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Abstract

We investigate the m-relative entropy, which stems from the Bregman diver-
gence, on weighted Riemannian and Finsler manifolds. We prove that the displace-
ment K-convexity of the m-relative entropy is equivalent to the combination of the
nonnegativity of the weighted Ricci curvature and the K-convexity of the weight
function. We use this to show appropriate variants of the Talagrand, HWI and the
logarithmic Sobolev inequalities, as well as the concentration of measures. We also
prove that the gradient flow of the m-relative entropy produces a solution to the
porous medium equation or the fast diffusion equation.
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1 Introduction

The displacement convexity of a functional on the space of probability measures was intro-
duced in McCann’s influential paper [Mc1] as the convexity along geodesics with respect to
the L2-Wasserstein distance. Recent astonishing development of optimal transport theory
reveals that the displacement convexity of entropy-type functionals plays important roles
in the theory of partial differential equations, probability theory and differential geometry
(see [AGS], [Vi1], [Vi2] and the references therein). For instance, on a compact Rieman-
nian manifold (M, g) equipped with the Riemannian volume measure volg, the gradient
flow of the relative entropy Entvolg (see (3.3) for definition) in the L2-Wasserstein space
(P(M),W2) produces a weak solution to the heat equation ([Oh1], [GO], [Vi2, Chap-
ter 23]). Then the displacement K-convexity of Entvolg for some K ∈ R (denoted by
Hess Entvolg ≥ K for short) implies the K-contraction property

W2

(
p(t, x, ·) volg, p(t, y, ·) volg

)
≤ e−Ktd(x, y), x, y ∈ M,

of the heat kernel p : (0,∞) × M × M −→ (0,∞) (and vice versa, [vRS]), where d
is the Riemannian distance. The condition Hess Entvolg ≥ K is called the curvature-
dimension condition CD(K,∞) and known to be equivalent to the lower Ricci curvature
bound Ric ≥ K ([vRS]). There is a rich theory on general metric measure spaces satisfying
CD(K,∞) ([St2], [LV2], [Vi2, Part III]). Especially, CD(K,∞) with K > 0 is an important
condition which yields, among others, the logarithmic Sobolev inequality and the normal
concentration of measures (a kind of large deviation principle).

The curvature-dimension condition is generalized to CD(K,N) for each K ∈ R and
N ∈ (1,∞], and then CD(K,N) is equivalent to the lower bound of the weighted Ricci
curvature RicN ≥ K of a weighted Riemannian manifold (M,ω), where ω is a conformal
deformation of volg ([St3], [LV1], see (2.1) for the definition of RicN). However, CD(K,N)
with N < ∞ is written as a simple convexity condition only when K = 0 (and it causes
some difficulties when K 6= 0, see [BS]). Precisely, CD(0, N) is defined as the convexity of
the Rényi entropy SN (see (3.2) for definition), while CD(K,N) with K 6= 0 is a more sub-
tle inequality involving the integrand of SN . Sturm has shown in [St1, Theorem 1.7] that
there are (by no means unique) functionals whose displacement K-convexity is equivalent
to the combination of Ric ≥ K and dim ≤ N for unweighted Riemannian manifolds, but
it is unclear how this observation relates to CD(K,N).

In this article, we introduce and consider a different kind of relative entropy Hm(·|ν)
for m ∈ [(n− 1)/n, 1)∪ (1,∞) —we call this the m-relative entropy— which is related to,
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but different from SN . Here ν = expm(−Ψ)ω is a fixed conformal deformation of ω, and
expm is the m-exponential function (see Subsection 2.2). Our definition of Hm(·|ν) stems
from the Bregman divergence in information theory/geometry which is closely related
to the Tsallis and Rényi entropies (see Subsection 3.1). Roughly speaking, Hm(µ|ν) is
defined as

Hm(µ|ν) =
1

m(m − 1)

∫
M

{ρm − mρσm−1 + (m − 1)σm} dω,

for µ = ρω and ν = σω (see Definition 3.1 for the precise definition). We can regard
Hm(µ|ν) as representing the difference between µ and ν. Taking the limit as m tends to 1
recovers the usual relative entropy Entν (or the Kullback-Leibler divergence H(·|ν)). Our
results will guarantee that Hm(·|ν) is a natural and important object.

Our first main theorem asserts that Hess Hm(·|ν) ≥ K in (P2(M),W2) is equivalent
to the combination of RicN ≥ 0 with N = 1/(1 − m) and Hess Ψ ≥ K, where RicN is
of (M,ω) (Theorem 4.1). We remark that N can be negative, such RicN is not previ-
ously studied and would be of independent interest. It is also interesting to obtain split
curvature bound/convexity conditions from a single convexity condition of the entropy.
Then, according to the technique similar to the curvature-dimension condition, we show
that RicN ≥ 0 and Hess Ψ ≥ K imply appropriate variants of the Talagrand, HWI, loga-
rithmic Sobolev and the global Poincaré inequalities (Propositions 5.1, 5.4, Theorem 5.2),
and also the concentration of measures (Theorem 6.1, Proposition 6.7). Furthermore, the
gradient flow of Hm(·|ν) produces a weak solution to the porous medium equation (for
m > 1) or the fast diffusion equation (for m < 1) of the form

∂ρ

∂t
=

1

m
∆ω(ρm) + divω(ρ∇Ψ),

where ∆ω and divω are the Laplacian and the divergence associated with the measure ω
(Theorem 7.6). Among others, we shall follow the metric geometric way of interpreting
this coincidence as in [Oh1], [GO]. Most results hold true also for Finsler manifolds thanks
to the theory developed in [Oh2] and [OS1] (see Section 8).

We comment on former related work on this kind of entropy. On unweighted Rieman-
nian manifolds, Sturm showed a similar characterization of the displacement K-convexity
of a class of entropies (or free energies) including Hm ([St1, Theorem 1.3]). We general-
ize this to weighted Riemannian (and even Finsler) manifolds, and then Ric is replaced
with RicN (this is natural but nonobvious). Also our treatment of singular measures is
more precise than [St1]. Gradient flow from the view of Wasserstein geometry has been
investigated by Otto [Ot] in the Euclidean case, and by Villani [Vi2, Chapters 23, 24] in
the weighted Riemannian case in a different manner from ours. Functional inequalities
related to the convexity of the weight Ψ were studied in [AGK], [CGH] and [Ta2] in Eu-
clidean spaces (see also [St1, Remark 1.1] and [Vi2, Chapters 24, 25]). The concentration
of measures seems new even in the Euclidean setting.

The organization of the article is as follows. After preliminaries, we introduce the
m-relative entropy Hm(·|ν) in Section 3, and show that Hess Hm(·|ν) ≥ K is equivalent to
Hess Ψ ≥ K with RicN ≥ 0 in Section 4. Using this equivalence, we obtain several func-
tional inequalities in Section 5, and the concentration of measures in Section 6. Section 7
is devoted to the study of the gradient flow of Hm(·|ν). Finally, we treat the Finsler case
in Section 8.
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2 Preliminaries

Throughout the article except the last section, (M, g) will be a complete, connected n-
dimensional C∞-Riemannian manifold and d stands for the Riemannian distance of M .
For simplicity and since we are interested in the role of curvature bounds, we will always
assume n ≥ 2. Denote by B(x, r) the open ball of center x ∈ M and radius r > 0, i.e.,
B(x, r) = {y ∈ M | d(x, y) < r}. See, e.g., [Ch] for the basics of Riemannian geometry.

2.1 Weighted Ricci curvature

We fix a conformal change ω = e−ψ volg, with ψ ∈ C∞(M), of the Riemannian volume
measure volg as our base measure. Given a unit vector v ∈ TxM and N ∈ (−∞, 0)∪(n,∞),
we define the weighted Ricci curvature by

RicN(v) := Ric(v) + Hess ψ(v, v) − 〈∇ψ, v〉2

N − n
. (2.1)

We also set

Ricn(v) :=

{
Ric(v) + Hess ψ(v, v) if 〈∇ψ, v〉 = 0,

−∞ otherwise.

Observe that, if ψ is constant, then RicN(v) coincides with Ric(v) for all N .

Remark 2.1 We usually consider RicN only for N ∈ [n,∞] (where Ric∞(v) = Ric(v) +
Hess ψ(v, v) is the Bakry-Émery tensor, see [BE], [Qi], [Lo]), and then it enjoys the mono-
tonicity: RicN(v) ≤ RicN ′(v) for N < N ′. Admitting N < 0 violates this monotonicity,
but we abuse this notation for brevity. The reason why we consider this range of N will
be seen in (2.2).

As we mentioned in the introduction, RicN ≥ K for K ∈ R and N ≥ n is equivalent
to Sturm’s curvature-dimension condition CD(K,N). Spaces satisfying CD(K,N) behave
like a space with “dimension ≤ N as well as Ricci curvature ≥ K” (see [St3], [LV1], [Vi2,
Part III]).

2.2 Generalized exponential functions and Gaussian measures

We briefly recall the m-calculus, see [Ts2] for further discussion. We introduce a parameter
m such that

m ∈ [(n − 1)/n, 1) ∪ (1,∞).

We sometimes eliminate the special case m = 1/2 with n = 2 (Section 5) or restrict
ourselves to m ≤ 2 (Sections 6, 7). We set

N = N(m) := 1/(1 − m) ∈ (−∞, 0) ∪ [n,∞). (2.2)

Define the m-logarithmic function by

lnm(t) :=
tm−1 − 1

m − 1
for

{
t > 0 if m < 1,
t ≥ 0 if m > 1.
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Note that lnm is monotone increasing and that the image of lnm is (−∞, 1/(1 − m)) if
m < 1; [−1/(m − 1),∞) if m > 1. We define the m-exponential function expm as the
inverse of lnm, namely

expm(t) := {1 + (m − 1)t}1/(m−1) for

{
t ∈ (−∞, 1/(1 − m)) if m < 1,
t ∈ [−1/(m − 1),∞) if m > 1.

For the sake of simplicity, we set expm(t) := 0 for m > 1 and t < −1/(m − 1). We also
define

em(t) := t lnm(t) =
tm − t

m − 1
for t > 0, em(0) := 0.

Observe that

lim
m→1

lnm(t) = ln(t), lim
m→1

expm(t) = et, lim
m→1

em(t) = t ln(t).

Remark 2.2 (1) Taking m < 1 and m > 1 gives rise to qualitatively different phenomena
(see Lemma 2.5, Example 2.6 for instances). Nonetheless, most of our results will cover
both cases.

(2) In some notations, it is common to use the parameter q = 2−m instead of m (e.g.,
expq and q-Gaussian measures). In the present paper, however, we shall use only m for
brevity.

Using expm and the base measure ω = e−ψ volg, we will fix another measure

ν = σω := expm(−Ψ)ω

as our reference measure, where Ψ ∈ C(M) such that Ψ > −1/(1 − m) if m < 1. Note
that the two weights e−ψ and expm(−Ψ) involve different kinds of exponential function,
so that they can not be combined. For later convenience, we set

M0 :=

{
M for m < 1,

Ψ−1
(
(−∞, 1/(m − 1))

)
for m > 1,

(2.3)

and assume that M0 is nonempty. Note that supp ν = M0 holds in both cases. We shall
study how the convexity of Ψ has an effect on the geometric and analytic structures of
(M, ν).

Definition 2.3 (K-convexity) Given K ∈ R, we say that Ψ is K-convex in the weak
sense, denoted by Hess Ψ ≥ K for short, if any two points x, y ∈ M admit a minimal
geodesic γ : [0, 1] −→ M from x to y along which

Ψ
(
γ(t)

)
≤ (1 − t)Ψ(x) + tΨ(y) − K

2
(1 − t)td(x, y)2 (2.4)

holds for all t ∈ [0, 1].

Note that this is equivalent to saying that (2.4) holds along any minimal geodesic γ
between x and y, for γ|[ε,1−ε] is a unique minimal geodesic for all ε > 0 and Ψ is continuous.
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Remark 2.4 Consider a different presentation ν = (cσ)(c−1ω) =: σ̃ω̃ of ν for some
constant c > 0. Then the weighted Ricci curvature RicN is unchanged, while

σ̃ = c expm(−Ψ) = {cm−1 − (m − 1)cm−1Ψ}1/(m−1)

=

{
1 − (m − 1)

(
cm−1Ψ − cm−1 − 1

m − 1

)}1/(m−1)

=: expm(−Ψ̃)

and hence Hess Ψ̃ = cm−1 Hess Ψ.

Sections 5, 6 will be concerned with the case where Hess Ψ ≥ K > 0 as well as
RicN ≥ 0. In such a situation, it turns out that ν has finite total mass. Here we give
explicit estimates for later use (in Section 6).

Lemma 2.5 Assume that Hess Ψ ≥ K holds for some K > 0, and take a unique mini-
mizer x0 ∈ M of Ψ.

(i) If m < 1 and RicN ≥ 0, then σ ∈ Lc(M,ω) for all c ∈ (1/2, 1], in particular,
ν(M) < ∞. Moreover, we have∫

M

σc dω ≤ C1−c
1 ν(M)c + C2K

c/(m−1)

for some C1 = C1(ω) > 0 and C2 = C2(m, c, ω) > 0.

(ii) If m < 1 and RicN ≥ 0, then
∫

M
d(x0, x)p dν < ∞ for all p ∈ [1, 1/(1 − m)).

(iii) If m > 1, then M0 and supp ν are convex in the sense that any pair of points in M0

or supp ν is connected by a minimal geodesic contained in M0 or supp ν, respectively.
In addition, we have

supp ν ⊂ B

(
x0,

{
2

K

(
1

m − 1
− Ψ(x0)

)}1/2)
.

