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A GOODNESS OF FIT TEST FOR ERGODIC MARKOV PROCESSES

VANCE MARTINA , YOSHIHIKO NISHIYAMAB

AND JOHN STACHURSKIC

We introduce a goodness of fit test for ergodic Markov processes.
Our test compares the data against the set of stationary densities im-
plied by the class of models specified in the null hypothesis, and rejects
if no model in the class yields a stationary density that matches with
the data. No alternative needs to be specified in order to implement
the test. Although our test compares densities it involves no smoothing
parameters, and is powerful against 1/

√
n local alternatives.

KEYWORDS: Specification test, goodness of fit, Markov processes.

1. INTRODUCTION

For a dynamic stochastic model used in some particular application, an overriding
concern is whether or not the dynamics of the model are consistent with the time series
being modeled. To give one of many possible examples, most valuations of interest rate
derivative securities depend on the underlying model used to represent the interest
rate. If the model fit is poor, in the sense that probabilities implied by the model are
inconsistent with actual interest rate dynamics, then the resulting valuation will be
unreliable.

In testing model specification for random dynamic models, one potential problem is
that, in general, stochastic processes are relatively complex objects, described by high-
dimensional joint distributions. As a result, the power of any specification test risks
being dispersed over a large space of possible alternatives. To accommodate this, some
tests require a tight specification of the alternative hypothesis. An obvious problem
here is that, in many settings, theory says little about the set of possible alternatives.

To test without imposing strict assumptions on the alternative and yet still retain power
in appropriate directions, a natural way to proceed is to compare the data with partic-
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Society for the Promotion of Science Grants-in-Aid 22330067.
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bInstitute of Economic Research, Kyoto University
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ular features of the theoretical data generating process (DGP). A classic example of
this approach is the Hansen–Sargan J-test (Hansen, 1982), which compares the data
against theoretical moment restrictions on the DGP. Another is the nonparametric test
proposed by Aı̈t-Sahalia (1996), where a nonparametric kernel density estimate of the
stationary distribution is compared to the stationary distribution of the model.

In this paper, we consider a specification test for stationary dynamic models with
the Markov property. In the manner of Aı̈t-Sahalia (1996), our test compares the data
against the set of stationary densities corresponding to the set of models contained in
the null hypothesis, and rejects if no model in this class yields a stationary density
that matches with the data. No alternative needs to be specified in order to implement
the test. Unlike Aı̈t-Sahalia’s test, our test involves no smoothing parameters, and is
powerful against 1/

√
n local alternatives.1

While our test is in many senses a very natural test for stationary Markov processes, the
attractive features of the test mentioned above do not constitute a free lunch. The test
makes explicit use of the correlation structure in the null hypothesis, and this involves
two costs. The first cost is that there is no direct analogue of our test in the case of IID

observations. (Although our test is well-defined for an IID null hypothesis, it has zero
power in all directions.) The second is that the conditional transition density associated
with the null hypothesis forms part of the test statistic, and as such this density must
be relatively tractable.

1.1. Goodness of Fit

To describe our test in an abstract setting, we begin with a goodness of fit test for a
single model p, where p is a Markov transition density kernel. Heuristically, p(x, y)dy
is the probability of transitioning from state x ∈ X to state y ∈ X over one unit of time.
Suppose that p is ergodic with a unique stationary ψ. By definition, ψ satisfies

(1)
∫

p(x, y)ψ(x)dx = ψ(y) (y ∈ X)

Our interest is in testing whether some givenX-valued time series {Xt}n
t=1 is generated

by p. To test the validity of this null hypothesis, consider the deviation

(2)

∣∣∣∣∣ 1n n

∑
t=1

p(Xt, y)− ψ(y)

∣∣∣∣∣
1In addition, our test is formulated for Markov processes of arbitrary dimension, whereas Aı̈t-

