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ABSTRACT 

The structural member stiffness and strength of buildings are uncertain due to various 

factors resulting from randomness, material deterioration, temperature dependence etc.  The 

concept of sustainable building design under such uncertain structural-parameter environment 

may be one of the most challenging issues to be tackled recently.  By predicting the response 

variability accurately, the elongation of service life of buildings may be possible. 

In this paper, it is shown that interval analysis in terms of uncertain structural parameters 

is an effective tool for evaluating the sustainability of buildings in earthquake-prone countries.  

All the combinations of uncertain structural parameters become huge numbers and this difficulty 

can be overcome by introducing the sensitivity or Taylor series expansion analysis. 

In order to demonstrate the usefulness and reliability of the proposed method, a shear 

building model is used including passive viscous dampers with supporting members.  It is 

demonstrated that the proposed method is actually useful for the development of the concept of 

sustainable building design under such uncertain structural-parameter environment. 
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1. Introduction 

The structural control with passive dampers has a successful history in mechanical and 

aerospace engineering.  This may result from the fact that these fields usually deal with 

predictable external loading and environment with little uncertainty.  However, in civil 

engineering, it has a different situation (Housner et al., 1994; Housner et al., 1997; Soong and 

Dargush, 1997; Kobori et al., 1998; Srinivasan and McFarland, 2000; Casciati, 2002; 

Christopoulos and Filiatrault, 2006; Johnson and Smyth, 2006; de Silva, 2007; Cheng et al., 

2008; Takewaki, 2009).  Building and civil structures are often subjected to severe earthquake 

ground motions, wind disturbances and other external loading with large uncertainties 

(Takewaki 2007).  It is therefore inevitable to take into account of these uncertainties in their 

structural design and application to actual structures. 

While the structural control is a promising and smart tool for sustainable building design 

(Takewaki et al., 2011), it is also true that a lot of uncertainties should be quantified for reliable 

implementation of these techniques (Takewaki and Ben-Haim 2005).  The sustainable building 

design under uncertain structural-parameter environment may be one of the most challenging 

issues in the building structural engineering.  Even if all the design constraints are satisfied at 

the initial construction stage, some responses to external loadings (earthquakes, strong winds, 

etc.) during service life may violate such constraints due to various factors resulting from 

randomness, material deterioration, temperature dependence etc.  To overcome such difficulty, 

response evaluation methods for uncertain structural-parameter environments are desired.  By 

predicting the response variability accurately, the elongation of service life of buildings may be 

possible. 

In this paper, it is shown that interval analysis (see, for example, Moore, 1966; Alefeld 

and Herzberger, 1983; Qiu et al, 1996; Mullen et al., 1999 ; Koyluoglu and Elishakoff, 1998; 

Qiu, 2003; Chen and Wu, 2004; Chen et al, 2009) in terms of uncertain structural parameters is 

an effective tool for evaluating the sustainability of buildings in earthquake-prone countries.  
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All the combinations of uncertain structural parameters become huge numbers and this difficulty 

can be overcome by introducing the sensitivity or Taylor series expansion analysis. 

In order to demonstrate the usefulness and reliability of the proposed method, a shear 

building model including passive viscous dampers with supporting members is subjected to a set 

of scaled earthquake ground motions and the time-history response analysis is used for 

simulating the earthquake response.  The critical combination of interval parameters is found 

by introducing an assumption of ‘inclusion monotonic’ and the sensitivity information by Taylor 

series expansion.  It is demonstrated that the proposed method is actually useful for the 

development of the concept of sustainable building design under uncertain structural-parameter 

environments. 

The design earthquake ground motions change from time to time when a new class of 

ground motions (e.g. long-period ground motions due to surface waves) is observed or a new 

type of damage appears during severe earthquakes.  Because the proposed method can easily 

add these earthquake ground motions, the flexibility of the proposed method is expected to be 

high. 

 

2. Concept of sustainable building design under uncertain structural-parameter 

emvironment 

The concept of sustainable building design under uncertain structural-parameter 

environments is illustrated in Fig.1.  The member stiffness and strength of buildings are 

uncertain due to various factors resulting from randomness, material deterioration, temperature 

dependence etc.  The damping coefficients of structural members and/or passive dampers may 

also be uncertain (Takewaki and Ben-Haim 2005).  The time variation of Young’s modulus and 

damping coefficients are shown in Fig.1 as representative examples.  Karbhari and Lee (2010) 

discusses the service life estimation and extension of civil engineering structures from the 

viewpoints of material deterioration.  These member and/or damper uncertainties lead to 
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response variability of buildings under earthquake ground motions.  Efficient and reliable 

methods are desired for predicting the upper bound of such building response. 