Proof. By our assumption Hess Ψ ≥ K > 0, we find a unique point x0 ∈ M0 such that
Ψ(x0) = infM Ψ. Then we deduce from (2.4) that

Ψ
(
γ(1)

)
≥ Ψ(x0) +

K

2
d
(
x0, γ(1)

)2

holds for all minimal geodesics γ with γ(0) = x0. Thus we have

σ(x) = expm

(
− Ψ(x)

)
≤ expm

(
− Ψ(x0) −

K

2
d(x0, x)2

)
(2.5)

for all x ∈ M0.
(i) Denote by areaω(S(x0, r)) the area of the sphere S(x0, r) := {x ∈ M | d(x0, x) = r}

with respect to ω. Then (2.5) implies∫
M

σc dω ≤
∫

B(x0,1)

σc dω +

∫ ∞

1

expm

(
− Ψ(x0) −

K

2
r2

)c

areaω

(
S(x0, r)

)
dr.
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On the one hand, it follows from RicN ≥ 0 that, for r ≥ 1,

areaω

(
S(x0, r)

)
≤ rN−1 areaω

(
S(x0, 1)

)
= rm/(1−m) areaω

(
S(x0, 1)

)
(cf. [St3, Theorem 2.3]). Therefore we obtain, putting a := expm(−Ψ(x0))

m−1 > 0,∫ ∞

1

expm

(
− Ψ(x0) −

K

2
r2

)c

areaω

(
S(x0, r)

)
dr

≤ areaω

(
S(x0, 1)

) ∫ ∞

1

{
a + (1 − m)

K

2
r2

}c/(m−1)

rm/(1−m) dr

= areaω

(
S(x0, 1)

) ∫ ∞

1

{
ar−2 + (1 − m)

K

2

}c/(m−1)

r(m−2c)/(1−m) dr

≤ areaω

(
S(x0, 1)

){
(1 − m)

K

2

}c/(m−1) ∫ ∞

1

r(m−2c)/(1−m) dr.

As c > 1/2, the most right-hand side coincides with

areaω

(
S(x0, 1)

)(1 − m)c/(m−1)+1

2c − 1

(
K

2

)c/(m−1)

=: C2(m, c, ω)Kc/(m−1) < ∞.

On the other hand, as ν(M) < ∞ is already observed, the Hölder inequality and c ≤ 1
yield ∫

B(x0,1)

σc dω ≤
( ∫

B(x0,1)

σ dω

)c

ω
(
B(x0, 1)

)1−c ≤ ν(M)cω
(
B(x0, 1)

)1−c
.

We set C1(ω) = ω(B(x0, 1)) and complete the proof.
(ii) We similarly deduce from (2.5) and RicN ≥ 0 that∫

M\B(x0,1)

d(x0, x)p dν(x)

≤
∫ ∞

1

rp expm

(
− Ψ(x0) −

K

2
r2

)
areaω

(
S(x0, r)

)
dr

≤ areaω

(
S(x0, 1)

){
(1 − m)

K

2

}1/(m−1) ∫ ∞

1

rp+(m−2)/(1−m) dr

= areaω

(
S(x0, 1)

)(1 − m)m/(m−1)

1 − (1 − m)p

(
K

2

)1/(m−1)

< ∞.

We used p < 1/(1 − m) to see p + (m − 2)/(1 − m) < −1.
(iii) Recall that M0 = Ψ−1((−∞, 1/(m − 1))) and supp ν = M0. Therefore M0 and

supp ν are convex and (2.5) shows the desired estimate. 2

Observe that the convexity of M0 and supp ν in Lemma 2.5(iii) holds true also for
K = 0.
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Example 2.6 (m-Gaussian measures) One fundamental and important example to
which Lemma 2.5 applies is the m-Gaussian measure on Rn defined by

Nm(v, V ) = σdx :=
C0

(detV )1/2
expm

[
− C1

2
〈x − v, V −1(x − v)〉

]
dx, (2.6)

where dx is the Lebesgue measure, a vector v ∈ Rn is the mean, a positive-definite sym-
metric matrix V ∈ Sym+(n, R) is the covariance matrix, and C0, C1 are positive constants
depending only on n and m (see [Ta2]). Then clearly Hess Ψ = Cm−1

0 (detV )(1−m)/2 ·C1V
−1

(by taking Remark 2.4 into account) and hence

Hess Ψ ≥ Cm−1
0 C1(detV )(1−m)/2Λ−1 > 0,

where Λ denotes the largest eigenvalue of V . Note that Nm(v, V ) has unbounded and
bounded support for m < 1 and m > 1, respectively. The family of m-Gaussian measures
will play interesting roles in Sections 3, 5, 7.

2.3 Wasserstein geometry

We very briefly recall some fundamental facts in optimal transport theory and Wasserstein
geometry. We refer to [Vi1], [Vi2] for basics as well as recent diverse development of them.

Let (X, d) be a complete, separable metric space. A rectifiable curve γ : [0, 1] −→ X
is called a geodesic if it is locally minimizing and has a constant speed, we say that γ
is minimal if it is globally minimizing (i.e., d(γ(s), γ(t)) = |s − t|d(γ(0), γ(1)) for all
s, t ∈ [0, 1]). If any two points in X are connected by a minimal geodesic, then (X, d) is
called a geodesic space.

We denote by P(X) the set of all Borel probability measures on X, and by Pp(X) ⊂
P(X) with p ≥ 1 the subset consisting of measures µ of finite p-th moment, that is,∫

X
d(x, y)p dµ(y) < ∞ for some (and hence all) x ∈ X. Clearly Pp(X) = P(X) if X is

bounded. Given µ, ν ∈ P(X), a probability measure π ∈ P(X × X) is called a coupling
of µ and ν if its projections coincides with µ and ν, namely π(A × X) = µ(A) and
π(X × A) = ν(A) hold for any Borel set A ⊂ X. We define the Lp-Wasserstein distance
between µ, ν ∈ Pp(X) by

Wp(µ, ν) := inf
π

( ∫
X×X

d(x, y)p dπ(x, y)

)1/p

,

where π runs over all couplings of µ and ν. We call π an optimal coupling if it attains the
infimum above. We remark that Wp(µ, ν) is finite since µ, ν ∈ Pp(X), and it is indeed a
distance of Pp(X). The metric space (Pp(X), Wp) is called the Lp-Wasserstein space over
X. If X is compact, then (P(X),Wp) is also compact and the topology induced from Wp

coincides with the weak topology.
We will consider only the case of p = 2 that is suitable and important for applications

in Riemannian geometry. A minimal geodesic between µ, ν ∈ P2(X) amounts to an
optimal way of transporting µ to ν with respect to the quadratic cost d(x, y)2. Then it
is natural to expect that such an optimal transport is performed along minimal geodesics
in X, that is indeed the case as seen in the following proposition. We denote by Γ(X)
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the set of all minimal geodesics γ : [0, 1] −→ X endowed with the topology induced from
the distance dΓ(X)(γ, η) := supt∈[0,1] d(γ(t), η(t)). For t ∈ [0, 1], define the evaluation map
et : Γ(X) −→ X as et(γ) := γ(t), and observe that each et is 1-Lipschitz.

Proposition 2.7 ([Vi2, Corollary 7.22]) Let (X, d) be a locally compact geodesic space.
Then, for any µ, ν ∈ P2(X) and any minimal geodesic α : [0, 1] −→ P2(X) between them,
there exists Π ∈ P(Γ(X)) such that (e0 × e1)]Π is an optimal coupling of µ and ν and
that (et)]Π = α(t) holds for all t ∈ [0, 1].

We denoted by (et)]Π the push-forward measure of Π by et. In Riemannian man-
ifolds, a more precise description of an optimal transport using a gradient vector field
of some kind of convex function is known. We first recall McCann’s original work on
compact Riemannian manifolds. Denote by Pac(M, volg) ⊂ P(M) the subset of ab-
solutely continuous measures with respect to the volume measure volg. We also set
P2

ac(M, volg) := P2(M) ∩ Pac(M, volg).

Theorem 2.8 ([Mc2, Theorems 8, 9]) Let (M, g) be a compact Riemannian manifold.
Then, for any µ ∈ Pac(M, volg) and ν ∈ P(M), there exists a (d2/2)-convex function
ϕ : M −→ R such that the map Tt(x) := expx(t∇ϕ(x)), t ∈ [0, 1], provides a unique
minimal geodesic from µ to ν. Precisely, (T0 × T1)]µ is an optimal coupling of µ and ν,
and µt = (Tt)]µ is a minimal geodesic from µ0 = µ to µ1 = ν with respect to W2.

See [Vi2, Chapter 5] for the definition of the (d2/2)-convex function, here we only
remark that it is semi-convex in compact spaces. Such convexity is important as it implies
the almost everywhere twice differentiability (due to the Alexandrov-Bangert theorem),
and is generalized to noncompact spaces in [FG].

Theorem 2.9 ([FG, Theorem 1]) Let (M, g) be a complete Riemannian manifold. Then,
for any µ ∈ P2

ac(M, volg) and ν ∈ P2(M), there exists a locally semi-convex function ϕ :
Ω −→ R on an open set Ω ⊂ M with µ(Ω) = 1 such that the map Tt(x) := expx(t∇ϕ(x)),
t ∈ [0, 1], provides a unique minimal geodesic from µ to ν (in the sense of Theorem 2.8).

We will also use the following Jacobian (or Monge-Amperè) equation.

Theorem 2.10 ([Vi2, Theorems 8.7, 11.1]) Let (M, g) be complete and µ, ν, ϕ, Ω and
Tt be as in Theorem 2.9 above. Put

Jω
t (x) := eψ(x)−ψ(Tt(x))det

(
DTt(x)

)
for x ∈ Ω and t ∈ [0, 1). Then it holds µt ∈ P2

ac(M, volg) and (ρt ◦ Tt)J
ω
t = ρ0 µ0-a.e.

for all t ∈ [0, 1), where we set µt = (Tt)]µ = ρtω. In particular, Jω
t > 0 µ0-a.e. for each

t ∈ [0, 1). If in addition ν ∈ P2
ac(M, volg), then the above assertions hold also at t = 1.

Note that Jω
t is the combination of the Jacobian det(DTt) of Tt with respect to the

metric g and the ratio eψ−ψ(Tt) of the weight e−ψ on volg.
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3 Generalized relative entropies

Before discussing the m-relative entropy, we briefly review the Boltzmann and the Tsallis
entropies (see [Ts1], [Ts2]), and explain the motivation related to information geometry
(see [Am], [AN]).

3.1 Background: Tsallis entropy and information geometry

Entropy is a functional playing prominent roles in thermodynamics, information theory
(sometimes with the opposite sign) and many other fields. It describes how particles dif-
fuse in thermodynamics, and measures the uncertainty of an event in information theory.
The most fundamental entropy is the Boltzmann(-Gibbs-Shannon) entropy given by

E(µ) = −
∫

Rn

ρ ln ρ dx

for µ = ρdx ∈ Pac(Rn, dx), where dx is the Lebesgue measure.
Boltzmann entropy is thermodynamically extensive and probabilistically additive, so

that it is suitable for the treatment of independent systems. Precisely, for two independent
distributions µ1, µ2 ∈ Pac(Rn, dx) and their joint probability µ1 × µ2 ∈ Pac(R2n, dx), one
easily observes E(µ1 × µ2) = E(µ1) + E(µ2). Recently, there is a growing interest in
strongly correlated systems and non-additive entropies. Among them, we are interested
in the Tsallis entropy defined by

Em(µ) := −
∫

Rn

em(ρ) dx = −
∫

Rn

ρ lnm ρ dx = −
∫

Rn

ρm − ρ

m − 1
dx (3.1)

for µ = ρdx ∈ Pac(Rn, dx), where m ∈ [(n − 1)/n, 1) ∪ (1, 2]. Note that letting m tend to
1 recovers the Boltzmann entropy E(µ), and that Em(µ) is closely related to the Rényi
entropy

SN(µ) := −
∫

Rn

ρ1−1/N dx = (m − 1)Em(µ) − 1. (3.2)

One can connect E and Em via Gaussian measures as follows. On the one hand, given
v ∈ Rn and V ∈ Sym+(n, R), the (usual) Gaussian measure

N(v, V ) =
1

(2π)n/2(detV )1/2
exp

[
− 1

2
〈x − v, V −1(x − v)〉

]
dx

maximizes E among µ ∈ Pac(Rn, dx) with mean v and covariance matrix V . On the other
hand, the m-Gaussian measure Nm(v, V ) defined in (2.6) similarly maximizes E2−m under
the same constraint (for m 6= 1/2, 2).

In the following sections, we shall verify that a number of further geometric and
analytic properties of E have counterparts for Em. Precisely, since Em itself is not really
interesting in our view (see Remark 4.3(2)), we modify Em in the manner of information
geometry.

We start from the family of Gaussian measures

N (n) := {N(v, V ) | v ∈ Rn, V ∈ Sym+(n, R)}
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as an ((n2 + 3n)/2)-dimensional manifold. In information geometry, we equip N (n) with
the Fisher information metric mF which is different from the Wasserstein metric W2. In
fact, (N (1),mF ) has the negative constant sectional curvature ([Am]), while (N (1),W2)
is flat (cf. [Ta1, Theorem 2.2] and the references therein). The Fisher metric admits a pair
of dually flat connections (exponential and mixture connections) and the Kullback-Leibler
divergence

H(µ|ν) =

∫
Rn

ρ

σ
ln

(
ρ

σ

)
dν

for ν = σdx ∈ Pac(Rn, dx) and µ = ρdx ∈ Pac(Rn, ν). Note that H(µ|ν) is nonnegative by
Jensen’s inequality. The square root of the divergence H(µ|ν) can be regarded as a kind
of distance between µ and ν. It certainly satisfies a generalized Pythagorean theorem,
though it does not satisfy symmetry nor the triangle inequality. The Kullback-Leibler
divergence H(µ|ν) coincides with the relative entropy Entν(µ) of µ with respect to ν.
Roughly speaking, Entν(µ) is defined for µ ∈ P(Rn) and a Borel measure ν on Rn by

Entν(µ) :=

{ ∫
Rn ς ln ς dν for µ = ςν ∈ Pac(Rn, ν),

∞ otherwise,
(3.3)

and then Entν(µ) ≥ − ln ν(Rn).
The family of m-Gaussian measures

N (n,m) := {Nm(v, V ) | v ∈ Rn, V ∈ Sym+(n, R)}

similarly admits dually flat connections and the corresponding Bregman divergence (called
the β-divergence, cf. [OW, §2.1]) is

Hm(µ|ν) =
1

m(m − 1)

∫
Rn

{ρm − mρσm−1 + (m − 1)σm} dx (3.4)

for ν = σdx ∈ Pac(Rn, dx) and µ = ρdx ∈ Pac(Rn, ν). We can rewrite this by using em as

Hm(µ|ν) =
1

m

∫
Rn

{em(ρ) − em(σ) − e′m(σ)(ρ − σ)} dx

and recover the Kullback-Leibler divergence as the limit:

lim
m→1

Hm(µ|ν) =

∫
Rn

{ρ ln ρ − σ ln σ − (ln σ + 1)(ρ − σ)} dx = H(µ|ν).