Sahalia’s test is formulated for univariate data. (In fact, for our test the state space is an arbitrary measure
space, so in theory the dimension may be infinite.) Aı̈t-Sahalia’s test could no doubt be extended to the
multivariate case, but the performance will be compromised because nonparametric kernel density es-
timators are known to degrade rapidly as the dimension of the state space increases.
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ψ

1
n ∑n

t=1 p(Xt, ·)

rn = O(n−1/2)

FIGURE 1.— Reject if 1
n ∑n

t=1 p(Xt, ·) /∈ B(rn, ψ)

When the null holds, the sequence {Xt}n
t=1 is stationary and ergodic with common

density ψ, and hence, for large n,

1
n

n

∑
t=1

p(Xt, y)− ψ(y) ≈ Ep(Xt, y)− ψ(y) =
∫

p(x, y)ψ(x)dx− ψ(y) = 0

In other words, the deviation in (2) should be small for large n. Moreover, since this
argument is valid for any given y, we can adopt a functional approach, regarding
1
n ∑n

t=1 p(Xt, ·)− ψ(·) as a random element taking values in the function space L2, and
rejecting the null when its norm is large—that is, when its realization lies outside a
sphere B(rn, 0) centered on the origin of L2. The radius rn of the sphere is computed
from an L2 central limit theorem to produce a test of given size.

Another way to phrase the test is that we reject the null if 1
n ∑n

t=1 p(Xt, ·) lies outside
a sphere of the same radius rn centered on ψ. This perspective is illustrated in fig-
ure 1. The test compares the theoretical stationary distribution ψ against an estimate
1
n ∑n

t=1 p(Xt, ·) that is
√

n-consistent for ψ under the null. The radius rn is of the form
c/
√

n, where c depends on the size of the test. The fact that the radius is O(1/
√

n)
suggests that the test will have nontrivial power against 1/

√
n local alternatives. This

intuition is confirmed in section 3.2.2

1.2. Estimated Parameters

The goodness of fit test described above is mainly of theoretical interest. In practical sit-
uations our models usually contain unknown parameters, and we wish to test whether
or not our parametric class of models can represent the data. We extend to this setting

2The consistency of 1
n ∑n

t=1 p(Xt, ·) for ψ has also been studied in a computational (rather than statis-
tical) setting. The idea is that if ψ is intractable but p is known and {Xt} can be simulated from p, then
1
n ∑n

t=1 p(Xt, ·) can be used as an approximation of ψ. In this setting, 1
n ∑n

t=1 p(Xt, ·) is called the look-
ahead estimator of ψ, and was introduced by Henderson and Glynn (2001). Functional

√
n-consistency

of the look-ahead estimator was proved by Stachurski and Martin (2008).
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by taking P to be a parametric family of Markov models, indexed by a vector θ ∈ Θ.
In particular, for each θ, we take p(θ, x, y) ∈ P to be a density kernel, and let ψ(θ, y) be
the corresponding stationary density. Taking {θ̂n} to be a

√
n-consistent estimator of

the true parameter under the null, we propose a test statistic based on the L2 norm of

1
n

n

∑
t=1

p(θ̂n, Xt, ·)− ψ(θ̂n, ·)

Conveniently, the asymptotic distribution of the test statistic turns out to be indepen-
dent of the asymptotic distribution of the estimator θ̂n. This is in contrast to the Kol-
mogorov and Cramér-von Mises statistics with estimated parameters. For those tests,
the asymptotic distribution of the test statistic depends in a nontrivial way on the
asymptotic distribution of

√
n(θ̂n − θ0) except in certain special cases.

While our test with estimated parameters is similar in spirit to the test proposed by
Aı̈t-Sahalia (1996), from a theoretical perspective our test is better understood as an
infinite-dimensional Hansen–Sargan J-test. To see this, recall that the Hansen–Sargan
test begins with a moment restriction of the form Eg(Xt, θ) = 0 for some function g.
The null hypothesis of the test is

(3) H0 : ∃ θ ∈ Θ such that Eg(Xt, θ) = 0

The null hypothesis is rejected if

(4) n

∥∥∥∥∥ 1
n

n

∑
t=1

g(Xt, θ̂n)

∥∥∥∥∥
2

W

is large relative to a particular χ2 distribution, where ‖ · ‖W is a weighted euclidean
norm.

