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Abstract 

The purpose of this study was to clarify the difference in muscle coactivation 

during postural control between older and young adults and to identify the 

characteristics of postural control strategies in older adults by investigating the 

relationship between muscle coactivation and postural control ability. Forty-six 

healthy older adults (82.0 ± 7.5 years) and 34 healthy young adults (22.1 ± 2.3 years) 

participated. The postural tasks selected consisted of static standing, functional reach, 

functional stability boundary and gait. Coactivation of the ankle joint was recorded 

during each task via electromyography (EMG). The older adults showed significantly 

higher coactivation than the young adults during the tasks of standing, functional 

reach, functional stability boundary (forward), and gait (p < 0.01). Postural sway area 

(ρ = 0.42, p < 0.05) and functional reach distance (ρ = -0.52, p < 0.05) significantly 

correlated with coactivation during the corresponding task in older adults, i.e., muscle 

coactivation was significantly higher in the elderly with low postural control ability than 

in the elderly with high balance ability. Increased muscle coactivation could be a 

necessary change to compensate for a deterioration in postural control 

accompanying healthy aging. Further research is needed to clarify in greater detail 

positive and negative effects of muscle coactivation on postural control. 

 

Keywords: Coactivation, electromyography, older adults, postural control 

 

1. Introduction 

Appropriate temporal separation between agonist and antagonist activation of 

muscles has been observed for well-controlled voluntary movements (Fujii et al., 

2009). In clinical situations, however, this separation is attenuated, muscle 

coactivation is increased, and motor control becomes poor (Dierick et al., 2002). 

Even with normal aging, greater coactivation is induced during single-joint 

movements (Klein et al., 2001; Macaluso et al., 2002) and gait (Mian et al., 2006; 

Hortobagyi et al., 2009) in the elderly. Greater muscle coactivation, in turn, increases 

the metabolic cost of gait (Mian et al., 2006), which can cause fatigue and shorten 

activity duration. 

Although several studies have reported age-associated increases in muscle 

coactivation during dynamic movements (Schmitz et al., 2008; Hortobagyi et al., 

2009), limited information is available regarding muscle coactivation under static 
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postural control (Melzer et al., 2001). Increased muscle coactivation in older subjects 

is most commonly described as a compensatory mechanism to increase joint 

stiffness that thereby enhances stability (Baratta et al., 1988; Solomonow et al., 1988; 

Hortobagyi and DeVita, 2000). Older adults may walk with high muscle coactivation 

as a balance-maintaining strategy in response to perturbations during dynamic 

movement (Manchester et al., 1989). If the high muscle coactivation is induced in 

order to maintain postural balance, this elevation should be observed even in static 

postural control and should be associated with the level of postural control ability. 

Both static and dynamic postural controls are necessary during activities of daily 

living. Aging has been associated with deterioration in postural control, which 

manifests itself by an increase in postural sway (Era and Heikkinen, 1985), a 

decrease in reach distance (Duncan et al., 1992), and a decrease in capacity for 

locomotion (Oberg et al., 1993). Deterioration in these functions leads to a higher risk 

of falling, which may increase the number of bedridden persons (Lord et al., 1991; 

Duncan et al., 1992). However, the relationship between muscle coactivation and 

balance ability has not been clarified. Clarification of this relationship would be helpful 

to developing optimal rehabilitation strategies for older people. 

The purpose of this study was to clarify the differences in muscle coactivation 

during postural control between older and young adults and to identify the 

characteristics of postural control strategies in older adults by investigating the 

relationship between muscle coactivation and postural control ability. We 

hypothesized that muscle coactivation during postural control in older adults is higher 

than that in young adults. We also hypothesized that muscle coactivation relates to 

postural control ability in young and older adults.  

 

2. Subjects and methods 

2.1. Participants 

Forty-six healthy older adults (10 males, 36 females; age, 82.0 ± 7.5 years) and 

34 healthy young adults (14 males, 20 females; age: 22.1 ± 2.3 years) participated in 

this study (Table1). Oral and written explanations of the study were offered to 

participants. Subjects were excluded if they had acute neurological impairment 

(stroke, Parkinson’s disease, paresis of the lower limbs), severe cardiovascular 

disease, severe cognitive impairment: rapid dementia screening test score is of four 

points or less (Kalbe et al., 2003), persistent joint pain, or musculoskeletal impairment. 
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Each subject gave informed consent indicating their agreement with the study 

protocol. This research was approved by the Ethical Review Board of Kyoto 

University Graduate School of Medicine, Kyoto, Japan. 