It will turn out that the entropy induced from (3.4) is appropriate for our purpose. We
remark that the division by m in (3.4) is unessential, we prefer this form merely for
aesthetic reasons of the presentation of Theorem 4.1.

3.2 m-relative entropy

Recall our weighted Riemannian manifold (M,ω) and reference measure ν = σω. The
Bregman divergence (3.4) leads us to the following generalization of the relative entropy.

11



Definition 3.1 (m-relative entropy) Assume σ ∈ Lm(M,ω). Given µ ∈ P(M), let
µ = ρω + µs be its Lebesgue decomposition into absolutely continuous and singular parts
with respect to ω. Then we define the m-relative entropy as follows.

(1) For m < 1,

Hm(µ|ν)

:=
1

m

∫
M

{em(ρ) − em(σ) − e′m(σ)(ρ − σ)} dω − 1

m − 1

∫
M

σm−1 dµs + Hm(∞)µs(M)

=
1

m(m − 1)

∫
M

{ρm + (m − 1)σm} dω − 1

m − 1

∫
M

σm−1 dµ + Hm(∞)µs(M) (3.5)

if σ ∈ Lm−1(M,µ), where Hm(∞) := 0. We define Hm(µ|ν) := ∞ for µ ∈ P(M) with
σ 6∈ Lm−1(M,µ).

(2) For m > 1, Hm(µ|ν) is defined by (3.5) if ρ ∈ Lm(M,ω), where Hm(∞) := ∞ and
∞ · 0 = 0 as convention. We set Hm(µ|ν) := ∞ for µ ∈ P(M) with ρ 6∈ Lm(M,ω).

For µ = ρω ∈ Pac(M,ω), (3.5) has the simplified form

Hm(µ|ν) =
1

m(m − 1)

∫
M

{ρm − mρσm−1 + (m − 1)σm} dω

as in (3.4). Note that the first two terms in the right hand side are regarded as the internal
and external energies, and the last term (which is independent of µ) is added for the sake
of nonnegativity (see Lemma 3.3).

Remark 3.2 (1) If Hess Ψ ≥ K > 0, then the primal assumption σ ∈ Lm(M,ω) is clearly
satisfied for m > 1 by Lemma 2.5(iii). We deduce from Lemma 2.5(i) that σ ∈ Lm(M,ω)
also holds true if Hess Ψ ≥ K > 0, RicN ≥ 0 and m ∈ (1/2, 1).

(2-a) For m < 1, if σ ∈ Lm−1(M,µ), then the Hölder inequality implies∫
M

ρm dω =

∫
M

(ρσm−1)mσm(1−m) dω ≤
( ∫

M

ρσm−1 dω

)m( ∫
M

σm dω

)1−m

.

Thus we have ρ ∈ Lm(M,ω). Moreover, for µ = ρω ∈ Pac(M,ω), it holds

Hm(µ|ν) − 1

m

∫
M

σm dω

≥ 1

m(m − 1)

( ∫
M

σm−1 dµ

)m( ∫
M

σm dω

)1−m

+
1

1 − m

∫
M

σm−1 dµ

=
1

m(1 − m)

( ∫
M

σm−1 dµ

)m{
m

( ∫
M

σm−1 dµ

)1−m

−
( ∫

M

σm dω

)1−m}
,

and hence it is natural to define Hm(µ|ν) = ∞ for µ with σ 6∈ Lm−1(M,µ).
(2-b) For m > 1 and ρ ∈ Lm(M,ω), the Hölder inequality∫

M

ρσm−1 dω ≤
( ∫

M

ρm dω

)1/m( ∫
M

σm dω

)(m−1)/m
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similarly yields σ ∈ Lm−1(M,µ) and, for µ = ρω ∈ Pac(M,ω),

Hm(µ|ν) − 1

m

∫
M

σm dω

≥ 1

m(m − 1)

( ∫
M

ρm dω

)1/m{(∫
M

ρm dω

)(m−1)/m

− m

( ∫
M

σm dω

)(m−1)/m}
.

Hence it is again natural to set Hm(µ|ν) = ∞ for ρ 6∈ Lm(M,ω).
(3) The validity of the definition of Hm(∞) would be understood by the following

observation (putting ρ = χB(x,ε)/ω(B(x, ε)) so that χB(x,ε) is the characteristic function
of B(x, ε)): ∫

B(x,ε)

1

ω(B(x, ε))m
dω = ω

(
B(x, ε)

)1−m →
{

0 if m < 1,
∞ if m > 1

as ε tends to zero (see also Lemma 3.4 below).

Next we see that ν is a unique ground state of Hm(·|ν) (provided ν(M) = 1).

Lemma 3.3 We have Hm(µ|ν) ≥ 0 for all µ ∈ P(M), and equality holds if and only if
ν ∈ Pac(M,ω) and µ = ν.

Proof. Note that, if µs(M) > 0, then the singular part

− 1

m − 1

∫
M

σm−1 dµs + Hm(∞)µs(M)

in (3.5) is positive for m < 1 (since σ > 0 on M) and infinity for m > 1, respectively.
Hence it is sufficient to consider the absolutely continuous part. As the function em(t) =
(tm − t)/(m − 1) is strictly convex on (0,∞), we have

em(ρ) − em(σ) − e′m(σ)(ρ − σ) ≥ 0

in (3.5) and equality holds if and only if ρ = σ. Therefore Hm(µ|ν) ≥ 0 and equality
holds if and only if µs(M) = 0 and ρ = σ ω-a.e.. 2

The following lemma will be used in Section 7 (Claim 7.7) where M is assumed to be
compact. This also guarantees the validity of the definition of Hm(∞).

Lemma 3.4 Let (M, g) be compact. Then the entropy Hm(·|ν) is lower semi-continuous
with respect to the weak topology, that is to say, if a sequence {µi}i∈N ⊂ P(M) weakly
converges to µ ∈ P(M), then we have

Hm(µ|ν) ≤ lim inf
i→∞

Hm(µi|ν).

Proof. We divide Hm(µ|ν) − m−1
∫

M
σm dω into two parts:

h1(µ) :=
1

m(m − 1)

∫
M

ρm dω + Hm(∞)µs(M), h2(µ) := − 1

m − 1

∫
M

σm−1 dµ.

Then h2(µ) is clearly continuous in µ (since M is compact). In addition, the lower
semi-continuity of h1(µ) follows from [LV2, Theorem B.33] since the function Um(t) :=
tm/m(m − 1) is continuous, convex and satisfies Um(0) = 0 as well as limt→∞ Um(t)/t =
Hm(∞). 2
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4 Displacement convexity

In this section, we prove our first main theorem on a characterization of the displacement
convexity of Hm(·|ν) along the lines of [CMS], [vRS], [St1] and [St3].

In [St1], Sturm considered a more general class of entropies (or free energies) on
unweighted Riemannian manifolds. Then his [St1, Theorem 1.3] includes the equivalence
between (A) and (B) in Theorem 4.1 below (with ω = volg, see also [St1, Remark 1.1]).
To be precise, in his theorem, the condition (A) is written as

U ′(r) Ric(v) + Hess Ψ(v, v) ≥ K

for all r ∈ R and unit vectors v ∈ TM , where U(r) = e(m−1)r/m(m − 1) (one more
condition U ′′(r) + U ′(r)/n ≥ 0 corresponds to m ≥ (n − 1)/n, see Remark 4.3(1)).
Thus Theorem 4.1 can be regarded as the combination of [St1, Theorem 1.3] and the
equivalence between RicN ≥ K and CD(K,N) (for (M,ω), see [St3, Theorem 1.7], [LV1,
Theorem 4.22]). Our proof is also in a sense the combination of them. Recall from (2.3)
that M0 = M for m < 1, M0 = Ψ−1((−∞, 1/(m − 1))) for m > 1, and that M0 = supp ν
in both cases.

Theorem 4.1 Let (M,ω, ν) and m ∈ [(n−1)/n, 1)∪ (1,∞) with σ ∈ Lm(M,ω) be given.
Then, for K ∈ R, the following three conditions are mutually equivalent:

(A) We have RicN ≥ 0 on M0 with N = 1/(1 − m) as well as Hess Ψ ≥ K on M0 in the
sense of Definition 2.3.

(B) For any µ0, µ1 ∈ P2
ac(M0, ω) such that any two points x0 ∈ supp µ0, x1 ∈ supp µ1

are joined by some geodesic contained in M0, there is a minimal geodesic (µt)t∈[0,1] ⊂
P2

ac(M0, ω) along which we have

Hm(µt|ν) ≤ (1 − t)Hm(µ0|ν) + tHm(µ1|ν) − K

2
(1 − t)tW2(µ0, µ1)

2 (4.1)

for all t ∈ [0, 1].

(C) For any µ0, µ1 ∈ P2(M0) such that any two points x0 ∈ supp µ0, x1 ∈ supp µ1 are
joined by some geodesic contained in M0, there is a minimal geodesic (µt)t∈[0,1] ⊂
P2(M0) along which we have (4.1) for all t ∈ [0, 1].

Proof. Note that (C) ⇒ (B) is clear. Thus it suffices to show (A) ⇒ (C) and (B) ⇒
(A). As the general case of the part (A) ⇒ (C) is somewhat technical, let us begin with
absolutely continuous measures, in other words, (A) ⇒ (B).

(A) ⇒ (B): Since the assertion (4.1) is clear if Hm(µ0|ν) = ∞ or Hm(µ1|ν) = ∞,
we assume that both Hm(µ0|ν) and Hm(µ1|ν) are finite. Theorem 2.9 ensures that there
is an almost everywhere twice differentiable function ϕ : M −→ R such that the map
Tt(x) := expx(t∇ϕ(x)) gives the unique minimal geodesic µt := (Tt)]µ0 from µ0 to µ1.
Due to [CMS, Proposition 4.1], T1(x) is not a cut point of x for µ0-a.e. x, and hence
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the minimal geodesic (Tt(x))t∈[0,1] is unique and contained in M0. Recall that, putting
µt = ρtω,

Hm(µt|ν) =
1

m(m − 1)

∫
M

(ρm−1
t − mσm−1) dµt +

1

m

∫
M

σm dω.

By the Jacobian equation (Theorem 2.10), we deduce that∫
M

(ρm−1
t − mσm−1) dµt =

∫
M

{ρt(Tt)
m−1 − mσ(Tt)

m−1} dµ0

=

∫
M

{(
Jω

t

ρ0

)1−m

− mσ(Tt)
m−1

}
dµ0,

where Jω
t (x) := eψ(x)−ψ(Tt(x))det(DTt(x)) > 0 µ0-a.e..

Claim 4.2 For µ0-a.e. x ∈ M , the function Jω
t (x)1−m/(m − 1) = −NJω

t (x)1/N is convex
in t.

Proof. For m < 1 (and hence N ≥ n), this is proved in [St3, Theorem 1.7] (see also
[Oh2, Section 8.2]). We can apply the same calculation to m > 1 (and N < 0). For
completeness, we briefly explain how to modify calculations in [Oh2]. With the notations
in [Oh2, Section 8.2], we observe that RicN ≥ 0 implies (N − 1)h′′

3h
−1
3 ≤ 0. Thus h3 is

convex and eβ is concave, therefore

{e−ψ(x)Jω
t (x)}1/N = h(t) = (eβ(t))1/Nh3(t)

(N−1)/N

is convex in t (via the Hölder inequality

(a + b)1/N(c + d)(N−1)/N ≤ a1/Nc(N−1)/N + b1/Nd(N−1)/N

for a, b > 0 and c, d ≥ 0). ♦

In order to estimate the term σ(Tt)
m−1/(1 − m), we observe from Hess Ψ ≥ K that

σ(Tt)
m−1

1 − m
=

1

1 − m
+ Ψ(Tt)

≤ 1

1 − m
+ (1 − t)Ψ(T0) + tΨ(T1) −

K

2
(1 − t)td(T0, T1)

2

= (1 − t)
σ(T0)

m−1

1 − m
+ t

σ(T1)
m−1

1 − m
− K

2
(1 − t)td(T0, T1)

2.

Combining this with Claim 4.2 and integrating with µ0 yield the desired inequality (4.1).
(A) ⇒ (C): We next consider the more technical case where µ0 or µ1 has nontrivial sin-

gular part. There is nothing to prove for m > 1. For m < 1, we decompose as µ0 = ρ0ω+µs
0

and µ1 = ρ1ω+µs
1, and take an optimal coupling π of µ0 and µ1. Now, π is decomposed into

four parts π = πaa+πas+πsa+πss such that (p1)](πaa), (p1)](πas), (p2)](πaa) and (p2)](πsa)
are absolutely continuous, and that (p1)](πsa), (p1)](πss), (p2)](πas) and (p2)](πss) are sin-
gular (or null) measures. Here p1, p2 : M × M −→ M denote projections to the first and
second elements.
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We divide optimal transport between µ0 and µ1 into two parts, corresponding to π−πss

and πss. As for µ̂0 := (p1)](π−πss) and µ̂1 := (p2)](π−πss), Theorems 2.9, 2.10 are again
applicable and give a minimal geodesic µ̂t = ρ̂tω ∈ (1 − πss(M × M)) · P2

ac(M0, ω) (i.e.,
µ̂t(M) = 1 − πss(M × M)) satisfying∫

M

ρ̂m
t dω ≥ (1 − t)

∫
M

ρm
0 dω + t

∫
M

ρm
1 dω,∫

M

σm−1 dµ̂t ≤ (1 − t)

∫
M

σm−1 dµ̂0 + t

∫
M

σm−1 dµ̂1

− (1 − m)K

2
(1 − t)t

∫
M×M

d(x, y)2 d(π − πss)(x, y).