To formulate our test in a parallel manner, let p̄(θ, x, y) := p(θ, x, y) − ψ(θ, y). In the
parametric case we consider here, the null hypothesis that the data is generated by
p(θ0, x, y) for some θ0 ∈ Θ. If {Xt} has this property and is stationary, then Xt ∼
ψ(θ0, ·), and hence (1) implies that

Ep(θ0, Xt, y)− ψ(θ0, y) = E p̄(θ0, Xt, y) = 0

Treating all y simultaneously, we can write this restriction as

(5) ∃ θ ∈ Θ such that E p̄(θ, Xt, ·) = 0

where E is a functional expectation for random elements of L2, and the zero on the
right-hand side is the origin of L2. This is an infinite-dimensional version of (3), and
our test statistic is analogous to (4) when the norm in (4) is replaced with the L2 norm.3

3Infinite-dimensional Hansen-Sargan J-tests were considered previously in the excellent paper of Car-
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1.3. Other Literature

Specification and goodness of fit tests dated back to the χ2 test of Pearson. Pearson-type
χ2 tests discard information through discretization. This limitation motivated the de-
velopment of the Kolmogorov-Smirnov and the Cramér-von Mises tests, which match
entire distributions. These and other related tests—such as the Anderson-Darling test
and Kuiper’s test—are distinguished by the metric that they use to assess deviation be-
tween the distribution implied by the model and the distribution implied by the data.
They have been extended to the case where the hypothesized distribution contains
unknown parameters by many authors, including Darling (1955), Durbin (1973), Pol-
lard (1984) and (for a semiparametric conditional Kolmogorov test) Andrews (1997). A
recent survey can be found in del Barrio et al. (2007).

Our interest is in time series models, where observations are dependent. For extensions
of Kolmogorov-Smirnov and Craémer-von Mises type tests to the dependent setting,
see, for example, Weiss (1978) and Chicheportiche and Bouchaud (2011).4 These tests
can be used to measure the fit of the data to the stationary distribution of a hypothe-
sized DGP. The test proposed in Aı̈t-Sahalia (1996) performs a similar comparison. The
main difference is that in Aı̈t-Sahalia (1996), the comparison is in terms of Lp devia-
tion between densities, with nonparametric kernel density estimation used to form the
empirical stationary density.

1.4. Comments on the test statistic

As in Aı̈t-Sahalia (1996), our test compares steady state implications of the model and
the data based on Lp deviation between densities. Thus, our test concentrates power
against alternatives with stationary distributions that differ from the stationary distri-
bution of the null.5 Use of Lp deviation between stationary densities is rather natural
in a decision-theoretic setting. For example, consider a setting where an agent chooses
an optimal action a∗ by minimizing an expected loss function of the form

`(a, ψ) =
∫

L(a, y)ψ(y)dy

rasco and Florens (2000). Their focus is mainly on estimation and IID observations. (Ours is on testing
a rather specific class of null hypotheses with dependent observations.) Unfortunately, their theoretical
results on the Hansen-Sargan J-test cannot be used here, since we permit the state space for the Markov
process to be multidimensional, we permit the parameters to be estimated by any

√
n-consistent tech-

nique and our data is explicitly Markovian under the null.
4Other approaches to goodness of fit tests for dependent data can be found in Bai (2003), Chen et al.