 

2.2. Testing procedures and protocol 

The postural tasks selected for testing consisted of static standing, functional 

reach, functional stability boundary (forward and backward), and gait because similar 

movements are performed frequently during activities of daily living. 

   

2.2.1. Postural sway 

  Postural sway during static standing was measured with a force plate (Kistler 

9286 force platform, Kistler Instruments Inc, Amherst, NY). Signals were sampled at 

20 Hz and processed by a low pass filter (6 Hz cut off frequency). The participants 

were required to stand on a force plate with their feet together and then asked to 

gaze at a mark at eye level. Subjects were instructed to stand still as symmetrically 

as possible. Static standing balance was registered for a period of 10 seconds, from 

which the root mean square (RMS) area was calculated. EMG was measured for 3 

seconds starting at the beginning of static standing. 

 

2.2.2. Functional stability boundary 

Functional stability boundary tasks were performed on the force plate 

(Slobounov et al., 1998). The subjects were instructed to stand with their heels 

positioned on a line 10 cm anterior to the posterior edge of the plate. The subjects 

were instructed to stand still for 5 seconds and then to shift their body weight first 

towards their toes and then towards their heels over the largest possible amplitude. 

They were further instructed to maintain full contact between their feet and the plate 

(avoiding toes off or heels off). For each direction (forward and backward), the 

subject maintained their posture for 3 sec for EMG measurements, from which the 

averaged peak center of pressure (COP) displacement from the initial position was 

calculated. The COP displacement for each subject was normalized individually to 

the length of that subject’s foot.  
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2.2.3. Functional reach 

The functional reach test (Duncan et al., 1990, 1992) measures the distance 

that subjects are able to reach forward while maintaining a fixed base. The position of 

the fingertip is determined with the shoulder of the subject flexed at 90° along a wall. 

The subjects then were instructed to reach as far forward as possible without moving 

their feet, thus moving the center of gravity forward over a fixed base. Additionally, 

the subjects were instructed to keep their position for 3 seconds for EMG 

measurements. Functional reach was defined as the difference between arm’s length 

and maximal forward reach. 

 

2.2.4. Gait 

  Subjects were asked to perform walking trials at their preferred speed over a 

12-m walkway. The examiner measured the time and the number of steps for the 

middle 10-m. A single trial was conducted following instruction. Walking speed (m/s) 

and step cadence (steps/min) were calculated as variables. EMG was analyzed for 

three gait cycles as determined from signals from the foot switch sensors (Noraxon 

USA Inc, Scottsdale, AZ) during the one gait trial. 

 

2.2.5. Additional physical function characteristics  

The timed up and go test (TUG) (Shumway-Cook et al., 2000) and the timed 

one-leg standing test for the dominant leg with eyes open were performed without 

EMG monitoring. The maximum duration of the one-leg standing test was set at 30 

seconds. 

 

2.3. EMG recording 

EMG data were collected with the Telemyo 2400 (Noraxon USA Inc, Scottsdale, 

AZ). The skin of the dominant leg was shaved over the fibula head, tibialis anterior 

(TA), and soleus (SOL) (Melzer et al., 2001) and then washed with alcohol. Bipolar 

surface electrodes (Ambu, Blue sensor M, Denmark) with a 2.0 cm inter-electrode 

distance were placed on the skin around the probable motor point of the muscles 

(Hermens). The ground electrode was affixed to the skin over the fibula head of the 

dominant leg. The EMG data were sampled at 1500 Hz. 

EMG activity was recorded from the SOL and TA while the subjects were 

performing maximal voluntary contractions (MVC). The MVC of the SOL was 
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obtained during maximal isometric plantar flexion, and maximal TA activation was 

recorded during maximal isometric dorsiflexion of the ankle at 90° (anatomically 

neutral position). Strong verbal encouragement was given during every contraction to 

promote maximal effort. The EMG data from the MVCs were used to normalize the 

EMG amplitude (%MVC) during the postural tasks.  

 

2.4. Muscle coactivation analysis  

 The original raw EMG signal was band-pass filtered at 20-500 Hz. We 

computed the root mean-square amplitude of the signal using a 50-ms window. The 

EMG of each muscle was then expressed as a percentage of the EMG value during 

the MVC. 

