

名大STE研研究集会 2010/09/06-08

IUGONET観測データに基づく赤道帯における 磁気急始(SC)の日変化の季節依存性 -熱圏-中間圏における中性大気風との関連性-

新堀淳樹 (京大RISH)、辻 裕司、菊池 崇、荒木 徹、林 寛生、 津田敏隆、池田昭大、魚住禎司、R. E. S. Otadoy、歌田久司、 B. M. Shevtsov、S. I. Solovyev、長妻 努、湯元清文、 IUGONETプロジェクトチーム

I.1 磁気急始(Geomagnetic Sudden Commencement: SC)

〇孤立現象

開始時刻や発生要因を見極め易い

- 〇磁気圏-電離圏におけるプラズマ・電
 磁環境の急変に伴う状態遷移過程の
 理解に欠かせない
 - Ex.太陽フレア、地震、サブストーム、 成層圏突然昇温

SCの磁場振幅の持つ情報

磁気圏電流→太陽風の変動(動圧・惑星間磁場)

電離圏電流→電離圏の変動(地球側の変動)

電離圏の状態に関する季節変化・太陽活動依存性

(太陽紫外線、中性大気との相互作用)

I.3 SCの電流系と磁場振幅の磁気地方時依存性

I.4 SCの磁場振幅の季節依存性

※統計に用いているイベント数が少ない

I.5 これまでの問題点と本発表の目的

問題点

- 多量の観測点、データを用いていないため、各磁気地方時と磁気緯度に対する SC振幅の季節依存性が不明瞭である。
- 〇観測データの在処や使い方が不明
- 〇容易に多量の時系列プロットを行うことが困難な環境
- O各機関の保有するデータセット同士の壁

目的

◎IUGONETプロジェクトの検索システム・解析ソフトの助けを借りて、1996/01-2010/09の12年間という長期間にわたる地磁気(京大、九大、NICT)、熱圏風 (京大)データを解析することで、(1) SC振幅の日変化の季節とその緯度依存 性、(2) 赤道帯における熱圏風がSC振幅の季節変化に与える影響を明らか にする

II. 観測データと解析手法

II.1 使用した地上観測点

International Geomagnetic Reference Field Model -- Epoch 2005 Main Field Total Intensity (F)

http://www.ngdc.noaa.gov/wist/magfield.jsp

Map Date : 2005 Units (Total Intensity) : nanoTesla Contour Interval : 1000 nanoTesla Map Projection : Mercator

II. 観測データと解析手法

II.2 地磁気観測点、解析期間、SCイベント数

	Geographic latitude [deg]	Magnetic latitude [deg]	Period	SC events	Data site
CHD	70.62	64.66	96/01-02/05	2113	CPMN(Kyushu)
ZYK	65.75	59.74	96/01-07/06	2502	CPMN(Kyushu)
KSM	58.68	58.09	01/11-07/07	1452	NSWM(NICT)
MGD	59.97	53.62	96/01-07/07	3005	CPMN(Kyushu)
STC			07/07-08/10		NSWM(NICT)
РТК	52.94	45.58	97/10-08/09	2256	CPMN(Kyushu)
					NSWM(NICT)
MMB	43.90	35.16	96/01-08/09	3116	WDC(Kyoto)
KAK	36.23	27.12	96/01-08/12	3163	WDC(Kyoto)
OKI	24.75	16.54	96/04-08/10	2028	NSWM(NICT)
GAM	13.58	5.32	96/08-06/12	2721	WDC(Kyoto)
					NSWM(NICT)
CEB	10.35	0.85	98/08-05/06	1599	CPMN(Kyushu)
YAP	9.30	0.38	98/09-08/08	1442	NSWM(NICT)
PON	7.00	0.27	97/03-04/05	1631	CPMN(Kyushu)

II. 観測データと解析手法

II.3 解析手法

[2001年10月21日16:47 (UT)のSCイベント](夜側)

