algorism,34 as used in a conventional FDTD method. In ad-
dition, the following equation is combined with Maxwell
equations in the similar dicretization manner:35

�J

�t
+ �mJ = �0�pe

2�r�E , �8�

where J and E are a current density and an electric field of
the wave, respectively, and r is the position vector. Here, we
ignored a pressure-gradient term from the general momen-
tum balance equation in the fluid model because the
pressure-gradient term is in the order of 10−7 of the right-
hand side of Eq. �8�, although we have to treat it rigorously
when electron temperature is quite high or when electromag-
netic waves propagate with short wavelength such as surface

waves. The addition of Eq. �8� to the conventional FDTD
method allows us to deal a plasma with an arbitrary ne pro-
file, and we adapted a Bessel function of the first kind in the
zeroth order J0 in the following since our plasmas in the
experiments were in the regime of the positive column with
ne=0 on the edge.36 We also ignored a diffusion term from
the general fluid model because particle displacement due to
the diffusion flux in our plasma parameters within the calcu-
lation time was quite short in comparison with the plasma
size assumed in the calculation.

Figure 9 shows a configuration of the numerical model-
ing. Waves were launched near the left end of the model
domain and propagated toward the right direction. The
boundary layers behind the wave launcher and on the right
end were in Mur’s second absorption boundary condition.37

The upper and lower boundary layers fulfill the Bloch29 or
Froquet theorem30 to assure the spatial periodic structure.

By the modified plane-wave expansion method de-
scribed in Sec. II, we derived dispersion relation or photonic
bands in an infinite square lattice of plasmas with the slab-ne

profile. Using this FDTD method, specific calculation in the
similar condition to experiments was available; we could cal-
culate wave propagation in a finite-size array including a
rectangular lattice, consisting of plasmas with an arbitrary
density profile. Furthermore, as shown in Figs. 10 and 11,
profiles of each field were simultaneously obtained, which
may yield comprehension of detailed propagation mecha-
nisms.

B. Numerical results and discussion

Numerical data on transmittance of the calculated wave
propagation were shown in Figs. 7 and 8 as dot symbols.
Here we set parameters around ne in the center of the
column=1.5�1013 cm−3 and �m /2�=12.5 GHz, as shown
in Figs. 7 and 8. The numerical data matched the experimen-
tal data very well in any case if we set ne in the center of the
column=1.5�1013 cm−3 and �m /2�=12.5 GHz, which
are the estimated plasma parameters deduced from this
comparison.

This good consistency enables us to analyze propagating
waves around the lowest band gap, more specifically when

FIG. 9. �Color online� Schematic of numerical modeling space of FDTD
method.
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we take a close look at numerically obtained field profiles.
Figures 10 and 11 display profiles of electric field amplitude
of the TE and TM modes when the wave attenuation was
reduced significantly. We showed the field profiles in the
case of the slab ne profile in comparison. In both modes,
since the frequencies were in the vicinity of the lowest band
gap in which the spatial periodic length is the half of the
wavelength, the wave amplitude changed in a synchronous
variation with the plasma patterns; the position of the maxi-
mum amplitude overlapped the distributed ne area. In the
case of the TE mode at 12.5 GHz, where the wave attenua-
tion was reduced significantly, the electric field got away
from the high ne region in the center of the plasmas, which
leads to the reduction in the wave attenuation observed in the
experiment. This feature also coincides with ki on the upper
side of the band gap in Fig. 4. We also pointed out that in the
TE mode, a profile of electric field may be heavily affected
by the ne profile; in the case of J0 profile, waves sneaked into
the plasma region where they might suffer a certain damping.

In the case of the TM mode at 11.0 GHz, where the wave
attenuation was reduced significantly, the electric field that
was along the plasma column axis was distributed without
the effects of the ne region, as shown in Fig. 11. In this case,
the magnetic field is parallel to the plane of the cross section
and was not directly affected by the spatial change of �. This
difference in the wave propagation gives rise to the change in
wave propagation between these modes.

When we review Figs. 7 and 8, one significant difference
is the clearer enhancement of wave attenuation in the band
gap in the TM mode. One possible explanation for this phe-
nomenon is the presence of waves on the flatbands in the TE

mode; Fig. 4 indicates that one or a few flatbands might be
present around or in the lowest band gap and they might
contribute to wave propagation.

One may think that replacement of microplasmas with
metals of the similar size will clarify effects of plasmas on
photonic bands in a simpler way; however, it is usually very
difficult to analyze such experimental results. Several previ-
ous studies told us that a 2D metallic array works as an
artificial dielectric38 and/or a metamaterial39 at microwaves.
Experimental data include these two effects at least and more
complicated inductance-capacitance resonance phenomena
in some cases. Our current conclusion about methods for
comprehension of dispersion relation of waves propagating a
microplasma array is that the numerical and analytical ap-
proaches described in this manuscript are fairly appropriate.

These results of the two polarization modes suggest that
selection of polarization is another tool to control wave am-
plitude and phase shift independently. Up until now, we can
use three different schemes to control such wave parameters
by plasma assemblies: a set of ne and gas pressure, spatial
periodicity, and wave polarization. Recently, we realized a
complex-variable filter with a simple function such as “sum”
using 1D plasma assemblies by changing their spatial
periodicity.26 By selecting an adequate tool for an individual
application device, we can control electromagnetic-wave

FIG. 11. �Color online� Electric field profiles in TM mode numerically
derived in condition similar to Fig. 6. �a� CCFL position, where plasma is
generated in every two CCFL with periodic length of 12 mm, �b� electric
field parallel to 2D plane in the case with slab ne profile, and �c� electric
field parallel to 2D plane in the case with ne profile with J0.

FIG. 10. �Color online� Electric field profiles in TE mode numerically de-
rived in condition similar to Fig. 5. �a� CCFL position, where plasma is
generated in every two CCFL with periodic length of 12 mm, �b� electric
field parallel to 2D plane in the case with slab ne profile, and �c� electric
field parallel to 2D plane in the case with ne profile with J0.
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propagation on the complex plane, which will lead to a com-
pact wave controller and/or detector at frequencies ranging
from microwaves to terahertz waves.

V. CONCLUSION

In this report, we clarified wave propagation in a plasma
assembly whose permittivity was expressed in a complex
variable. After pointing out the significance of the dispersion
relation drawn in the 3D space, fundamental properties that
assured importance of plasmas as electromagnetic media
were demonstrated. The band diagrams derived by the modi-
fied plane-wave expansion method predicted wave propaga-
tion in a plasma assembly, and they were verified in the
experimental results. The numerical calculation based on the
conventional FDTD method and modified to fulfill require-
ments for plasmas enabled us to recognize consistency with
the experimental results. The potential of the plasmas as
novel electromagnetic media and these methods developed
so far to clarify their properties will lead to the future devel-
opment for arbitrary complex-variable filters for microwaves
and possibly terahertz waves.
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