(2008) and Neumann and Paparoditis (2008).
5The Hansen–Sargan J-test can also be regarded as a test of steady state implications in the time-series

setting. The potential benefits of matching steady state implications are discussed in Aı̈t-Sahalia, Hansen
and Scheinkman (2010).
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where ψ is the density of a vector of relevant state variables, and L(a, y) is subjective
loss from choosing action a when the realized state is y (see, e.g., Diebold et al., 1998).
Suppose now that we have a given model m which implies density ψm for the state.
The true and unknown density for the state we denote by ψ0. In this setting, we wish to
know whether the optimal action argmina `(a, ψm) implied by the model is close to the
optimal action argmina `(a, ψ0) under the true distribution ψ0. Bounding the deviation
between these minimizers requires a uniform bound on the deviation between `(·, ψm)

and `(·, ψ0). Such a bound can be obtained via Hölder’s inequality, which yields

sup
a
|`(a, ψm)− `(a, ψ0)| = sup

a

∣∣∣∣∫ L(a, y)(ψm(y)− ψ0(y))dy
∣∣∣∣

≤ sup
a

[∫
L(a, y)qdy

]1/q [∫
(ψm(y)− ψ0(y))pdy

]1/p

where q is a constant satsifying 1/q + 1/p = 1. The term on the far right is the Lp

deviation between ψm and ψ0.6

2. SET UP

We consider stochastic processes taking values in an arbitrary state space X, with
countably generated σ-algebra X and σ-finite measure µ : X → R+. To simplify no-
tation, we use symbols such as dx and dy to indicate integration with respect to µ,
rather than µ(dx) and µ(dy). Two common settings are where

1. X is a Borel subset of Rk and µ is Lebesgue measure.
2. X is discrete and µ is the counting measure.

A density on X is any X -measurable f : X → R+ with
∫

f (x) dx = 1. A density kernel
on X is an X ⊗ X -measurable function p : X×X → R+ such that p(x, ·) is a density
on X for all x ∈ X. An X-valued stochastic process {Xt} will be called p-Markov if it is
a stationary Markov process with transition density p, in the sense that p(Xt, ·) is the
conditional density of Xt+1 given Xt for all t.7

EXAMPLE 2.1 Let X = R
k, let X be the Borel sets, and let µ be Lebesgue measure.

Consider a stationary nonlinear AR(1) process

(6) Xt+1 = g(Xt) + Wt+1 (Wt)t≥1
IID∼ φ

6In this paper, we focus on the case q = p = 2, placing our analysis in a Hilbert space setting where a
general asymptotic theory can be constructed.

7Here and below, all random variables are defined on a common probability space (Ω, F , P).
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where φ is a density on Rk and g is a measurable function from R
k to itself. The se-

quence {Xt} in (6) is p-Markov for

(7) p(x, y) := φ(y− g(x)) ((x, y) ∈ Rk ×Rk)

EXAMPLE 2.2 Let X = {1, . . . , N}, let p be a stochastic N × N matrix,8 and let {Xt}
be a stationary Markov chain on X satisfying

P{Xt+1 = y |Xt = x} = p(x, y) ((x, y) ∈ X×X)

If X := {B : B ⊂ X} and µ is the counting measure, then p is a density kernel on X,
and {Xt} is p-Markov.

EXAMPLE 2.3 Let X = R, let X be the Borel sets and let µ be Lebesgue measure.
Under the Vasicek model, the rate of interest Xt follows

(8) dXt = κ(b− Xt)dt + σdWt

where κ, b and σ are parameters, and Wt is Brownian motion. The transition probability
function associated with this process is

(9) q(t, x, y) := {2πv(t)}−1/2 exp
{
−(y−m(t, x))2

2v(t)

}
where v(t) := σ2(1 − e−2κt)/(2κ) and m(t, x) := b + (x − b)e−κt. One unit of time
corresponds to one year. If {Xt}n

t=1 is a sequence of monthly observations from the
process (8), then {Xt}n

t=1 is p-Markov for p(x, y) := q(1/12, x, y).

Returning to the general case, let kernel p be given, and consider a p-Markov process
{Xt} on X. The conditional distribution of Xt given X0 = x is represented by the t-th
order density pt(x, ·), where p1 := p and

pt(x, y) :=
∫

p(x, z)pt−1(z, y)dz ((x, y) ∈ X×X)

A density ψ on X is called stationary with respect to p if ψ(y) =
∫

p(x, y)ψ(x)dx for
all y ∈ X. In all cases we consider, p will have a unique stationary density ψ. In this
setting, we define

p̄t(x, y) := pt(x, y)− ψ(y) (t ∈ N, (x, y) ∈ X×X)

If {Xt} is p-Markov, then Xt ∼ ψ for all t ≥ 0.