We then choose an arbitrary minimal geodesic µ̃t = ρ̃tω+ µ̃s
t ∈ πss(M ×M) ·P2(M0) from

µ̃0 := (p1)](πss) to µ̃1 := (p2)](πss). Thanks to Proposition 2.7, µ̃t is also realized through
a family of geodesics in M0, and hence Hess Ψ ≥ K implies∫

M

σm−1 dµ̃t ≤ (1 − t)

∫
M

σm−1 dµ̃0 + t

∫
M

σm−1 dµ̃1

− (1 − m)K

2
(1 − t)t

∫
M×M

d(x, y)2 dπss(x, y).

We put µt := µ̂t + µ̃t and conclude that

Hm(µt|ν) =
1

m(m − 1)

∫
M

{(ρ̂t + ρ̃t)
m + (m − 1)σm} dω +

1

1 − m

∫
M

σm−1 dµt

≤ 1

m(m − 1)

∫
M

{ρ̂m
t + (m − 1)σm} dω +

1

1 − m

∫
M

σm−1 d(µ̂t + µ̃t)

≤ (1 − t)Hm(µ0|ν) + tHm(µ1|ν) − K

2
(1 − t)tW2(µ0, µ1)

2.

(B) ⇒ (A): By approximation, it suffices to show RicN ≥ 0 and Hess Ψ ≥ K on M0.
We first consider the case of m < 1. Fix a unit vector v ∈ TxM with x ∈ M0 and put
γ(t) := expx(tv), B± := B(γ(±δ), (1 ∓ aδ)ε) for 0 < ε ¿ δ ¿ 1 with a constant a ∈ R
chosen later. Set

µ0 = ρ0ω :=
χB−

ω(B−)
ω, µ1 = ρ1ω :=

χB+

ω(B+)
ω, (4.2)

where χA stands for the characteristic function of a set A. Let µt = (Tt)]µ0 be the unique
optimal transport from µ0 to µ1. Recall that

Hm(µt|ν) − 1

m

∫
M

σm dω =
1

m(m − 1)

∫
M

{ρm−1
0 (Jω

t )1−m − mσ(Tt)
m−1} dµ0, (4.3)

where Jω
t = eψ−ψ(Tt)det(DTt). By definition, we find

ρm−1
0 = {cne−ψ(γ(−δ))(1 + aδ)nεn + O(εn+1)}1−mχB− ,
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where cn denotes the volume of the unit ball in Rn. Note also that∫
M

(Jω
t )1−m dµ0 ≤

( ∫
M

Jω
t dµ0

)1−m

=

(
ω(supp µt)

ω(B−)

)1−m

. (4.4)

As the (second order) behavior of the distance function is controlled by the sectional
curvature, we have

supp µ1/2 ⊂ expx

( n∑
i=1

ai
∂

∂xi
∈ TxM

∣∣∣∣
√√√√ n∑

i=1

(
ai

εi

)2

≤ 1

)
,

εi :=

(
1 +

ki

2
δ2 + O(δ3)

)
ε,

where we chose a coordinate (xi)n
i=1 around x such that {(∂/∂xi)|x}n

i=1 is orthonormal and
that (∂/∂x1)|x = γ̇(0), and denote by ki the sectional curvature of the plane spanned by
γ̇(0) and (∂/∂xi)|x (so that k1 = 0) (see the proof of [vRS, Theorem 1]). Thus we observe
from Ric(v) =

∑n
i=1 ki that

lim sup
ε→0

ω(supp µ1/2)

cnεn
= e−ψ(x) lim sup

ε→0

volg(supp µ1/2)

cnεn

≤ e−ψ(x)

{
1 +

1

2
Ric(v)δ2 + O(δ3)

}
. (4.5)

We similarly observe that ω(supp µt)/cnεn is uniformly bounded as ε → 0. Hence, since
1 − m > 0, the leading term of (4.3) (as ε → 0) is

1

1 − m

∫
M

σ(Tt)
m−1 dµ0.

Thus we obtain from (4.1) with t = 1/2 that, by letting ε go to zero,

σ
(
γ(0)

)m−1 ≤ σ(γ(−δ))m−1 + σ(γ(δ))m−1

2
− (1 − m)

K

8
(2δ)2.

This means that

Hess Ψ =
1

1 − m
Hess(σm−1) ≥ K

in the weak sense.
In order to show RicN(v) ≥ 0, we choose a point y with d(x, y) À δ and modify µ0

and µ1 into

µ̃i := (1 − εn+1)
χB(y,δ)

ω(B(y, δ))
ω + εn+1µi (4.6)

for i = 0, 1. Then W2(µ̃0, µ̃1) = ε(n+1)/2 · W2(µ0, µ1) and

µ̃t := (1 − εn+1)
χB(y,δ)

ω(B(y, δ))
ω + εn+1µt
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is the unique minimal geodesic from µ̃0 to µ̃1, so that (4.3) is modified into

Hm(µ̃t|ν) − 1

m

∫
M

σm dω

=
εn+1

m(m − 1)

∫
M

{(εn+1ρ0)
m−1(Jω

t )1−m − mσ(Tt)
m−1} dµ0

+
1

m(m − 1)

1 − εn+1

ω(B(y, δ))

∫
B(y,δ)

{(
1 − εn+1

ω(B(y, δ))

)m−1

− mσm−1

}
dω.

We rewrite this as

Hm(µ̃t|ν) − 1

m

∫
M

σm dω

− 1 − εn+1

m(m − 1)

{(
1 − εn+1

ω(B(y, δ))

)m−1

− m

ω(B(y, δ))

∫
B(y,δ)

σm−1 dω

}
=

εn+1

m(m − 1)

∫
M

{(εn+1ρ0)
m−1(Jω

t )1−m − mσ(Tt)
m−1} dµ0. (4.7)

Since (εn+1ρ0)
m−1 = {cne

−ψ(γ(−δ))(1 + aδ)nε−1 + O(1)}1−mχB− , the leading term of (4.7)
(as ε → 0) is

εm(n+1)

m(m − 1)

∫
M

ρm−1
0 (Jω

t )1−m dµ0.

Therefore (4.1) with t = 1/2 and the Jacobian equation (Theorem 2.10) yield that

lim inf
ε→0

∫
M

(Jω
1/2)

1−m dµ0 ≥
1

2

{
Jω

0

(
γ(−δ)

)1−m
+ Jω

1

(
γ(−δ)

)1−m}
=

1

2

{
1 +

(
1 − aδ

1 + aδ

)n/N

e{ψ(γ(−δ))−ψ(γ(δ))}/N
}

.

Combining this with (4.4) and (4.5), we obtain

1 +
1

2
Ric(v)δ2

≥ (1 + aδ)neψ(x)−ψ(γ(−δ))

( ∫
M

(Jω
t )1−m dµ0

)1/(1−m)

+ O(δ3)

≥ 1

2N

{
(1 + aδ)n/Ne{ψ(x)−ψ(γ(−δ))}/N + (1 − aδ)n/Ne{ψ(x)−ψ(γ(δ))}/N

}N

+ O(δ3).

Hence we have, expanding the (1/N)-th power of both sides near δ = 0,

1 +
1

2N
Ric(v)δ2

≥ 1

2

{
(1 + aδ)n/Ne{ψ(x)−ψ(γ(−δ))}/N + (1 − aδ)n/Ne{ψ(x)−ψ(γ(δ))}/N

}
+ O(δ3)

= 1 +
δ2

2

[
n

N

(
n

N
− 1

)
a2 −

{
(ψ ◦ γ)′′(0)

N
− (ψ ◦ γ)′(0)2

N2

}
+

2na

N

(ψ ◦ γ)′(0)

N

]
+ O(δ3)

= 1 +
δ2

2N

{
− (ψ ◦ γ)′′(0) +

n(n − N)

N
a2 +

2n(ψ ◦ γ)′(0)

N
a +

(ψ ◦ γ)′(0)2

N

}
+ O(δ3).
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Therefore we obtain

Ric(v) + (ψ ◦ γ)′′(0) − n(n − N)

N
a2 − 2n(ψ ◦ γ)′(0)

N
a − (ψ ◦ γ)′(0)2

N
≥ 0. (4.8)

If N > n, then choosing the minimizer a = (ψ ◦γ)′(0)/(N −n) gives the desired curvature
bound

RicN(v) = Ric(v) + (ψ ◦ γ)′′(0) − (ψ ◦ γ)′(0)2

N − n
≥ 0.

If N = n, then we consider a going to ∞ or −∞ and find (ψ ◦ γ)′(0) = 0 as well as
Ricn(v) ≥ 0.

In the case of m > 1, we use the same transport (4.2) and then the leading term of
(4.3) changes into

1

m(m − 1)

∫
M

ρm−1
0 (Jω

t )1−m dµ0.

Thus calculations as above yield the reverse inequality of (4.4) and finally (4.8) with
N < 0. We again choose the minimizer a = (ψ ◦ γ)′(0)/(N − n) and find RicN(v) ≥ 0.
Similarly, for the transport (4.6), the leading term of (4.7) is

εn+1

1 − m

∫
M

σ(Tt)
m−1 dµ0,

and then (4.1) yields Hess Ψ = Hess(σm−1/(1 − m)) ≥ K (note that W2(µ̃0, µ̃1)
2 =

εn+1W2(µ0, µ1)
2 has the same order). 2

Remark 4.3 (1) If we admit m ∈ (0, (n−1)/n) and generalize RicN in (2.1) to N ∈ (1, n),
then Claim 4.2 is false. Moreover, as the coefficient of a2 in (4.8) is negative, (4.1) is never
satisfied (let a → ∞). Compare this with [St1, (1.7)] which means m ≥ (n − 1)/n in our
setting.

(2) Note that the special case ν = ω (i.e., Ψ ≡ 0) in Theorem 4.1 makes sense only for
K = 0. Then the assertion of Theorem 4.1 corresponds to the equivalence between RicN ≥
0 and the convexity of the Rényi entropy SN , i.e., the curvature-dimension condition
CD(0, N) of (M,ω).

(3) In the limit case of m = 1, two weights ψ and Ψ are synchronized as ν = e−ψ−Ψ volg,
and Hess Entν ≥ K (i.e., CD(K,∞) for (M, ν)) is equivalent to the single condition
Ric + Hess(ψ +Ψ) ≥ K ([vRS, Theorem 1], [St2, Proposition 4.14]). For m 6= 1, however,
ψ and Ψ keep separate and they measure different phases of (M,ω, ν), as indicated in
Theorem 4.1.

5 Functional inequalities

Since Otto and Villani’s celebrated work [OV], the displacement convexity of entropy-type
functionals has played a significant role in the study of functional inequalities (and the
concentration of measures). In this section, we follow the argument in [LV2, Section 6]
that the direct application of the displacement convexity of the entropy implies various
functional inequalities. Our proofs use only fundamental properties of convex functions.
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In more analytic context, related results for m 6= 1 in the Euclidean spaces (M,ω) =
(Rn, dx) can be found in [AGK], [CGH] and [Ta2]. See especially [AGK, Section 4]
and [CGH, Section 3] for various generalizations of the Talagrand (transport) inequality,
logarithmic Sobolev (entropy-information) inequality, HWI inequality and the Poincaré
inequality. The relation among these inequalities are also discussed there.

Throughout the section, we suppose that m > 1/2, RicN ≥ 0 and that Hess Ψ ≥ K
holds for some K > 0. Note that m > 1/2 is clear if n ≥ 3. Recall from Lemma 2.5(i), (iii)
that ν(M) < ∞ automatically follows from these hypotheses, so that the normalization
gives

ν̄ = σ̄ω = expm(−Ψ)ω := ν(M)−1ν ∈ Pac(M,ω)

with Hess Ψ ≥ ν(M)1−mK according to Remark 2.4. Lemma 2.5 moreover ensures that
σ̄ ∈ Lm(M,ω), ν̄ ∈ P2

ac(M,ω) and that M0 is convex. Keeping these in mind, we will
consider ν with ν(M) = 1 for simplicity.

Proposition 5.1 (Talagrand inequality) Assume that m ∈ [(n − 1)/n,∞) \ {1/2, 1},
ν(M) = 1, RicN ≥ 0 and Hess Ψ ≥ K > 0. Then we have, for any µ ∈ P2(M0),

W2(µ, ν) ≤
√

2

K
Hm(µ|ν).

Proof. There is nothing to prove if Hm(µ|ν) = ∞, so that we assume Hm(µ|ν) < ∞.
Let (µt)t∈[0,1] ⊂ P2(M0) be the optimal transport from µ0 = µ to µ1 = ν. It follows from
(4.1) and Hm(ν|ν) = 0 that

Hm(µt|ν) ≤ (1 − t)Hm(µ|ν) − K

2
(1 − t)tW2(µ, ν)2. (5.1)

Since Hm(µt|ν) ≥ 0 (Lemma 3.3), we obtain Hm(µ|ν) ≥ (K/2)W2(µ, ν)2 by dividing (5.1)
with 1 − t and letting t go to 1. 2

The above Talagrand inequality is regarded as a comparison between distances in
Wasserstein geometry and information geometry (recall Subsection 3.1).

In the remainder of the section, let Ψ be locally Lipschitz. For µ = ρω ∈ P2
ac(M,ω)

such that ρ is locally Lipschitz, we define the m-relative Fisher information by

Im(µ|ν) :=
1

m2

∫
M

∣∣∇[e′m(ρ) − e′m(σ)]
∣∣2ρ dω =

1

(m − 1)2

∫
M

∣∣∇(ρm−1 − σm−1)
∣∣2 dµ. (5.2)

It will be demonstrated in Proposition 7.10 that
√

Im(µ|ν) is the absolute gradient of
Hm(·|ν) at µ. Thus it is natural to expect that the convexity of Hm(·|ν) yields the
following inequality.