III.1 中緯度・赤道域における季節変動

III.2 季節依存性の緯度変化

III.3 太陽天頂角依存性

中緯度域と赤道域とは逆の傾向にある
 →中緯度:太陽天頂角の増加とともに振幅が減少
 赤道域:太陽天頂角の増加とともに振幅が増加

IV.1 電離圏伝導度と中緯度でのSC振幅の比較

夏季の電気伝導度とSC振幅の季節変動の傾向が一致

IV.2 電離圏伝導度と赤道域でのSC振幅の比較

夏季の電気伝導度とSC振幅の季節変動の傾向が一致しない

IV.3 赤道域におけるSCとSq振幅の季節変動の類似性

IV. 考察

IV. 考察

IV.4 電離圏電流と電場の関係

(1) SC振幅⇒磁気圏電場による電流

 $\mathbf{J} = \underline{\sum} \cdot \mathbf{E}$

(2) Sq振幅⇒電離圏ダイナモ 電場による電流

 $\mathbf{J} = \underline{\sum} \cdot (\mathbf{U} \times \mathbf{B})$

季節変動の類似性⇒電離圏電気伝導度の季節変動を反映

〇太陽天頂角に依存しない成分が存在する

(冬季と夏季における非対称性)

〇中間圏·熱圏領域における中性大気風に伴う電離圏電子 密度構造の変化

IV.2 中間圏·熱圏風の使用観測点

IV.6 熱圏風と低緯度・赤道でのSC振幅の比較

熱圏領域における南北風が北風となる時期にSC振幅が減少 →熱圏風が電離圏電子密度の分布を変化させている可能性を示唆

V. 結論

- (1)サブオーロラ帯・中緯度における昼間側SCの磁場振幅の日変化に は、電離圏の電気伝導度が大きい夏季に時期において最大になる という明瞭な季節依存性が存在する。
 - その大きさは、冬季のものと比べて約1.5-1.8倍になる。
 - 一方、夜側での振幅の季節変化は、中緯度では夏季に振幅が大き くなり、オーロラ帯では、逆の傾向にある
 - →西向きのジェット電流の強度が冬季に大きいことを示唆
- (2)低緯度以南領域の昼間側におけるSCの磁場振幅は、サブオーロラ 帯・中緯度のものと異なり、夏季よりも冬季において最大となる。
 - この傾向は、地磁気日変化の季節変動とも類似する。
 - このことは、伏角緯度の低い赤道電離圏での中性大気風の輸送に 伴う電離圏プラズマ密度構造の変化による電気伝導度の変化を示 唆する。

V. 結論

- (3)異なる分野間のデータ(今回の場合:地磁気、伝導度モデル、 熱圏風)の統合解析、比較、検討を容易に行える環境(TDASソ フト)によって、これまでわからなかった物理プロセスの解明へ の糸口をつかむことができた
- ⇒ IUGONETのメタデータデータベース・統合解析ツールが各個 人の研究推進の手助けになり、副産物的な別のサイエンスを 生む

IV.0 電離圏伝導度と電流

電離圏電流と電場の関係式(オームの法則)

$$\mathbf{J}_{\perp} = \sum_{P} \mathbf{E}_{\perp} - \sum_{H} \frac{\mathbf{E}_{\perp} \times \mathbf{B}}{B}$$

$$\Sigma_P = \int \left(\frac{v_{en}}{v_{en}^2 + \omega_{ge}^2} + \frac{m_e}{m_i} \frac{v_{in}}{v_{in}^2 + \omega_{gi}^2} \right) \frac{n_e e^2}{m_e} dz = \int k_P n_e dz$$
$$\Sigma_H = -\int \left(\frac{\omega_{ge}}{v_{en}^2 + \omega_{ge}^2} + \frac{m_e}{m_i} \frac{\omega_{gi}}{v_{in}^2 + \omega_{gi}^2} \right) \frac{n_e e^2}{m_e} dz = \int k_H n_e dz$$

電離圏電子(プラズマ)密度に比例 ⇒太陽EUV放射、電離圏電子密度構造(熱圏風に依存)

 $v_{in} = 2.6 \times 10^{-15} (n_n + n_i) \sqrt{M_n}$

 $V_{en} = 5.4 \times 10^{-10} n_n \sqrt{T_{e}}$

 $\omega_{gi} = \frac{q_i B}{m_i}$

<パムンプクにおける熱圏・中間圏東西風速の長期変動> Annual variation of zonal wind at PAM

中間圏のQBO:

Burrage et al. (JGR, 1996)

<パムンプクにおける熱圏・中間圏南北風速の長期変動> Annual variation of meridional wind at PAM

<東西成分の平均風速の長期変動>

<南北成分の平均風速の長期変動>

<成層圏準2年周期変動と東西方向の風速変動との比較>

<成層圏準2年周期変動と南北方向の風速変動との比較>

Long-term variation of thermospheric wind (1992/11/15-2010/07/31) 88 km

<3観測点における風速の長期変動のまとめ>

(1) 東西成分

Oスルポン: 1993、1995、1997年の2年ごとに1-3月においてシャープな西向 きの変動が出現する

→成層圏準2年周期変動(QBO)との対応?