8I.e., p(x, y) ≥ 0 for each (x, y) ∈ X×X, and ∑y∈X p(x, y) = 1 for each x ∈ X.
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2.1. Ergodicity Assumptions

Our test relies on a central limit theorem, which in turn depends on the properties
of the underlying Markov process. We will assume that that process is V-uniformly
ergodic. V-uniformly ergodicity is satisfied in a wide variety of applications.9 It also
implies relatively general laws of large numbers and central limit theorems. To define
V-uniform ergodicity, let V be an X -measurable map fromX to [1, ∞). For measurable
f : X→ R, let

‖ f ‖V := sup
|h|≤V

∣∣∣∣∫ f (x)h(x)dx
∣∣∣∣

Given V, a kernel p with stationary density ψ is called V-unformly ergodic if it has a
unique stationary density ψ and

(10) sup
x∈X

‖pt(x, ·)− ψ‖V

V(x)
→ 0 (t→ ∞)

(See, e.g., Meyn and Tweedie, 2009, p. 392). If V ≡ 1, then the term to the right of
the supremum reduces to the L1 deviation between the time t density pt(x, ·) and the
stationary density ψ. This is the uniformly ergodic case. If p is V-uniformly ergodic,
then ψ satisfies

(11)
∫

V(x)ψ(x)dx < ∞

We focus on density kernels satisfying the following assumption:

ASSUMPTION 2.1 There exists a measurable function V : X → [1, ∞) such that p is
V-uniformly ergodic and

(12)
∫

p(x, y)2dy ≤ V(x) ∀ x ∈ X

EXAMPLE 2.4 Consider p in example 2.1. Let ‖ · ‖ be any norm on Rk. If g and φ are
both continuous, φ is strictly positive on Rk, and there exist constants α ∈ [0, 1) and
β ∈ R+ such that ‖g(x)‖ ≤ α‖x‖+ β for all x ∈ Rk, then, given any constant c ≥ 1,
the kernel p is V-uniformly ergodic for V(x) := ‖x‖+ c.10 If s :=

∫
φ(y)2dy < ∞, then

assumption 2.1 is satisfied when c ≥ max{s, 1}.
9Kristensen (2007) gives conditions for a number of popular time-series models, including (nonlinear)

ARMA, bilinear, GARCH and random coefficient models. Nishimura and Stachurski (2005) demonstrate
V-uniform ergodicity of the one-sector stochastic optimal growth model under the classical assump-
tions. Meyn and Tweedie (2009, chapter 16) provide a general treatment.

10For details, see Meyn and Tweedie, 2009, prop 6.1.5, thm. 6.2.9, and thm. 16.1.2. The continuity and
positivity assumptions can be weaked significantly.
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EXAMPLE 2.5 If the discrete Markov chain in example 2.2 is irreducible and aperiodic,
then assumption 2.1 is satisfied.

EXAMPLE 2.6 The Vasicek density kernel p satisfies assumption 2.1 whenever κ > 0.
The unique stationary density ψ is N(b, σ2/(2κ)).

2.2. The Test Variance-Covariance Function

Let L2 be the set of all X -measurable functions h mappingX toRwith
∫

h(x)2dx < ∞.
As usual, elements of L2 equal µ-almost everywhere are identified. The inner product
and norm are defined by

〈g, h〉 =
∫

g(x)h(x)dx and ‖h‖ := 〈h, h〉1/2

respectively. Since we have assumed thatX is countably generated, the space (L2, ‖ · ‖)
is separable.