To evaluate the relative level of co-contraction of the tibialis anterior and soleus 

muscles, the co-contraction index (CI) was calculated using the method of Falconer 

and Winter (Falconer and Winter, 1985). Specifically, the following equation was 

used: 

 

Where Iant is the area of the total antagonistic activity, calculated in accord with the 

following equation: 

 

 

where t1 to t2 denotes the period during which the TA EMG is less than the SOL 

EMG and t2 to t3 donates the period during which the SOL EMG is less than the TA 

EMG), Itotal is the integral of the sum of TA and SOL EMG during performance of the 

task, calculated in accord with the following equation: 

 

 

2.5. Statistics 

SPSS (SPSS Inc, Tokyo, Japan) software was used for the data analysis. The 

test-retest intraday reliability of each EMG measurements without relocating the 

electrode was estimated by calculating intraclass correlation coefficients (ICC1. 1). 
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Differences in physical function between young and older adults were tested using 

the Student’s t-test for continuous variables and the Mann Whitney U test for non-

normally distributed variables. Comparisons of the normalized EMG activity and co-

contraction index between young and older adults were performed using the Mann 

Whitney U test. The effect of gender differences in co-contraction index was 

examined with a 2 × 2 (gender × generation group) analysis of variance (ANOVA). 

The relationship between coactivation and physical function for each trial was 

analyzed by Spearman rank correlation. Statistical significance was set at p < 0.05.  

 

3. Results 

The ICCs1.1 for CI without relocating the electrode were as follows: 0.87 (95%CI: 

0.67 to 0.96) for static standing, 0.95 (95%CI: 0.84 to 0.97) for functional reach, 0.71 

(95%CI: 0.22 to 0.91) for functional stability boundary (forward), 0.97 (95%CI: 0.92 to 

0.99) for functional stability boundary (backward), and 0.86 (95%CI: 0.57 to 0.96) for 

gait. These ICC values indicated ‘good’ to ‘excellent’ reliability for all measurements 

of CI (Shrout and Fleiss, 1979). 

The young adults had significantly better physical function than the older adults 

for all variables measured (p < 0.01) (Table 2). The elderly had significantly greater % 

MVC values in ankle muscles than the young adults for all measured tasks except for 

the SOL during functional reach (p < 0.01, Table 3).  

The older adults had significantly higher CI values than the young adults for 

standing, functional reach, functional stability boundary (forward), and gait (p < 0.01, 

Figure 1). The CI for functional stability boundary (backward) tended to be higher in 

the older adults than in the young adults but the difference did not reach statistical 

significance (p = 0.072). Two-way ANOVA identified no significant gender/generation 

interactions with respect to CI for all tasks (p > 0.05). Gender alone had no significant 

effect on CI except for functional stability boundary (backward) (p < 0.05). 

In the older adults, Spearman rank correlation revealed a significant correlation 

between postural sway area and CI during static standing (ρ = 0.42, p < 0.05). 

Functional reach distance significantly correlated with CI (ρ = -0.52, p < 0.05) (Figure 

2). The functional stability boundary (forward) tended to correlate with CI but did not 

reach statistical significance (ρ = -0.33, p = 0.06). In the young adults, no correlation 

between physical function and CI was found. 
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4. Discussion 

Although previous studies have reported higher muscle coactivation during 

MVC, gait, and static standing in older adults compared with young adults (Klein et al., 

2001; Melzer et al., 2001; Macaluso et al., 2002; Mian et al., 2006; Hortobagyi et al., 

2009), no studies have quantified muscle coactivation during static and dynamic 

postural tasks in the elderly. The present study focused on quantifying muscle 

coactivation at the ankle joint under postural control and yielded two major findings: 

(1) Muscle coactivation at the ankle joint during postural control was higher in the 

elderly than in the young adults, and (2) the elderly who had less physical function 

during postural control tasks showed higher muscle coactivation at the ankle joints. 

These results, in turn, raise two alternative possibilities: either (1) older adults with 

deterioration in their postural control utilize muscle coactivation as a strategy to 

maintain their balance, or (2) high muscle coactivation in older adults leads to poor 

postural control.   

Regarding static postural control, the data in the study by Meltzer et al. (2001) 

suggested higher coactivation in older adults than in young adults during static 

standing. Additionally, Manchaster et al. (1989) have demonstrated greater amounts 

of co-contraction of antagonists in older adults under perturbed conditions. These 

researchers described the greater co-contraction of antagonists with resultant ankle 

joint stiffness as a strategy to maintain postural stability. 