Theorem 5.2 (HWI and Logarithmic Sobolev inequalities) We assume that m ∈
[(n − 1)/n,∞) \ {1/2, 1}, ν(M) = 1, RicN ≥ 0, Hess Ψ ≥ K > 0 and that Ψ is locally
Lipschitz. Then we have, for any µ = ρω ∈ P2

ac(M0, ω) such that Hm(µ|ν) < ∞ and ρ is
Lipschitz,

Hm(µ|ν) ≤
√

Im(µ|ν) · W2(µ, ν) − K

2
W2(µ, ν)2, (5.3)

Hm(µ|ν) ≤ 1

2K
Im(µ|ν). (5.4)
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Proof. Let µt = ρtω ∈ P2
ac(M0, ω), t ∈ [0, 1], be the optimal transport from µ0 = µ to

µ1 = ν given by µt = (Tt)]µ with Tt(x) = expx(t∇ϕ(x)), and put H(t) := Hm(µt|ν). Then
it follows from (5.1) that

H(0) ≤ H(0) − H(t)

t
− K

2
(1 − t)W2(µ, ν)2. (5.5)

We shall estimate the term

H(0) − H(t) =
1

m(m − 1)

∫
M

{(ρm − ρm
t ) − m(ρ − ρt)σ

m−1} dω.

Since the function f(s) := sm/(m − 1) is convex, we have

ρm − ρm
t

m − 1
≤ f ′(ρ)(ρ − ρt) =

m

m − 1
ρm−1(ρ − ρt),

and hence

H(0) − H(t) ≤ 1

m − 1

∫
M

(ρm−1 − σm−1)(ρ − ρt) dω.

As (Tt)]µ = µt, we observe∫
M

(ρm−1 − σm−1)ρt dω =

∫
M

{ρ(Tt)
m−1 − σ(Tt)

m−1} dµ.

This yields

H(0) − H(t) ≤ 1

m − 1

∫
M

{
(ρm−1 − σm−1) −

(
ρ(Tt)

m−1 − σ(Tt)
m−1

)}
dµ.

Thus we obtain

lim sup
t→0

H(0) − H(t)

t
≤ 1

|m − 1|

∫
M

|∇(ρm−1 − σm−1)| · d(T0, T1) dµ

≤ 1

|m − 1|

( ∫
M

|∇(ρm−1 − σm−1)|2 dµ

)1/2( ∫
M

d(T0, T1)
2 dµ

)1/2

=
√

Im(µ|ν) · W2(µ, ν).

Combining this with (5.5), we conclude that

Hm(µ|ν) ≤
√

Im(µ|ν) · W2(µ, ν) − K

2
W2(µ, ν)2 ≤ 1

2K
Im(µ|ν).

2

Remark 5.3 It is established in [Ta2] that, in the Euclidean space (M,ω) = (Rn, dx),
equality of (5.3) and (5.4) is characterized by using m-Gaussian measures.

We finally show a kind of Poincaré inequality. Observe that letting m = 1 recovers
the usual global Poincaré inequality

∫
M

f 2 dν ≤ K−1
∫

M
|∇f |2 dν.
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Proposition 5.4 (Global Poincaré inequality) Assume that (M, g) is compact, m ∈
[(n − 1)/n,∞) \ {1/2, 1}, ν(M) = 1, RicN ≥ 0, Hess Ψ ≥ K > 0 and that Ψ is Lipschitz.
Then, for any Lipschitz function f : M0 −→ R such that

∫
M0

f dν = 0, we have∫
M

f 2σm−1 dν ≤ 1

K

∫
M

|∇(fσm−1)|2 dν.

Proof. Apply (5.4) to µ = ρω := (1 + εf)σω for small ε > 0 and obtain

1

m(m − 1)

∫
M

{ρm − mρσm−1 + (m − 1)σm} dω ≤ 1

2K

1

(m − 1)2

∫
M

|∇(ρm−1 − σm−1)|2 dµ.

We remark that Hm(µ|ν) < ∞ as M is compact. On the one hand,

ρm − mρσm−1 + (m − 1)σm = (1 + εf)mσm − m(1 + εf)σm + (m − 1)σm

= σm{(1 + εf)m − 1 − m(εf)}

= m(m − 1)σm f 2

2
ε2 + O(ε3),

where O(ε3) is uniform on M thanks to the compactness of M . On the other hand,

|∇(ρm−1 − σm−1)|2 =
∣∣∇[(

(1 + εf)m−1 − 1
)
σm−1

]∣∣2
= |∇[(m − 1)fεσm−1] + O(ε2)|2

= (m − 1)2ε2|∇(fσm−1)|2 + O(ε3).

Thus we have, letting ε go to zero,∫
M

f 2σm dω ≤ 1

K

∫
M

|∇(fσm−1)|2 dν.

2

6 Concentration of measures

This section is devoted to an application of Proposition 5.1 to the concentration of mea-
sures. Let us assume ν(M) = 1 and define the concentration function by

α(M,ν)(r) := sup
{
1 − ν

(
B(A, r)

)
|A ⊂ M, ν(A) ≥ 1/2

}
for r > 0, where A is any measurable set and

B(A, r) := {y ∈ M | inf
x∈A

d(x, y) < r}.

The function α(M,ν) describes how the probability measure ν concentrates on the neigh-
borhood of an arbitrary set of half the total measure in a quantitative way (in other
words, a kind of large deviation principle). An especially interesting situation is that
a sequence {(Mi, νi)}i∈N satisfies limi→∞ α(Mi,νi)(r) = 0 for all r > 0, that means that
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(Mi, νi) is getting more and more concentrated. We refer to [Le] for the basic theory and
applications of the concentration of measure phenomenon.

In the classical case of m = 1, it is well-known that the concentration of measures
has rich connections with functional inequalities appearing in Section 5. For instance, the
L1-transport inequality W1(µ, ν) ≤

√
(2/K) Entν(µ) implies the normal concentration

α(r) ≤ Ce−cr2
with constants c, C > 0 depending only on K ([Le, Section 6.1]). In

the same spirit, we show that an application of Proposition 5.1 gives new examples of
concentrating spaces.

We set Gc = Gc(ν) :=
∫

M
σc dω for c > 1/2. Recall from Lemma 2.5(i) that, if m < 1,

RicN ≥ 0 and if Hess Ψ ≥ K > 0, then

Gc(ν) ≤ C1(ω)1−cν(M)c + C2(m, c, ω)Kc/(m−1) < ∞ (6.1)

holds for each c ∈ (1/2, 1].

Theorem 6.1 (m < 1 case) Let (M,ω) satisfy RicN ≥ 0 and m ∈ [(n − 1)/n, 1) ∩
(1/2, 1).

(i) Assume that ν(M) = 1 and Hess Ψ ≥ K > 0. Then we have

α(M,ν)(r)
θ−m lnm

(
2α(M,ν)(r)

)
≤ −Gθ−1

(m−θ)/(1−θ)

{(√
mK

2
r −

√
Gm

)2

− Gm

}
(6.2)

for all r > 0 and θ ∈ [0, 2m − 1).

(ii) Take a sequence νi = expm(−Ψi)ω ∈ Pac(M,ω), i ∈ N, such that Hess Ψi ≥ Ki and
limi→∞ Ki = ∞. Then we have limi→∞ α(M,νi)(r) = 0 for all r > 0.

Proof. (i) Note that ν ∈ P2
ac(M,ω) by Lemma 2.5(ii) and m > 1/2. We also remark that

(6.2) clearly holds for r ≤ 2
√

2Gm/mK. Indeed, then the right-hand side is nonnegative
and the trivial bound α(M,ν)(r) ≤ 1/2 implies lnm(2α(M,ν)(r)) ≤ 0.

Suppose r > 2
√

2Gm/mK, take a measurable set A ⊂ M with ν(A) ≥ 1/2 and put
B := M \ B(A, r), a := ν(A), b := ν(B),

µA :=
χA

a
ν, µB :=

χB

b
ν.

We assumed b > 0 since there is nothing to prove if b = 0 for all such A. Observe that
W1(µA, µB) ≥ r as d(x, y) ≥ r for all x ∈ A and y ∈ B. The triangle inequality of W1

and Proposition 5.1 together imply (as W1 ≤ W2 by the Schwarz inequality)

r ≤ W1(µA, µB) ≤ W1(µA, ν) + W1(ν, µB) ≤
√

2

K
Hm(µA|ν) +

√
2

K
Hm(µB|ν).

Note that

Hm(µA|ν) =
1

m(1 − m)

∫
A

mam−1 − 1

am
σm dω +

1

m
Gm
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and mam−1 − 1 < 0 since a ≥ 1/2 > m1/(1−m). Thus we obtain√
mK

2
r ≤

√
Gm +

√
Gm + b−m

mbm−1 − 1

1 − m

∫
B

σm dω.

We observe from r > 2
√

2Gm/mK that
√

mK/2r > 2
√

Gm which yields 0 < mbm−1−1 <
(2b)m−1 − 1. Hence we have(√

mK

2
r −

√
Gm

)2

− Gm ≤ −b−m lnm(2b)

∫
B

σm dω. (6.3)

It follows from the Hölder inequality that∫
B

σm dω =

∫
B

σθ+(m−θ) dω ≤
( ∫

B

σ dω

)θ( ∫
B

σ(m−θ)/(1−θ) dω

)1−θ

≤ bθG1−θ
(m−θ)/(1−θ),

where the assumption θ < 2m−1 ensures (m−θ)/(1−θ) > 1/2. Therefore we obtain the
desired inequality (6.2) by choosing Ai ⊂ M such that limi→∞ ν(M \B(Ai, r)) = α(M,ν)(r).

(ii) Thanks to (6.1), we know that

lim sup
i→∞

Gc(νi) ≤ C1(ω)1−c < ∞

for all c ∈ (1/2, 1]. Therefore we deduce from (i) with θ = 0 that, setting αi := α(M,νi)(r),

−∞ = lim
i→∞

α−m
i lnm(2αi) = − lim

i→∞

α−1
i

21−m

1 − (2αi)
1−m

1 − m

which shows limi→∞ αi = 0. 2

Remark 6.2 (1) Taking the proof of Lemma 2.5(i) into account, we can generalize The-
orem 6.1(ii) as follows. Suppose that a sequence {(Mi, ωi, νi)}i∈N satisfies, for m ∈
[(n − 1)/n, 1) ∩ (1/2, 1),

(a) RicN ≥ 0 for all (Mi, ωi),

(b) νi = expm(−Ψi)ωi ∈ Pac(Mi, ωi) so that Hess Ψi ≥ Ki and limi→∞ Ki = ∞,

(c) supi∈N ωi(B(xi, R)) < ∞ and supi∈N areaωi
(S(xi, R)) < ∞ for some R > 0, where

xi ∈ Mi is the minimizer of Ψi.

Then we have limi→∞ α(Mi,νi)(r) = 0 for all r > 0.
(2) Taking the limit of (6.2) as m → 1 and then θ → 1, we obtain

ln
(
2α(r)

)
≤ −

(√
K

2
r − 1

)2

+ 1.

Here limc→1 Gc = G1 = 1 follows from the dominated convergence theorem since σc ≤
max{σ, σc0} ∈ L1(M,ω) for 1/2 < c0 ≤ c < 1. Therefore we recover the normal concen-
tration

α(r) ≤ 1

2
exp

[
−

(√
K

2
r − 1

)2

+ 1

]
≤ 1

2
e−Kr2/4+2

which is well-known to hold for (M,ω) with Ric∞ ≥ K > 0.
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Theorem 6.1(ii) is applicable to the fundamental example of m-Gaussian measures
(see Example 2.6).

Example 6.3 Let {Nm(vi, Vi)}i∈N ⊂ P2
ac(Rn, dx) be a sequence of m-Gaussian measures

with m ∈ [(n − 1)/n, 1) ∩ (1/2, 1) satisfying

lim
i→∞

(detVi)
(1−m)/2Λ−1

i = ∞,

where Λi is the largest eigenvalue of Vi. Then we have limi→∞ α(Rn,Nm(vi,Vi))(r) = 0 for all

r > 0. Note that (detVi)
(1−m)/2Λ−1

i ≤ Λ
(1−m)n/2−1
i ≤ Λ

−1/2
i .

Under the additional assumption that ω(M) < ∞, we further obtain the m-normal
concentration. We first prove a computational lemma for later use.

Lemma 6.4 (i) For any m ∈ (1/2, 1) and a, r > 0, we have

expm

(
− (ar − 1)2 + 1

)
≤ (2m − 1)1/(m−1) expm

(
− a2

2
r2

)
.

(ii) For any m ∈ (1, 2) and a, r > 0, we have

expm

(
(ar − 1)2 − 1

)
≥

(
2

m
− 1

)1/(m−1)

expm

(
a2

2
r2

)
.

Proof. (i) We just calculate

expm

(
− (ar − 1)2 + 1

)
≤ expm

(
− a2

2
r2 + 2

)
=

{
1 + (m − 1)

(
− a2

2
r2 + 2

)}1/(m−1)

= (2m − 1)1/(m−1)

{
1 + (m − 1)

(
− a2

2(2m − 1)
r2

)}1/(m−1)

≤ (2m − 1)1/(m−1) expm

(
− a2

2
r2

)
.

(ii) We similarly find

expm

(
(ar − 1)2 − 1

)
≥ expm

[(
1 − m

2

)
a2r2 − 2

m

]
=

{(
2 − m

m

)
+ (m − 1)

(
1 − m

2

)
a2r2

}1/(m−1)

=

(
2

m
− 1

)1/(m−1){
1 +

m

2
(m − 1)a2r2

}1/(m−1)

≥
(

2

m
− 1

)1/(m−1)

expm

(
a2

2
r2

)
.
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Note that the hypothesis m ∈ (1, 2) ensures that(
1 − m

2

)
a2r2 − 2

m
> − 2

m
> − 1

m − 1
.

2

Corollary 6.5 (m-normal concentration) Assume that m ∈ [(n − 1)/n, 1) ∩ (1/2, 1),
ν(M) = 1, ω(M) < ∞, RicN ≥ 0 and Hess Ψ ≥ K > 0. Then we have

α(M,ν)(r) ≤
(2m − 1)1/(m−1)

2
expm

(
− mK

4ω(M)1−m
r2

)
for all r > 0.