 

3. Interval analysis methods for uncertain structural parameters 

Fig.2 shows the relationship between the variation of the objective function f  (response 

quantity) and a structural parameter combination for the cases of ‘inclusion monotonic’ and 

‘inclusion non-monotonic’. 

Based on the assumption of "inclusion monotonic", we can derive the upper and lower 

bounds of f  by iterative calculations with all end-point combinations ( 2 XN  for XN  interval 

parameters), i.e. the upper and lower bounds of interval parameters.  However, when the 

number XN  of interval parameters is extremely large, this primitive approach needs much 

computational time caused by a large combination number of interval parameters. 

From the practical point of view, a more efficient methodology is desired which can 

estimate the upper and lower bounds of the objective function without a hard computational task.   

The interval analysis methodology using the approximation of Taylor series expansion has been 

developed so far (Chen and Wu 2004; Chen et al., 2009).  The formulation of Taylor series 

expansion in the interval analysis and the achievements of second-order Taylor series expansion 

proposed in the reference (Chen et al., 2009) are explained in this section. 

 

3.1 Interval analysis method based on approximation of first-order Taylor series expansion 

Let { }, { }, { }c c
i i iX X X    X X X  denote the interval parameters, nominal parameter 

values and half intervals.  Let ( ) I  and [ , ]a b  denote the definition of an interval 

parameter where a  and b  are the lower and upper bounds of the interval parameter, 

respectively.  Then [ , ]I c c
i i i i iX X X X X    . 

The upper and lower bounds ,f f  of the objective function by the interval analysis 

method using first-order Taylor series expansion can be expressed as 
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corresponds to a gradient of the objective function f  with respect to i-th interval parameter 

iX  for the nominal model. 

 

3.2 Interval analysis method based on approximation of second-order Taylor series expansion 

Although an approximation using first-order Taylor series expansion can be achieved 

without hard task, the result by this approximation may include a large error especially for a 

wide range of interval parameters.  So as to enhance the accuracy of the interval analysis 

method, an approximation using second-order Taylor series expansion has been developed in the 

reference (Chen et al., 2009).  An approximate objective function *f  using second-order 

Taylor series expansion around the nominal model can be described as 
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where ,( )
i jX X  denotes second-order differentiation of the objective function at the nominal 

value.  Therefore, , i jX Xf
 
corresponds to the Hessian matrix of the objective function f  

with respect to the i-th and j-th interval parameters iX , jX
 
for the nominal model.  Based on 

the general interval analysis method, the upper and lower bounds of Eq.(3) can be evaluated by 

calculating all the end-point combinations of interval parameters and judging whether the 

objective function is the maximum or minimum value.  The number of calculations in this 

approach is also 2 XN  which is the same number of calculation as that in the primitive interval 
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analysis.  However, the computational load for evaluating the objective function for each 

combination of interval parameters can be greatly reduced by using sensitivities around the 

nominal model. 

By using the approximation of Taylor series expansion, iterative response analyses can be 

avoided.  However, the computation of full elements of the Hessian matrix requires much time 

when XN  is large, especially for numerical sensitivity analysis, i.e. the finite difference 

analysis using gradient vectors.  For this reason, a more simple approach has been proposed in 

the reference (Chen et al., 2009) where the non-diagonal elements of the Hessian matrix are 

neglected.  An approximate objective function **f  using second-order Taylor series 

expansion with only diagonal elements can be rewritten from Eq.(3) as  
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From Eq.(4), we can evaluate the increment of the objective function by using first and 

second-order Taylor series expansion approximation as the sum of the increments of the 

objective function in the one-dimensional domain.  If we regard all interval parameters except 

iX  as nominal values in the incremental term in Eq.(4), the perturbation  if X
 
of the 

objective function by the variation of iX  can be described as  
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In Eq.(5), the interval extension I

if  of the one-dimensional perturbation can be derived as 
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Finally, substituting ( 1, , )I
i Xf i N    into Eq.(4), the interval extension of the approximate 

objective function **f  can be obtained as 
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It is remarkable that the number of calculations in Eq.(7) is reduced to 2 XN  compared with 

2 XN  in Eq.(3).  For this reason, the computational load can be dramatically reduced by 

neglecting non-diagonal elements of the Hessian matrix.  Fig.3 shows the concept of the 

interval analysis method using Taylor series approximation. 