〇他2点:半年周期で東風と西風が入れ替わる

冬季、夏季:東風

春分点、秋分点:西風

パムンプクで、2008年と2009年の1-3月にシャープな西向きの変 動が出現する

(2) 南北成分

〇スルポンのみに-10 m/sの平均場のオフセットが存在

→観測器の問題?

それとも自然現象(同じ測器のコトタバンでは見えない)

〇他2点に明瞭な季節変動が存在

夏季:北→南、冬季:南→北(北半球側から見て)

(1) ズリヤンカ (59.74度)

III.1 サブオーロラ帯域における季節変動

夏季においてSCの振幅の日変化が最大

III.1 サブオーロラ帯域における季節変動

(2) キングサーモン (58.09度) 夏季においてSCの振幅の日変化が最大

III.2 中緯度における季節変動

(1) マガダン (53.62度) 夏季においてSCの振幅の日変化が最大

III.2 中緯度における季節変動

(2) パラツンカ (45.78度) 夏季においてSCの振幅の日変化が最大

III.2 中緯度における季節変動

(3) 女満別 (35.16度)

夏季においてSCの振幅の日変化が最大

III.3 低緯度における季節変動

(1) 柿岡 (27.12度)

III.3 低緯度における季節変動

(2) 沖縄 (16.54度)

III.4 赤道域における季節変動

(1) グアム (5.32度)

夏季において昼間側のSC振幅が減少傾向

III.4 赤道域における季節変動

(2) ヤップ (0.38度)

III.4 赤道域における季節変動

(3) ポンペイ (0.27度)

III.4 赤道域における季節変動

(4) セブ (0.27度)

夏季において昼間側のSC振幅が減少傾向

III.1 サブオーロラ帯域における季節変動 (1) ズリヤンカ (59.74度) 夏季においてSCの振幅の日変化が最大

III.1 サブオーロラ帯域における季節変動

(2) キングサーモン (58.09度) 夏季においてSCの振幅の日変化が最大

III.2 中緯度における季節変動

(1) マガダン (53.62度)夏季においてSCの振幅の日変化が最大

III.2 中緯度における季節変動

(2) パラツンカ (45.78度) 夏季においてSCの振幅の日変化が最大

III.2 中緯度における季節変動

(3) **女満別** (35.16度) 夏季においてSCの振幅の日変化が最大

III.3 低緯度における季節変動

(1) 柿岡 (27.12度)

夏季において昼間側のSC振幅がやや減少

III.3 低緯度における季節変動

(2) 沖縄 (16.54度)

夏季において昼間側のSC振幅がやや減少

III.4 赤道域における季節変動

(2) ヤップ (0.38度) 夏季において昼間側のSC振幅が減少傾向

III.4 赤道域における季節変動

(3) ポンペイ (0.27度) 夏季において昼間側のSC振幅が減少傾向

III.4 赤道域における季節変動

(4) セブ (0.27度)

夏季において昼間側のSC振幅が減少傾向

III.5 磁気緯度分布の季節変動

IV. 考察

IV.1 中緯度の日変化からわかること-1

中緯度における振幅の日変化は夏季の時期に最大になる

IV.2 中緯度の日変化からわかること-2

<mark>電離圏の抵抗</mark>の 大きさでFACの強 度が決定

- 明瞭な季節変動が存在
- →夏季:大、冬季:小

電離圏の電気伝導度を素直に 反映 ② r>>Rの場合

<mark>ダイナモの内部抵</mark> 抗の大きさでFAC の強度が決定

▶ 電流源

季節変動は不明瞭

→夏季、冬季ともに不変化

電離圏の電気伝導度を素直に反映しにくい

IV. 考察

IV.3 中緯度の日変化からわかること-3

IV.4 太陽活動依存性について