Proof. Let us use the same notation as the proof of Theorem 6.1. We deduce from the
Hölder inequality that∫

B

σm dω ≤
( ∫

B

σ dω

)m

ω(B)1−m = bmω(B)1−m ≤ bmω(M)1−m

and, similarly, Gm ≤ ω(M)1−m. In particular, r2 > 8ω(M)1−m/mK (otherwise the
assertion is clear since (2m − 1)1/(m−1) expm(−2) > 1) implies r2 > 8Gm/mK. Therefore
we deduce from (6.3) that(√

mK

2
r − ω(M)(1−m)/2

)2

− ω(M)1−m ≤
(√

mK

2
r −

√
Gm

)2

− Gm

≤ −b−m lnm(2b)

∫
B

σm dω ≤ −ω(M)1−m lnm(2b),

and hence

α(M,ν)(r) ≤
1

2
expm

[
−

(
ω(M)(m−1)/2

√
mK

2
r − 1

)2

+ 1

]
.

Then Lemma 6.4(i) completes the proof. 2

Remark 6.6 Note that, for m < 1, expm(−cr2) is greater than e−cr2
and is a polynomial

of r, so that the m-normal concentration is weaker than the exponential concentration
α(r) ≤ Ce−cr. This is natural and the most we can expect, because the m-Gaussian
measures have only the polynomial decay.

For m > 1, Lemma 2.5(iii) ensures that supp ν is bounded. Thus ‖σ‖∞ < ∞ and
Gc(ν) < ∞ for all c > 0. Then the proof of Theorem 6.1(i) is applicable to m ∈ (1, 2]
and gives the same estimate (6.2) for all r > 0 and θ ∈ [0, 1). Furthermore, for m < 2,
we again obtain the m-normal concentration (depending on ‖σ‖∞).

Proposition 6.7 (m > 1 case) Let (M,ω) satisfy RicN ≥ 0 and m ∈ (1, 2].

(i) Assume that ν(M) = 1 and Hess Ψ ≥ K > 0. Then we have (6.2) for all r > 0 and
θ ∈ [0, 1).
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(ii) If in addition m < 2, then we have

α(M,ν)(r)
−1 ≥

(
2

m
− 1

)1/(m−1)

expm

(
mK‖σ‖1−m

∞
4

r2

)
for all r > 0.

Proof. (i) This is completely the same as Theorem 6.1(i), since 1/2 ≥ m1/(1−m) holds
also for m ∈ (1, 2].

(ii) In (6.3) (with m > 1), we observe
∫

B
σm dω ≤ b‖σ‖m−1

∞ and Gm ≤ ‖σ‖m−1
∞ . Note

also that r2 > 8‖σ‖m−1
∞ /mK (otherwise ((2 − m)/m)1/(m−1) expm(2) < 1 immediately

gives the assertion) ensures r2 > 8Gm/mK. These yield(√
mK

2
r − ‖σ‖(m−1)/2

∞

)2

− ‖σ‖m−1
∞ ≤ −b1−m‖σ‖m−1

∞ lnm(2b) ≤ ‖σ‖m−1
∞ lnm(b−1).

Hence we have

α(M,ν)(r)
−1 ≥ expm

[(
‖σ‖(1−m)/2

∞

√
mK

2
r − 1

)2

− 1

]
,

and Lemma 6.4(ii) completes the proof. 2

Note that we obtained the estimate of the form α(r) ≤ C expm(−cr2) for m < 1, while
α(r) ≤ C{expm(cr2)}−1 for m > 1. This is in a sense natural because the domain of expm

is (−∞, 1/(1 − m)) for m < 1 and [−1/(m − 1),∞) for m > 1.

Remark 6.8 We deduce from Proposition 6.7(ii) that, if limi→∞ Ki‖σi‖1−m
∞ = ∞ for

some sequence {(Mi, νi)}i∈N satisfying Hess Ψi ≥ Ki, then we have limi→∞ α(Mi,νi)(r) =
0 for all r > 0 (e.g., a sequence of m-Gaussian measures {Nm(vi, Vi)}i∈N such that
limi→∞ Λi = 0, compare this with Example 6.3). This is, however, an immediate con-
sequence of a stronger conclusion limi→∞ diam(supp νi) = 0 of Lemma 2.5(iii) (valid for
all m > 1). Indeed,

diam(supp νi)
2 ≤ 8

Ki

(
1

m − 1
− inf

Mi

Ψi

)
=

8

Ki

‖σi‖m−1
∞

m − 1
.

7 Gradient flow of Hm

In this section, we show that the gradient flow of the m-relative entropy produces a weak
solution to the porous medium equation (m > 1) or the fast diffusion equation (m < 1).
This kind of interpretation of evolution equations has turned out extremely useful after
the pioneering work due to Jordan et al. [JKO]. There are several ways of explaining this
coincidence (see, e.g., [JKO], [AGS] and [Vi2, Chapter 23]), among them, here we follow
the rather ‘metric geometric’ approach in [Oh1]. To do this, we start with a review of
the geometric structure of the Wasserstein space and the general theory of gradient flows
in it in accordance with the strategy in [Oh1] (see also [GO]). Throughout the section,
(M, g) is assumed to be compact, so that P2(M) = P(M) and σ ∈ Lm(M,ω).
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7.1 Geometric structure of (P(M),W2)

We briefly review the geometric structure of (P(M),W2). It is known that (P(M),W2) is
an Alexandrov space of nonnegative curvature if and only if (M, g) has the nonnegative
sectional curvature ([St2, Proposition 2.10], [LV2, Theorem A.8]). In the case where (M, g)
is not nonnegatively curved, although (P(M),W2) does not admit any lower curvature
bound ([St2, Proposition 2.10]), we can show the following (see also [Oh1, Theorem 3.6]).

Theorem 7.1 ([Gi, Theorem 3.4, Remark 3.5]) Given µ ∈ P(M) and unit speed geodesics
α, β : [0, δ) −→ P(M) with α(0) = β(0) = µ, the joint limit

lim
s,t→0

s2 + t2 − W2(α(s), β(t))2

2st
∈ [−1, 1]

exists.

Theorem 7.1 means that an angle between α and β makes sense, so that (P(M),W2)
looks like a Riemannian space (rather than a Finsler space), and we can investigate its
infinitesimal structure in the manner of the theory of Alexandrov spaces. For µ ∈ P(M),
denote by Σ′

µ[P(M)] the set of all (nontrivial) unit speed minimal geodesics emanating
from µ. Given α, β ∈ Σ′

µ[P(M)], Theorem 7.1 verifies that the angle

∠µ(α, β) := arccos

(
lim

s,t→0

s2 + t2 − W2(α(s), β(t))2

2st

)
∈ [0, π]

is well-defined. We define the space of directions (Σµ[P(M)], ∠µ) as the completion of
(Σ′

µ[P(M)]/∼,∠µ), where α ∼ β holds if ∠µ(α, β) = 0. The tangent cone (Cµ[P(M)], σµ)
is defined as the Euclidean cone over (Σµ[P(M)], ∠µ), i.e.,

Cµ[P(M)] :=
(
Σµ[P(M)] × [0,∞)

)/(
Σµ[P(M)] × {0}

)
,

σµ

(
(α, s), (β, t)

)
:=

√
s2 + t2 − 2st cos ∠µ(α, β).

Using this infinitesimal structure, we introduce a class of ‘differentiable curves’.

Definition 7.2 (Right differentiability) We say that a curve ξ : [0, l) −→ P(M) is
right differentiable at t ∈ [0, l) if there is v ∈ Cξ(t)[P(M)] such that, for any sequences
{εi}i∈N of positive numbers tending to zero and {αi}i∈N of unit speed minimal geodesics
from ξ(t) to ξ(t+εi), the sequence {(αi,W2(ξ(t), ξ(t+εi))/εi)}i∈N ⊂ Cξ(t)[P(M)] converges

to v. Such v is clearly unique if it exists, and then we write ξ̇(t) = v.

7.2 Gradient flows in (P(M),W2)

Consider a lower semi-continuous function f : P(M) −→ (−∞, +∞] which is K-convex
in the weak sense for some K ∈ R. We in addition suppose that f is not identically +∞,
and define P∗(M) := {µ ∈ P(M) | f(µ) < ∞}.

Given µ ∈ P∗(M) and α ∈ Σµ[P(M)], we set

Dµf(α) := lim inf
Σ′

µ[P(M)]3β→α
lim
t→0

f(β(t)) − f(µ)

t
.
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Define the absolute gradient (called the local slope in [AGS]) of f at µ ∈ P∗(M) by

|∇−f |(µ) := max

{
0, lim sup

µ̃→µ

f(µ) − f(µ̃)

W2(µ, µ̃)

}
.

Note that −Dµf(α) ≤ |∇−f |(µ) for any α ∈ Σµ[P(M)].

Lemma 7.3 ([Oh1, Lemma 4.2]) For each µ ∈ P∗(M) with 0 < |∇−f |(µ) < ∞, there
exists unique α ∈ Σµ[P∗(M)] satisfying Dµf(α) = −|∇−f |(µ).

Using α in the above lemma, we define the negative gradient vector of f at µ as

∇−f(µ) :=
(
α, |∇−f |(µ)

)
∈ Cµ[P(M)].

In the case of |∇−f |(µ) = 0, we simply define ∇−f(µ) as the origin of Cµ[P(M)].

Definition 7.4 (Gradient curves) A continuous curve ξ : [0, l) −→ P∗(M) which is
locally Lipschitz on (0, l) is called a gradient curve of f if |∇−f |(ξ(t)) < ∞ for all t ∈ (0,∞)
and if it is right differentiable with ξ̇(t) = ∇−f(ξ(t)) at all t ∈ (0, l). We say that a gradient
curve ξ is complete if it is defined on entire [0,∞).

Theorem 7.5 ([Oh1, Theorem 5.11, Corollary 6.3], [GO, Theorem 4.2])

(i) From any µ ∈ P∗(M), there starts a unique complete gradient curve ξ : [0,∞) −→
P∗(M) of f with ξ(0) = µ.

(ii) Given any two gradient curves ξ, ζ : [0,∞) −→ P∗(M) of f , we have

W2

(
ξ(t), ζ(t)

)
≤ e−KtW2

(
ξ(0), ζ(0)

)
(7.1)

for all t ∈ [0,∞).

To be precise, the uniqueness in (i) is a consequence of the K-contraction property
(7.1). Therefore the gradient flow G : [0,∞)×P∗(M) −→ P∗(M) of f , given as G(t, µ) =
ξ(t) in Theorem 7.5(i), is uniquely determined and extended to the closure G : [0,∞) ×
P∗(M) −→ P∗(M) continuously.

7.3 m-relative entropy and the porous medium/fast diffusion
equation

We recall basic notions of calculus on weighted Riemannian manifolds (M,ω) with ω =
e−ψ volg. For a C1-vector field V on M , we define the weighted divergence as

divω V := div V − 〈V,∇ψ〉,

where div V denotes the usual divergence of V for (M, volg). Note that, for any f ∈
C1(M), ∫

M

〈∇f, V 〉 dω =

∫
M

〈∇f, e−ψV 〉 dvolg = −
∫

M

f div(e−ψV ) dvolg

= −
∫

M

f divω V dω.
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For f ∈ C2(M), the weighted Laplacian is defined by

∆ωf := divω(∇f) = ∆f − 〈∇f,∇ψ〉.

Then it is an established fact that the gradient flow of the corresponding relative entropy
(or the free energy)

Entω(ρω) =

∫
M

ρ ln ρ dω =

∫
M

(ρe−ψ) ln(ρe−ψ) dvolg +

∫
M

ψ dµ

produces a solution to the associated heat equation (or the Fokker-Planck equation)

∂ρ

∂t
= ∆ωρ = eψ

{
∆(ρe−ψ) + div

(
(ρe−ψ)∇ψ

)}
.

See [JKO, Theorem 5.1], [Vi1, Subsection 8.4.2] for the Euclidean case, [Oh1, Theo-
rem 6.6], [GO, Theorem 4.6], [Vi2, Corollary 23.23] for the Riemannian case, and [OS1,
Section 7] for the Finsler case.

We shall see that a similar argumentation gives a weak solution to the porous medium
equation for m > 1 or the fast diffusion equation for m < 1 (with drift) of the form

∂ρ

∂t
=

1

m
∆ω(ρm) + divω(ρ∇Ψ) (7.2)

as gradient flow of the m-relative entropy Hm(·|ν). This is demonstrated by Otto [Ot] for
the Tsallis entropy as well as Hm(·|Nm(0, cIn)) with respect to the m-Gaussian measures
Nm(0, cIn) on (Rn, dx), and by Villani [Vi2, Theorem 23.19] on weighted Riemannian
manifolds in a different way of interpretation from ours. Here we present a precise proof
along the strategy of [Oh1], [GO]. Recall that ν = expm(−Ψ)ω.

Theorem 7.6 (Gradient flow of Hm) Let (M, g) be compact, m ∈ ((n−1)/n, 1)∪(1, 2]
and Ψ be Lipschitz. If a curve (µt)t∈[0,∞) ⊂ Pac(M,ω) is a gradient curve of Hm(·|ν),
then its density function ρt is a weak solution to the porous medium or the fast diffusion
equation (7.2). To be precise,∫

M

φt1 dµt1 −
∫

M

φt0 dµt0 =

∫ t1

t0

∫
M

{
∂φt

∂t
+

1

m
ρm−1

t ∆ωφt +
1

m − 1
〈∇φt,∇(σm−1)〉

}
dµt dt

(7.3)
holds for all 0 ≤ t0 < t1 < ∞ and φ ∈ C∞(R × M), where µt = ρtω, φt = φ(t, ·).

Proof. Fix t ∈ (0,∞) and, given small δ > 0, choose µδ ∈ P(M) as a minimizer of the
function

µ 7−→ Hm(µ|ν) +
W2(µ, µt)

2

2δ
.

We postpone the proof of the following technical claim until the end of the section. We
remark that the hypotheses m > (n − 1)/n and m ≤ 2 come into play in the proof of
Claim 7.7(i) and (iii), respectively.

Claim 7.7 (i) Such µδ indeed exists and is absolutely continuous with respect to ω.
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(ii) We have

lim
δ→0

W2(µ
δ, µt)

2

2δ
= 0, lim

δ→0
Hm(µδ|ν) = Hm(µt|ν).

In particular, µδ converges to µt weakly.

(iii) Moreover, by putting µδ = ρδω, (ρδ)m converges to ρm
t in L1(M,ω).