 

4. Advanced interval analysis method based on the information of the approximation of 

Taylor series expansion   

  When the degree of uncertainty of interval parameters is large, the result of the interval 

analysis applying the approximation of Taylor series expansion of the objective function may 

include numerical errors.  On the other hand, a reliable result can be derived by reanalyzing the 

objective function with the obtained structural parameters.  In this section, the advanced 

interval analysis method is presented using reanalysis based on the information of interval 

parameter set derived by the Taylor series approximation. 

 

4.1 Reanalysis approach based on the structural parameter set derived by the Taylor series 

approximation 

  From Eqs.(5) and (6), the combination of the end-points X̂  of the interval parameters X  

which maximizes the perturbation  1 1 1, , , , , ,
X

c c c c
i i i i Nf X X X X X   

 
( 1, , )Xi N   of 

the objective function can be derived as  

 

 

 
  ˆ  so as  to  max , 1, ,i i i XX f X i N    X   (8) 

The upper bound of the objective function can be evaluated using a reliable response analysis 

method (time-history response analysis) for a regenerated structural model with the critical 

combination of interval parameters set (Eq.(8)).  It should be mentioned that the objective 
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function evaluated by the time-history response analysis method will not exceed the feasible 

domain of the objective function.  The flowchart of this proposed methodology is as follows. 

Step 1  Calculate the gradient vector , ( 1, , )
iX Xf i N   and diagonal element of Hessian 

matrix , ( 1, , )
i iX X Xf i N   of the objective function for the nominal model. 

Step 2  Evaluate Eq.(6)
 
for the upper and lower bounds of the interval parameter iX . 

Step 3 Derive the target end-point combinations X̂  of interval parameters corresponding to 

the upper bound of Eq.(6). 

Step 4 Evaluate the objective function by the time-history response analysis for given 

structural parameters X̂ . 

 

4.2 Varied evaluation point (VEP) method considering the influence of initial value dependency      

In order to obtain the reliable result of the response variability by using the proposed 

advanced interval analysis methodology in the previous section, it is important that the 

assumption of “inclusion monotonic” is satisfied for the objective function.  If the objective 

function, e.g. the maximum interstorey drift of a damped structure subjected to a ground motion 

as shown in the numerical examples (Section 5), has a property of non-monotonic variation for 

the variation of the interval parameters, the interval analysis method using the first and 

second-order sensitivities at the nominal model will not provide a reliable response variability.  

To overcome this difficulty, an additional numerical procedure should be introduced to search 

for the evaluation point set for the evaluation of first and second-order sensitivities.  In this 

paper, it is shown in the later numerical example that the evaluation point selected randomly for 

the combination of the interval parameters is effective.  This is called the varied evaluation 

point (VEP) method.  Fig.4 shows the concept of the VEP method. 

 

4.3 Search of the exact solution 

In numerical examples, an approximate candidate of the exact solution of the maximum or 
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minimum value of the objective function in a feasible domain of interval parameters is 

calculated by solving the original problem with the Sequential Quadratic Programming (SQP) 

method.  In this analysis for the exact solution, the approximation by Taylor series expansion is 

not employed and the time-history response analysis for successive points of interval parameters 

is conducted.  The problem of finding an approximate candidate of the exact solution of the 

maximum or minimum value of the objective function may be described by  

Find 
1 1 1d d b b f f{ , , , , , , , , }

N N N

Tc c k k k kX     

so as to maximize  f X  (9) 

subject to IX X  
 

5. Numerical examples 

Numerical examples are presented for 20-storey shear building models with passive 

viscous dampers to demonstrate the validity and accuracy of the proposed methodology.  Fig.5 

presents the shear building model with passive viscous dampers including supporting members.  

The properties of the nominal structural parameters are shown in Table 1.  The floor masses are 

identical in all the storeys.  The frame stiffness distribution in the nominal model is given by 

Eq.(10) which can be derived from the straight-line shape of fundamental eigenmode of the 

main frame. 
 

 

      2
f 1

1 1 1    1, , ( 20)
2i

k N N i i m i N       (10) 

 

where 1  denotes the fundamental natural circular frequency of the frame and m is the floor 

mass.  The nominal values of damping coefficients of passive viscous dampers are constant 

and are shown in Table 1.  The ratio of the nominal value of supporting member stiffness to the 

nominal value of frame stiffness is assumed to be 1.0 in every storey. 