In the present study, tibialis anterior activation during standing was greater in 

the older adults than in the young adults. During normal standing, the planter flexor 

muscles are recruited mainly as antigravity muscles at the ankle joint (Kendall and 

MacCreary, 1983) while the activity of the tibialis anterior usually remains low. The 

greater tibialis anterior activity in the older adults probably caused the observed 

increase in muscle coactivation in this study. 

The results of the dynamic postural control tasks, i.e., functional reach and 

functional stability boundary, suggest that muscle coactivation becomes stronger in 

older adults who cannot sufficiently move their center of pressure within their base of 

support. Hortobagyi and DeVita (2000), have reported increased coactivation of 

antagonistic muscles during stair descending in older adults compared with young 

adults, which they interpreted as an indication that the older adults had increased 

muscle coactivation in order to stiffen the joints of their lower limbs. Functional reach 

and the functional stability boundary during forward motion involve a forward 
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movement of the center of pressure, which requires increased plantar flexor torque at 

the ankle joint to control posture. Therefore, the tibialis anterior plays the role of 

antagonist in these tasks. In the present study, during functional reach and functional 

stability boundary for forward motion, the EMG activity of the tibialis anterior reached 

almost 20% of MVC in the older adults, probably to increase the stiffness of their 

ankle joint. The elevated tibialis anterior activity may have caused the increase in 

muscle coactivation in a similar manner as during static postural control.  

Our gait measurements showed higher muscle coactivation during walking in 

the older adults than in the young adults. This difference indicates that aging induces 

not only a decline in walking ability (e.g., decrease in gait velocity, increase in step 

variability) but also a change in central nervous system control of dynamic movement. 

Recent studies have also reported higher muscle coactivation at the ankle joint 

during walking in older adults than in young adults (Schmitz et al., 2008; Hortobagyi 

et al., 2009). In these studies, high muscle coactivation during walking was 

interpreted as being a means of enhancing ankle joint stability. Chambers and Cham 

(2007) have investigated the relationship between muscle co-contraction and slips 

during gait measurements. The subjects who walked with higher ankle muscle co-

contraction were predisposed to experience less severe slips when encountering an 

unexpected slippery floor (Chambers and Cham, 2007). Additionally, anticipation of a 

slippery surface resulted in more muscle co-contraction at the ankle and knee. These 

observations support the hypothesis that the elderly have enhanced muscle 

coactivation to compensate for an age-associated decline in postural control ability. 

Our study also found no significant correlation between gait velocity and muscle 

cocactivation during walking. Muscle coactivation during walking seems to be 

independent from gait velocity. Hortobagyi et al. (2009) have investigated muscle 

coactivation during walking at different velocities and reported that muscle 

coactivation was not affected by gait velocity in older people. This finding suggests 

that older adults probably can utilize a high muscle coactivation strategy during 

walking regardless of gait velocity. 

In previous studies, high muscle co-contraction has been described as a 

strategy to stiffen the joint and enhance stability (Hortobagyi and DeVita, 2000; 

Hortobagyi et al., 2009). The purpose of increasing joint stiffness is to compensate 

for the many neuromotor impairments associated with aging, including reduced 

muscle strength (Hortobagyi et al., 1995), slower rate of tension development 
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(Thelen et al., 1996), reduced proportion of fast muscle fibers (Larsson et al., 1979), 

miscued limb positioning (Skinner et al., 1984), and fear of falling (Okada et al., 

2001). Calorane and Cafarelli (1992) have measured muscle activation in the biceps 

femoris during knee extension and found that as knee extensor strength increased, 

biceps femoris activity also increased. This finding indicates that greater effort to 

extend the knee joint induces increased muscle coactivation in the antagonist muscle. 

In the present study, the elderly showed higher muscle activity than the young adults 

in most of the measured tasks. Because of age-related decreases in their muscular 

strength, older adults need to recruit more muscle fibers to accomplish a specific 

postural task. This increased muscle effort possibly led to the higher muscle 

coactivation that we observed. 