Take a Lipschitz function ϕ : M −→ R such that T (x) := expx(∇ϕ(x)) gives the
optimal transport from µδ to µt. We consider the transport µδ

ε := (Fε)]µ
δ in another

direction for small ε > 0, where Fε(x) := expx(ε∇φt(x)). It immediately follows from the
choice of µδ that

Hm(µδ
ε|ν) +

W2(µ
δ
ε, µt)

2

2δ
≥ Hm(µδ|ν) +

W2(µ
δ, µt)

2

2δ
. (7.4)

We first estimate the difference of distances. Observe that, as (Fε × T )]µ
δ is a (not

necessarily optimal) coupling of µδ
ε and µt,

lim sup
ε→0

W2(µ
δ
ε, µt)

2 − W2(µ
δ, µt)

2

ε

≤ lim sup
ε→0

1

ε

∫
M

{
d
(
Fε(x), T (x)

)2 − d
(
x, T (x)

)2}
dµδ(x)

= −
∫

M

2〈∇φt,∇ϕ〉 dµδ.

We used the first variation formula for the distance d in the last line (cf. [Ch, Theo-
rem II.4.1]). Thanks to the compactness of M , there is a constant C > 0 such that

φt

(
T (x)

)
≤ φt(x) + 〈∇φt(x),∇ϕ(x)〉 + Cd

(
x, T (x)

)2
.

Thus we obtain, by virtue of Claim 7.7(ii),

lim inf
δ→0

1

2δ
lim sup

ε→0

W2(µ
δ
ε, µt)

2 − W2(µ
δ, µt)

2

ε
≤ − lim sup

δ→0

1

δ

∫
M

〈∇φt,∇ϕ〉 dµδ

≤ lim inf
δ→0

1

δ

[ ∫
M

{φt − φt(T )} dµδ + CW2(µ
δ, µt)

2

]
= lim inf

δ→0

1

δ

{ ∫
M

φt dµδ −
∫

M

φt dµt

}
.

Next we calculate the difference of entropies in (7.4). We put µδ = ρδω, µδ
ε = ρδ

εω
and Jω

ε := eψ−ψ(Fε)det(DFε). Then we obtain from the Jacobian equation ρδ
ε(Fε)J

ω
ε = ρδ

(Theorem 2.10) that

Hm(µδ
ε|ν) − 1

m

∫
M

σm dω =
1

m(m − 1)

∫
M

{(ρδ
ε)

m−1 − mσm−1} dµδ
ε

=
1

m(m − 1)

∫
M

{ρδ
ε(Fε)

m−1 − mσ(Fε)
m−1} dµδ

=
1

m(m − 1)

∫
M

{(
ρδ

Jω
ε

)m−1

− mσ(Fε)
m−1

}
dµδ.
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Thus we have

Hm(µδ|ν) − Hm(µδ
ε|ν)

=
1

m(m − 1)

∫
M

[
(ρδ)m−1{1 − (Jω

ε )1−m} − m{σm−1 − σ(Fε)
m−1}

]
dµδ.

Note that, as det(DF0) = 1,

lim
ε→0

Jω
ε − 1

ε
= lim

ε→0

eψ−ψ(Fε)det(DFε) − 1

ε
= trace(Hess φt) − 〈∇φt,∇ψ〉

= ∆φt − 〈∇φt,∇ψ〉 = ∆ωφt.

Hence we obtain, together with Claim 7.7(iii),

lim
ε→0

Hm(µδ|ν) − Hm(µδ
ε|ν)

ε

=

∫
M

{
1

m
(ρδ)m−1∆ωφt +

1

m − 1
〈∇φt,∇(σm−1)〉

}
dµδ (7.5)

→
∫

M

{
1

m
ρm−1

t ∆ωφt +
1

m − 1
〈∇φt,∇(σm−1)〉

}
dµt

as δ tends to zero.
These together imply

lim inf
δ→0

1

δ

{ ∫
M

φt dµδ −
∫

M

φt dµt

}
≥

∫
M

{
1

m
ρm−1

t ∆ωφt +
1

m − 1
〈∇φt,∇(σm−1)〉

}
dµt.

Moreover, equality holds since we can change φ into −φ. Recall from [GO, (4)] (see also
[Oh1, Lemma 6.4]) that

lim
δ→0

1

δ

{ ∫
M

h dµt+δ −
∫

M

h dµδ

}
= 0

holds for all h ∈ C∞(M). Therefore we conclude

lim
δ→0

1

δ

{ ∫
M

φt+δ dµt+δ −
∫

M

φt dµt

}
= lim

δ→0

1

δ

{ ∫
M

(φt+δ − φt) dµt+δ +

∫
M

φt dµt+δ −
∫

M

φt dµt

}
=

∫
M

{
∂φt

∂t
+

1

m
ρm−1

t ∆ωφt +
1

m − 1
〈∇φt,∇(σm−1)〉

}
dµt

as desired. 2

Remark 7.8 In Theorem 7.6, assuming µt is absolutely continuous is redundant. For
m > 1, Hm(µt|ν) < ∞ immediately implies µt ∈ Pac(M,ω). For m < 1, if µt with t > 0
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has a nontrivial singular part µs, then the modification of µt as in the proof of Claim 7.7(i)
with µδ = µt gives a measure µ̂r ∈ Pac(M,ω) for small r > 0 such that

W2(µt, µ̂r)
2 ≤ µs(M)r2, Hm(µ̂r|ν) ≤ Hm(µt|ν) − C(ω,m)µs(M)rn(1−m)

with C > 0. As n(1 − m) < 1, these yield |∇−Hm(·|ν)|(µt) = ∞ as r goes to zero, which
contradicts the definition of gradient curves (compare this with [AGS, Theorem 10.4.8]).

Recall from Theorem 4.1 that the entropy Hm(·|ν) is K-convex if (and only if) RicN ≥
0 and Hess Ψ ≥ K. Combining this with Theorems 7.5, 7.6, we obtain the following.

Corollary 7.9 Suppose that (M, g) is compact and M0 is convex. Then the weak solution
(µt)t∈[0,∞) ⊂ Pac(M0, ω) to the porous medium (or the fast diffusion) equation (7.2) con-
structed in Theorem 7.6 enjoys the K-contraction property (7.1) under the assumptions
RicN ≥ 0 and Hess Ψ ≥ K on M0.

The argument in the proof of Theorem 7.6 also shows that the absolute gradient of
Hm(·|ν) at µ coincides with the square root of the m-relative Fisher information introduced
in (5.2), for general m. Compare this with Theorem 5.2.

Proposition 7.10 Take m ∈ [(n− 1)/n, 1)∪ (1,∞) and µ = ρω ∈ Pac(M,ω) such that ρ
is Lipschitz. For any (d2/2)-convex function ϕ : M −→ R and the corresponding transport
µt := (Tt)]µ with Tt(x) := expx(t∇ϕ(x)), t ≥ 0, it holds that

lim
t→0

Hm(µt|ν) − Hm(µ|ν)

t
=

1

m − 1

∫
M

〈∇(ρm−1 − σm−1),∇ϕ〉 dµ.

In particular, we have |∇−[Hm(·|ν)]|(µ) =
√

Im(µ|ν) and, if |∇−[Hm(·|ν)]|(µ) < ∞, then
the negative gradient vector ∇−[Hm(·|ν)](µ) is achieved by

∇ϕ = −∇
(

ρm−1 − σm−1

m − 1

)
.

Proof. Recall that ϕ is twice differentiable a.e., and that µt is absolutely continuous for
t < 1 ([Vi2, Theorem 8.7]). Using the calculation deriving (7.5), we obtain

lim
t→0

Hm(µ|ν) − Hm(µt|ν)

t

=

∫
M

{
1

m
ρm−1∆ωϕ +

1

m − 1
〈∇ϕ,∇(σm−1)〉

}
dµ

= −
∫

M

{
1

m
〈∇(ρm),∇ϕ〉 − ρ

m − 1
〈∇ϕ,∇(σm−1)〉

}
dω

= − 1

m − 1

∫
M

〈∇(ρm−1 − σm−1),∇ϕ〉 dµ.

As any geodesic with respect to W2 is realized in this way (Theorem 2.8), we have
|∇−[Hm(·|ν)]|(µ) =

√
Im(µ|ν) and, if |∇−[Hm(·|ν)]|(µ) < ∞,

∇−[Hm(·|ν)](µ) = −∇
(

ρm−1 − σm−1

m − 1

)
.

2
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Remark 7.11 The family of m-Gaussian measures (Example 2.6) is closely related to
the Barenblatt solution to (7.2) (without drift), and again has a role to play here. On the
unweighted Euclidean space (Rn, dx), it is known by [OW, Proposition 5] that a solution
to (7.2) starting from an m-Gaussian measure will keep being m-Gaussian. An explicit
expression of such solutions is given in [Ta2].

7.4 Proof of Claim 7.7

(i) The existence follows from, as usual, the compactness of P(M) and the lower semi-
continuity of Hm(·|ν) (Lemma 3.4). The absolute continuity is obvious for m > 1.

For m < 1, decompose µδ into absolutely continuous and singular parts µδ = ρω + µs

and suppose µs(M) > 0. We modify µδ into µ̂r ∈ Pac(M,ω) as

dµ̂r(x) = ρ̂r(x) dω(x) :=

{
ρ(x) +

∫
M

χB(y,r)(x)

ω(B(y, r))
dµs(y)

}
dω(x)

for small r > 0. Then we find∫
M

σm−1 dµ̂r ≤
∫

M

σm−1 dµδ +

∫
M

∣∣∣∣σ(y)m−1 − 1

ω(B(y, r))

∫
B(y,r)

σm−1 dω

∣∣∣∣dµs(y)

≤
∫

M

σm−1 dµδ +
{

sup
M

|∇(σm−1)| · r
}

µs(M).

Given an optimal coupling π = π1 +π2 of µδ and µt such that (p1)]π1 = ρω and (p1)]π2 =
µs,

dπ̂r(x, z) := dπ1(x, z) +

∫
y∈M

χB(y,r)(x)

ω(B(y, r))
dω(x)dπ2(y, z)

is a coupling of µ̂r and µt. Hence we observe

W2(µ̂r, µt)
2 ≤

∫
M×M

d(x, z)2dπ1(x, z) +

∫
M×M

{d(y, z) + r}2 dπ2(y, z)

≤
∫

M×M

d(x, z)2dπ(x, z) + {2 diam M + r}rπ2(M × M)

≤ W2(µ
δ, µt)

2 + {3 diam M · r}µs(M).

Finally, it follows from the Hölder inequality that∫
M

ρ̂m
r dω =

∫
M

[ ∫
M

{
ρ(x)

µs(M)
+

χB(y,r)(x)

ω(B(y, r))

}
dµs(y)

]m

dω(x)

≥ µs(M)m−1

∫
M

[ ∫
M

{
ρ(x)

µs(M)
+

χB(y,r)(x)

ω(B(y, r))

}m

dµs(y)

]
dω(x)

≥ µs(M)m−1

∫
M

{ ∫
M\B(y,r)

ρm

µs(M)m
dω +

∫
B(y,r)

1

ω(B(y, r))m
dω

}
dµs(y)

=

∫
M

ρm dω − µs(M)−1

∫
M

( ∫
B(y,r)

ρm dω

)
dµs(y)

+ µs(M)m−1

∫
M

ω
(
B(y, r)

)1−m
dµs(y).
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As M is compact, we find

µs(M)m−1

∫
M

ω
(
B(y, r)

)1−m
dµs(y) ≥ µs(M)mC1(ω,m)rn(1−m),

and, for all y ∈ supp µs,∫
B(y,r)

ρm dω =

∫
B(y,r)

(ρσm−1)mσm(1−m) dω

≤
( ∫

B(y,r)

ρσm−1 dω

)m( ∫
B(y,r)

σm dω

)1−m

≤
( ∫

B(y,r)

ρσm−1 dω

)m

C2(ω, σ,m)rn(1−m).

Since limr→0 supy∈M

∫
B(y,r)

ρσm−1 dω = 0, these imply for small r > 0∫
M

ρ̂m
r dω ≥

∫
M

ρm dω +
1

2
C1(ω,m)µs(M)mrn(1−m).

Combining these, we conclude that

Hm(µ̂r|ν) +
W2(µ̂r, µt)

2

2δ
− Hm(µδ|ν) − W2(µ

δ, µt)
2

2δ
≤ −C3(ω,m)µs(M)mrn(1−m) + C4(M,σ,m, δ)µs(M)r,

where C3, C4 > 0. Then n(1 − m) < 1 and µs(M) > 0 yield that

Hm(µ̂r|ν) +
W2(µ̂r, µt)

2

2δ
< Hm(µδ|ν) +

W2(µ
δ, µt)

2

2δ

holds for small r > 0. This contradicts the choice of µδ, therefore we obtain µs(M) = 0.
(ii) By the choice of µδ, we have

Hm(µδ|ν) +
W2(µ

δ, µt)
2

2δ
≤ Hm(µt|ν)

which immediately implies limδ→0 W2(µ
δ, µt)

2 ≤ limδ→0 2δHm(µt|ν) = 0. Thus µδ con-
verges to µt weakly, and hence

lim sup
δ→0

W2(µ
δ, µt)

2

2δ
≤ Hm(µt|ν) − lim inf

δ→0
Hm(µδ|ν) ≤ 0

by the lower semi-continuity (Lemma 3.4). This further yields

Hm(µt|ν) ≤ lim inf
δ→0

Hm(µδ|ν) ≤ lim sup
δ→0

Hm(µδ|ν) ≤ Hm(µt|ν),

where the last inequality follows again from the choice of µδ.
(iii) This is a consequence of the following general lemma. ♦
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Lemma 7.12 Assume m ∈ [(n−1)/n, 1)∪(1, 2] and that a sequence {µi}i∈N ⊂ Pac(M,ω)
converges to µ ∈ Pac(M,ω) weakly as well as limi→∞ Hm(µi|ν) = Hm(µ|ν) < ∞. Then,
by setting µi = ρiω and µ = ρω, ρm

i converges to ρm in L1(M,ω).