The structural parameters dc , bk  and fk  are dealt with as interval parameters and the 

ratios of half the intervals to the nominal values are defined as follows. 
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(11) 

 

The degrees of uncertainties of interval parameters are given by 0.5i i  
 
and 0.3i   

for all i.  This means that the degree of performance of passive dampers may be rather large 

and that of mainframe may be relatively small. 

Fig.6 shows representative recorded ground motions, El Centro NS 1940, Taft EW 1952 

and Hachinohe NS 1968, whose maximum velocities are normalized by 50[cm/s].  These 

earthquake ground motions are used for structural design (Level 2 of large earthquake ground 

motion) of high-rise and base-isolated buildings in Japan. 

Fig.7 illustrates the comparison of evaluated bounds of the top horizontal displacement 

under uncertain structural parameters derived by Taylor series approximations with those 

derived by the SQP method.  The SQP method has been applied to two cases.  The first case 

has the nominal value as the initial value and the second case has randomly generated parameter 

combinations giving the top three maximum responses as the initial value.  The second case 

has been introduced to guarantee the search of global optimum one.  The first-order Taylor and 

reanalysis means that the critical combination is determined by the first-order Taylor series 

expansion and the upper bound of response is evaluated by the time-history response analysis 

for the determined combination.  It can be observed from Fig.7 that the first-order Taylor and 

reanalysis provides an accurate estimate for the maximum top horizontal displacement for all the 

three ground motions.  Furthermore the result of the SQP method with the nominal value as the 

initial value coincides fairly well with that of the SQP method with randomly generated 

parameter combinations giving the top three maximum responses as the initial value. 

Fig.8 shows the comparison of critical interval parameters for the upper bound of the top 

horizontal displacement derived by the first-order approximation with those by the SQP method 

with the nominal value as the initial value.  It can be observed that, while a little difference is 

seen for El Centro and Hachinohe, most parameters coincide well. 
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Fig.9 presents the comparison of evaluated bounds of the maximum interstorey drift 

under uncertain structural parameters derived by Taylor series approximations and reanalysis 

method with those derived by the SQP method where the initial value is given by the nominal 

model.  Furthermore, since the SQP method is known as the gradient-based optimization 

algorithm, the result by the SQP method may depend on the initial value and may attain a local 

maximum.  For confirming whether the result by the SQP method is the global optimum 

solution or not as implemented in Fig.7, the upper bound of the objective function for El Centro 

NS (1940) is derived by the SQP method where the initial value is given by three different 

randomly generated evaluation points making the objective function maximum (top three).  It 

can be seen that the method with the nominal model as the initial model is not sufficient and 

another method is desired for the maximum interstorey drift. 

Fig.10 illustrates the comparison of critical interval parameters for the upper bound of the 

maximum interstorey drift derived by the first-order approximation with those by the SQP 

method where the initial value is given by the nominal model.  It can be observed from 

Fig.10(b) that some of critical structural parameters exist except at the end-points of the interval.  

However, the critical structural parameters by the first-order approximation with the nominal 

value as the initial value exhibit a distribution similar to those by the SQP method.  

Fig.11 shows the comparison of the maximum interstorey drifts under uncertain structural 

parameter sets derived by first-order Taylor series approximation with those by the SQP method 

employing the nominal model as the initial value combination for three ground motions, El 

Centro NS 1940, Taft EW 1952 and Hachinohe NS 1968.  It can be observed that the 

maximum interstorey drift of the nominal model occurs in the first storey for all the three 

ground motions.  On the other hand, while the varied maximum interstorey drift under 

uncertain structural parameters occurs in the first storey for El Centro NS 1940 and Taft EW 

1952, that occurs in the top storey for Hachinohe NS 1968.  In the case where the storey 

indicating the maximum interstorey drift changes from the nominal model like Hachinohe NS 
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1968, the sensitivities of the objective function (maximum interstorey drift in this case) with 

respect to uncertain parameters exhibit largely different values.  This leads to large errors in 

evaluating the response variability (see Fig.9). 

It can also be understood from Fig.11 that, although the storey indicating the maximum 

interstorey drift by first-order Taylor series approximation does not change from that by the SQP 

method, the solution by the SQP method employing the nominal model as the initial value 

combination may drop into a local maximum.  For such case, the VEP method introduced in 

Section 4.2 seems to be effective.  A numerical example using the VEP method will be shown 

in the following. 