Increased muscle coactivation may be a necessary change to compensate for 

the poor postural control accompanying healthy aging. However, strong coactivation 

of agonist and antagonist muscles should reduce the performance of agonist muscles 

(Carolan and Cafarelli, 1992; Pereira and Goncalves, 2010) as well as increasing the 

energetic cost of transport (Mian et al., 2006), thereby inducing fatigue and 

potentially increasing the risk of falling (Hortobagyi et al., 2009). If older adults 

employ the coactivation strategy for postural control, probable consequences would 

include poor performance and increased risk of falling, especially in situations difficult 

to deal with by this strategy. In clinical settings, efforts to determine the proper level 

of coactivation, corresponding to personal and environmental situations, should be 

targeted especially towards those older patients who have suffered deterioration in 

their postural control ability.  

Limitations of our study include that our study data did not clarify the 

relationship between muscle coactivation and joint kinematics. In addition, our study 

provided no information on a postural strategy for the knee or hip joint because it 

focused on the ankle joint. Finally, the lack of longitudinal data precludes an 

examination of the causal relationship between deterioration in postural control and 

muscle coactivation. Further studies are needed to examine muscle coactivation 

strategy in postural tasks for the elderly in greater detail. 

 

5. Conclusions  

Our study clarified that older adults show greater muscle coactivation during 

postural control compared with young adults. Moreover, muscle coactivation was 
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significantly higher in older adults with low postural control ability than in older adults 

with high postural control ability. Increased muscle coactivation could be a necessary 

change to compensate for the deterioration in postural control accompanying healthy 

aging. However, further research is needed to clarify in greater detail the positive and 

negative effects of muscle coactivation on postural control. 
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Table 1. Physical characteristics of the subjects, n, mean  ± S.D., or % 

Parameters Elderly Young 

Number 46 34 

Age (years) 82.0 ± 7.5 22.1 ± 2.3 

Female 58.8  78.3  

Height (cm) 151.3 ± 6.8 164.6 ± 7.9 

Weight (kg) 51.9 ± 6.6 56.7 ± 8.0 
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Table 2. Postural control ability of subjects, n, mean  ± S.D. 

Physical function Elderly Young 95%CI p < 

Number  46 34   

Postural sway area (cm2) 1.7 ± 1.0 0.9 ± 0.4 0.48-1.19 0.001* 

Functional reach (cm) 20.9 ± 7.9 37.0 ± 5.4 -19.1 – -12.9 0.001* 

Functional stability boundary (forward) (%)  

 25.5 ± 9.7 36.9 ± 5.5  0.001† 

Functional stability boundary (backward) (%) 

 18.4 ± 4.6 23.9 ± 5.4  0.001† 

Gait speed (m/s) 0.9 ± 0.4 1.2 ± 0.2 -0.47 – -0.12 0.001* 

TUG test (sec) 11.4 ± 6.4 6.0 ± 0.7 3.16 - 7.60 0.001* 

One-leg standing (sec)  9.3 ± 11.2 30 ± 0.0  0.001† 

Notes: *Student’s t-test; †Mann Whitney U-test 
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Table 3. Mean normalized EMG activity (%MVC) during measured tasks, n, mean  ± 

S.D. 

Tasks Muscle  Elderly Young p < 

Standing (%) TA 19.4 ± 19.3 2.1 ± 2.6 0.01 

 SOL 28.6 ± 20.4 12.5 ± 8.2 0.01 

Functional reach (%) TA 18.6 ± 19.7 4.8 ± 4.2 0.01 

 SOL 45.3 ± 23.3 43.1 ± 26.7 0.36 

Functional stability boundary (forward) (%)  

 TA 19.4 ± 17.0 6.0 ± 8.0 0.01 

 SOL 52.0 ± 22.9 37.6 ± 21.5 0.01 

Functional stability boundary (backward) (%) 

 TA 49.6 ± 22.1 28.1 ± 12.2 0.01 

 SOL 37.8 ± 17.8 17.6 ± 11.5 0.01 

Gait (%) TA 35.4 ± 19.0 12.4 ± 4.6 0.01 

 SOL 48.1 ± 22.1 28.8 ± 14.0 0.01 

Notes: Mann Whitney U-test was used for comparison of the %MVC;  
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Figure 1.  

Comparisons of the co-contraction index (CI) between older (filled bars) and young 

adults (open bars) during the measured tasks. The Mann Whitney U test was used 

for the CI comparisons. (*p < 0.05, **p < 0.01) 
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Figure 2. Correlations between postural control ability and co-contraction index (CI). 

Filled circles show older adults and open circles show young adults. Spearman rank 

correlation was used for statistical analysis. (ρ: correlation coefficient, *p < 0.05) 

 