Proof. Note that the convergence of Hm(µi|ν) ensures limi→∞
∫

M
ρm

i dω =
∫

M
ρm dω. We

shall show the following:

(∗) For any constant C > 0, it holds limi→∞ ‖min{ρi, C} − min{ρ, C}‖L2(M,ω) = 0.

Then we have, for m < 1,∫
M

|ρm
i − ρm| dω ≤

∫
M

|ρi − ρ|m dω ≤ ω(M)1−m

( ∫
M

|ρi − ρ| dω

)m

,

and ∫
M

|ρi − ρ| dω

≤
∫

M

[
|min{ρi, C} − min{ρ, C}| + max{ρi − C, 0} + max{ρ − C, 0}

]
dω

→ 0

as i → ∞ and then C → ∞. Precisely,∫
M

max{ρi − C, 0} dω =

∫
M

(ρi − min{ρi, C}) dω → 1 −
∫

M

min{ρ, C} dω (i → ∞)

→ 0 (C → ∞),

where (∗) is used when taking the limit as i → ∞. For m ∈ (1, 2], we similarly find∫
M

|ρm
i − ρm| dω ≤ m

∫
M

|ρi − ρ|max{ρi, ρ}m−1 dω

≤ m

( ∫
M

|ρi − ρ|m dω

)1/m( ∫
M

(ρi + ρ)m dω

)(m−1)/m

, (7.6)

and∫
M

|ρi − ρ|m dω

≤ 2m−1

∫
M

[
|min{ρi, C} − min{ρ, C}|m + max{ρi − C, 0}m + max{ρ − C, 0}m

]
dω

→ 0

as i → ∞ and then C → ∞. Indeed,∫
M

max{ρi − C, 0}m dω =

∫
M

(ρi − min{ρi, C})m dω ≤
∫

M

(ρm
i − min{ρi, C}m) dω

→
∫

M

(ρm − min{ρ, C}m) dω (i → ∞)

→ 0 (C → ∞),
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where we used the calculation as in (7.6) and (∗) to see

lim
i→∞

∫
M

|min{ρi, C}m − min{ρ, C}m| dω = 0.

To show (∗), we suppose that it is false. Then there are some constants C, ε > 0 and
a sequence {lj}j∈N ⊂ N going to infinity such that

‖min{ρ, C} − min{ρlj , C}‖L2(M,ω) ≥ ε (7.7)

for all j ∈ N. Note that, as d2[tm/m(m − 1)]/dt2 = tm−2,

1

m(m − 1)

(
ρ + ρlj

2

)m

≤
ρm + ρm

lj

2m(m − 1)
−

max{ρ, ρlj}m−2

8
|ρ − ρlj |2.

For the second term, we observe

max{ρ, ρlj}m−2|ρ − ρlj |2 ≥ Cm−2|min{ρ, C} − min{ρlj , C}|2.

This is clear if max{ρ, ρlj} ≤ C or min{ρ, ρlj} ≥ C, and follows from τm−2(τ−ε)2 ≥ (1−ε)2

for τ ≥ 1 ≥ ε otherwise. Thus we obtain, by (7.7),

1

m(m − 1)

∫
M

(
ρ + ρlj

2

)m

dω

≤
∫

M

ρm + ρm
lj

2m(m − 1)
dω − Cm−2

8

∫
M

|min{ρ, C} − min{ρlj , C}|2 dω

≤
∫

M

ρm + ρm
lj

2m(m − 1)
dω − Cm−2

8
ε2.

This means that µ̄j := {(ρ + ρlj)/2}ω satisfies

lim sup
j→∞

Hm(µ̄j|ν) ≤ lim
i→∞

Hm(µi|ν) − Cm−2

8
ε2 = Hm(µ|ν) − Cm−2

8
ε2,

this contradicts the lower semi-continuity of Hm(·|ν) (Lemma 3.4). 2

8 Finsler case

We finally stress that most results in this article are extended to Finsler manifolds, accord-
ing to the theory developed in [Oh2], [OS1] (see also a survey [Oh3]). Briefly speaking, a
Finsler manifold is a differentiable manifold equipped with a (Minkowski) norm on each
tangent space. Restricting these norms to those coming from inner products, we have
the family of Riemannian manifolds as a subclass. We refer to [BCS], [Sh] for the basics
of Finsler geometry, and to [Oh2], [OS1], [Oh3] for the details omitted in the following
discussion.

A Finsler manifold (M,F ) will be a pair of an n-dimensional C∞-manifold M and
a C∞-Finsler structure F : TM −→ [0,∞) satisfying the following regularity, positive
homogeneity, and strong convexity conditions:
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(1) F is C∞ on TM \ 0, where 0 stands for the zero section;

(2) F (λv) = λF (v) holds for all v ∈ TM and λ ≥ 0;

(3) In any local coordinate system (xi)n
i=1 of an open set U ⊂ M and the corresponding

coordinate v =
∑

i v
i(∂/∂xi)|x of TxM with x ∈ U , the n × n-matrix(

∂2(F 2)

∂vi∂vj
(v)

)n

i,j=1

is positive-definite for all v ∈ TxM \ 0 and x ∈ U .

Then the distance d, geodesics and the exponential map are defined in the same manner
as Riemannian geometry, whereas d is typically nonsymmetric (and not a distance in
the precise sense) since F is merely positively homogeneous. Nonetheless, d satisfies the
positivity and the triangle inequality.

On a Finsler manifold (M,F ), there is no constructive measure as good as the Rie-
mannian volume measure in the Riemannian case (cf. [Oh4]), but we can consider an
arbitrary positive C∞-measure ω on M and associate it with the weighted Ricci curva-
ture RicN ([Oh2]). This curvature turns out extremely useful, and the argument in [Oh2]
is applicable to generalizing the whole results in Sections 4–6 to the Finsler setting. (We
need a little trick only in Proposition 5.4, put µ = (1 − εf)σω when m < 1 to have
∇[((1 − εf)m−1 − 1)σm−1] = ∇[(1 − m)fεσm−1] = (1 − m)ε∇(fσm−1).)

Theorem 8.1 Let (M,F ) be a forward complete, connected Finsler manifold and ω be a
positive C∞-measure on M . Then the following results in this article hold true also for
(M,F, ω) (with appropriate interpretations for the nonsymmetric distance, cf. [Oh2]):

• Equivalence between the convexity of Hm(·|ν) and a curvature bound (Theorem 4.1);

• Functional inequalities (Propositions 5.1, 5.4, Theorem 5.2);

• Concentration of measures (Theorem 6.1, Corollary 6.5, Proposition 6.7).

As for Section 7, due to the lack of the analogue of Theorem 7.1, we can not directly
follow the Riemannian argument. Nonetheless, we can apply the discussion in [OS1] using
a (formal) Finsler structure of the Wasserstein space, and obtain results corresponding
to Theorem 7.6 and Proposition 7.10. The point is the usage of the structure of the
underlying space M , while we did not explicitly use it in Subsections 7.1, 7.2. See [OS1,
Sections 6, 7] for further details. We remark that, however, the K-contraction property
(7.1) essentially depends on the Riemannian structure and can not be expected in the
Finsler setting (cf. [OS2]).

Let (M,F ) be compact from now on. Due to Otto’s idea [Ot, Section 4], we introduce
a Finsler structure of (P(M),W2) as follows. Given µ ∈ P(M), we define the tangent
space (TµP , FW (µ, ·)) at µ by

FW (µ,∇ϕ) :=

( ∫
M

F (∇ϕ)2 dµ

)1/2

for ϕ ∈ C∞(M),

TµP :=
(
{∇ϕ |ϕ ∈ C∞(M)}, FW (µ, ·)

)
,
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where the gradient vector ∇ϕ(x) ∈ TxM is the Legendre transform of the derivative
Dϕ(x) ∈ T ∗

xM , and the closure was taken with respect to FW (µ, ·). We remark that
the gradient ∇ is a nonlinear operator (i.e., ∇(ϕ1 + ϕ2)(x) 6= ∇ϕ1(x) + ∇ϕ2(x) and
∇(−ϕ)(x) 6= −∇ϕ(x) in general), since the Legendre transform is nonlinear unless F |TxM

is Riemannian.
Now, we take a locally Lipschitz curve (µt)t∈I ⊂ (P(M),W2) on an open interval

I ⊂ R. We can associate it with the tangent vector field µ̇t = Φ(t, ·) ∈ TµtP , that is,
Φ is a Borel vector field on I × M with Φ(t, x) ∈ TxM and F (Φ) ∈ L∞

loc(I × M,dµtdt)
satisfying the continuity equation ∂µt/∂t + div(Φtµt) = 0 in the weak sense that∫

I

∫
M

{
∂φt

∂t
+ Dφt(Φt)

}
dµtdt = 0 (8.1)

holds for all φ ∈ C∞
c (I × M) ([AGS, Theorem 8.3.1], [OS1, Theorem 7.3]). Using these

‘differentiable’ structures, we can consider gradient curves in a way different from the
‘metric’ approach in Section 7.

Definition 8.2 Given a function f : P(M) −→ (−∞,∞] and µ ∈ P(M) with f(µ) < ∞,
we say that f is differentiable at µ if there is Φ ∈ TµP such that

lim
t↓0

f((Tt)]µ) − f(µ)

t
=

∫
M

L(Φ)(∇ϕ) dµ

holds for all ϕ ∈ C∞(M), where Tt(x) := expx(t∇ϕ) and L : TxM −→ T ∗
xM stands for

the Legendre transform. Then we write ∇W f(µ) = Φ.

Then a gradient curve should be a solution to µ̇t = ∇W [−Hm(·|ν)](µt). We first show
that ∇W [−Hm(·|ν)](µt) is described by the Fisher information like Proposition 7.10.

Proposition 8.3 Take µ = ρω ∈ Pac(M,ω) with ρm ∈ H1(M,ω). If ρm−1 − σm−1 6∈
H1(M,µ), then −Hm(·|ν) is not differentiable at µ. If ρm−1 − σm−1 ∈ H1(M,µ), then
−Hm(·|ν) is differentiable at µ and we have

∇W [−Hm(·|ν)](µ) = ∇
(

ρm−1 − σm−1

1 − m

)
∈ TµP .

Proof. Fix arbitrary ϕ ∈ C∞(M) and put Tt(x) := expx(t∇ϕ(x)), µt = ρtω := (Tt)]µ
for sufficiently small t > 0. Then the Jacobian equation ρ = ρt(Tt)J

ω
t holds µ-a.e. ([Oh2,

Theorem 5.2]), where Jω
t (x) stands for the Jacobian of DTt(x) : TxM −→ TTt(x)M with

respect to ω. Thus we obtain, as in the proof of Theorem 7.6,

Hm(µt|ν) = Hm(µ|ν) +
1

m(m − 1)

∫
M

[
ρm−1{(Jω

t )1−m − 1} + m{σm−1 − σ(Tt)
m−1}

]
dµ.

We observe, as ρm ∈ H1(M,ω),

lim
t→0

∫
M

(Jω
t )1−m − 1

t
ρm dω = (1 − m) lim

t→0

∫
M

Jω
t − 1

t
ρm dω

= (1 − m) lim
t→0

∫
M

ρm − ρ(Tt)
m

t
Jω

t dω = (m − 1)

∫
M

D(ρm)(∇ϕ) dω

= m

∫
M

D(ρm−1)(∇ϕ) dµ,
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and hence

lim
t→0

Hm(µ|ν) − Hm(µt|ν)

t
=

∫
M

D

(
ρm−1 − σm−1

1 − m

)
(∇ϕ) dµ.

This yields

∇W [−Hm(·|ν)](µ) = ∇
(

ρm−1 − σm−1

1 − m

)
provided that ρm−1 − σm−1 ∈ H1(M,µ). Suppose ρm−1 − σm−1 6∈ H1(M,µ). Note
that ρm−1 − σm−1 ∈ L2(M,µ) since ρm ∈ L2(M,ω) and M is compact, thus we find
F (∇(ρm−1 − σm−1)) 6∈ L2(M,µ). Therefore we obtain

lim sup
µ̃→µ

Hm(µ|ν) − Hm(µ̃|ν)

W2(µ, µ̃)
= ∞

by approximating ρm−1 − σm−1 with φ ∈ C∞(M) and choosing ϕ = φ/(1 − m). Hence
Hm(·|ν) is not differentiable at µ. 2

Theorem 8.4 Let (µt)t∈[0,∞) ⊂ Pac(M,ω) be a continuous curve that is locally Lipschitz
on (0,∞), and assume that µt = ρtω satisfies ρm

t ∈ H1(M,ω) as well as ρm−1
t − σm−1 ∈

H1(M,µt) for a.e. t ∈ (0,∞). Then we have

µ̇t = ∇W [−Hm(·|ν)](µt)

at a.e. t ∈ (0,∞) if and only if (ρt)t∈[0,∞) is a weak solution to the reverse porous medium
(or fast diffusion) equation of the form

∂ρ

∂t
= − divω

[
ρ∇

(
ρm−1 − σm−1

1 − m

)]
. (8.2)

Proof. If µ̇t = ∇W [−Hm(·|ν)](µt) holds for a.e. t, then Proposition 8.3 yields

µ̇t = ∇
(

ρm−1
t − σm−1

1 − m

)
a.e. t.

Thus it follows from the continuity equation (8.1) that∫ ∞

0

∫
M

∂φt

∂t
dµtdt = −

∫ ∞

0

∫
M

Dφt

[
∇

(
ρm−1

t − σm−1

1 − m

)]
dµtdt

for all φ ∈ C∞
c ((0,∞) × M). Therefore ρt weakly solves (8.2).

Conversely, if ρt is a weak solution to (8.2), then the same calculation implies that

Φt = ∇
(

ρm−1
t − σm−1

1 − m

)
satisfies the continuity equation (8.1). Therefore Proposition 8.3 shows µ̇t = Φt =
∇W [−Hm(·|ν)](µt). 2

We meant by the ‘reverse’ porous medium (or fast diffusion) equation the equation

with respect to the reverse Finsler structure
←−
F (v) := F (−v). As the gradient vector for

←−
F is written by

←−
∇u = −∇(−u), (8.2) is indeed rewritten as

∂ρ

∂t
= divω

[
ρ
←−
∇

(
ρm−1 − σm−1

m − 1

)]
.
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