Fig.12 shows the distribution of the maximum interstorey drift for El Centro NS (1940) 

of damped structures given by randomly generated structural parameters.  The horizontal axis 

indicates the lowest-mode damping ratio of the model with a respective set of randomly 

generated structural parameters.  The number of samples is 10000. 

Fig.13(a) illustrates the comparison of interval parameters, i.e. initial structural 

parameters (randomly generated one giving maximum response), critical structural parameters 

by the VEP method (first-order Taylor approximation) and critical structural parameters by the 

SQP method for randomly generated combinations of uncertain structural parameters giving top 

three maximum interstorey drifts.  It can be observed that the critical structural parameters by 

the VEP method coincide fairly well with those by the SQP method.  Fig.13(b) presents the 

result of the maximum interstorey drifts by the VEP method and the SQP method.  It can be 

seen that the maximum interstorey drift by the VEP method coincides fairly well with that by 

the SQP method.  This indicates the reliability and accuracy of the VEP method for the 

maximum interstorey drift. 

The degrees of uncertainties 0.5i i  
 
and 0.3i   are rather large and the 

present numerical examples seem to give the upper bounds of errors of the proposed method. 
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6. Conclusions 

The following conclusions have been obtained. 

(1) Interval analysis in terms of uncertain structural parameters is an effective tool for evaluating 

the sustainability of buildings in earthquake-prone countries. 

(2) All the combinations of uncertain structural parameters become huge numbers and this 

difficulty can be overcome by introducing the sensitivity or Taylor series expansion analysis. 

(3) The VEP (varied evaluation point) method is a reliable method because the present problem 

is a non-convex problem and the change of the evaluation point or the initial design point is 

necessary for search of the global solution. 

(4) The necessity of use of the VEP method depends on the objective function.  When the 

objective function is a top floor displacement, it may not be necessary.  When the objective 

function is an interstorey drift, it appears necessary.  The VEP method is an accurate and 

reliable method for the estimation of the maximum interstorey drift under uncertain 

structural parameter environments. 
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Table I. Structural parameters of main frame 
 

 20-storey building 

Floor mass [kg] 1024103 

Storey stiffness [N/mm] Eq.(10) 

Damper capacity [Ns/mm]  2.250107 

Supporting member stiffness [N/mm]
Ratio 1.0 to frame 

storey stiffness 
Structural damping ratio 

(stiffness-proportional damping) 0.02 

Fundamental natural circular 
frequency*1 with damper [rad/s] 3.927 

*1 complex eigenvalue analysis  
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year
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Aging 
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Fig.1 Concept of sustainable design considering varied structural performance caused by various 
uncertainties of structural parameters  
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Fig.2 Relationship between the variation of objective function and the structural parameter 
combination, (a) example of ‘inclusion monotonic’, (b) example of ‘inclusion non-monotonic’ 
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Fig.3 Concept of interval analysis method using Taylor series approximation   
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Fig.4 Concept of advanced interval analysis method using Taylor series approximation and 

random search technique for initial evaluation point 
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Fig.5 Structural model with passive dampers including supporting members 
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Fig.6 Recorded ground motions whose maximum velocities are normalized by 50[cm/s]  
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Fig.7 Comparison of evaluated bounds of top horizontal displacement under uncertain structural 
parameters derived by Taylor series approximations with those derived by SQP method 
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Fig.8 Comparison of critical interval parameters for upper bound of top horizontal displacement 
derived by first-order approximation with those of exact solution, 

 (a) first-order approximation, (b) SQP method with the nominal value as the initial value 
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Fig.9 Comparison of evaluated bounds of maximum interstorey drift under uncertain structural 
parameters derived by Taylor series approximations with those derived by SQP method   
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Fig.10 Comparison of critical interval parameters for upper bound of maximum interstorey drift 
derived by first-order approximation with those of exact solution 

(a)first-order approximation, (b) SQP method 
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Fig.11 Comparison of maximum interstorey drifts under uncertain structural parameter sets 

derived by first-order Taylor approximation with those by SQP method, 
(a) El Centro NS 1940, (b) Taft EW 1952, (c) Hachinohe NS 1968 
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Fig.12 Distribution of maximum interstorey drift of damped structures given by randomly 

generated structural parameters (El Centro NS (1940))     
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Fig.13 VEP method for maximum interstorey drift using initial structural parameter distribution 

derived by randomly generated one giving maximum response, 
(a) comparison of interval parameters, (b) comparison of maximum interstorey drift 