LEMMA 2.1 Let p be a density kernel, and let ψ be its stationary density. If p satisfies as-
sumption 2.1, then ψ ∈ L2, p(x, ·) ∈ L2 and p̄(x, ·) ∈ L2 for all x ∈ X. Moreover, if X is any
X-valued random variable, then y 7→ p(X, y) is an L2-valued random variable.11

Each p satisfying assumption 2.1 defines a real-valued function γ on X×X by

(13) γ(y, y′) :=
∫

p̄(x, y) p̄(x, y′)ψ(x)dx

+
∞

∑
t=2

{∫
p̄(x, y) p̄t(x, y′)ψ(x)dx +

∫
p̄(x, y′) p̄t(x, y)ψ(x)dx

}
As shown below, γ is the covariance function of the mapping y 7→ n−1/2 ∑n

t p̄(Xt, y)
under the null hypothesis of our test. This covariance function plays a key role in what
follows. An example is given in figure 2, corresponding to the Vasicek density kernel

(14) p(x, y) := q(1/12, x, y), κ = 0.85837, b = 0.089102, σ2 = 0.0021854

where q is defined in (9). These parameter values are estimated from US short rate data
in Aı̈t Sahalia (1996).

Let C : L2 → L2 be the integral operator corresponding to γ. That is,

(15) Ch(y′) :=
∫

γ(y, y′)h(y)dy (h ∈ L2)

11The statement that p(X, ·) is an L2-valued random variable includes the claim that Ω 3 ω 7→
p(X(ω), ·) ∈ L2 is also measurable. See the proof for details.
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FIGURE 2.— The function γ(y, y′) for the Vasicek model

LEMMA 2.2 The operator C is positive, symmetric and Hilbert-Schmidt.

As a consequence of lemma 2.2, we can apply the spectral theorem in L2 to obtain the
decomposition

(16) Ch =
∞

∑
`=1

λ`〈h, v`〉v` (h ∈ L2)

Here (v`)`≥1 is an orthonormal basis of L2 consisting of eigenfunctions of C, and (λ`)`≥1
is the corresponding eigenvalues (i.e., Cv` = λ`v` for all `). The eigenvalues are real,
nonnegative, and satisfy ∑`≥1 λ` < ∞. The function γ, the operator C, the eigenfunc-
tions (v`)`≥1 and the eigenvalues (λ`)`≥1 are all determined by the density kernel p.

3. GOODNESS OF FIT FOR MARKOV PROCESSES

We begin discussion of the test in this section by looking at a simple null hypothesis,
corresponding to the statement that the data is generated by a particular density kernel
p. (The case of simple null is mainly of theoretical interest. The case of composite null
is treated in from section 4 on.) Taking p to be a fixed density kernel satisfying assump-
tion 2.1, suppose that we have n observations of an X-valued stochastic process {Xt}.
Our null hypothesis is:

(17) H0 : {Xt}n
t=1 is p-Markov

THEOREM 3.1 Let {Z`}`≥1 be an IID sequence of standard normal random variables, and let
{λ`}`≥1 be the eigenvalues of the operator C defined in (15). Under H0 we have

(18)
1
n

∫ { n

∑
t=1

p̄(Xt, y)

}2

dy d→
∞

∑
`=1

λ`Z2
` as n→ ∞
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It follows from (18) that if α ∈ (0, 1) and cα is the 1− α quantile of ∑` λ`Z2
` , then the

test

(19) Reject H0 if
1
n

∫ { n

∑
t=1

p̄(Xt, y)

}2

dy > cα

is asymptotically of size α. The integral on the left-hand size of (19) can be computed
by numerical integration. Computation of cα is discussed in section 3.1.

REMARK 3.1 The asymptotic distribution of our test statistic is an infinite weighted
sum of independent χ2(1) random variables, where the weights correspond to the
spectrum of a certain covariance operator. The Cramér-von Mises test statistic also has
this property, both in the independent (Smirnov, 1936) and dependent (Chicheportiche
and Bouchaud, 2011) observation cases. The difference for all of these tests is in the
particular covariance operator—in our case, it is the operator C defined in (15).

REMARK 3.2 It is interesting to note that, unlike the classical goodness of fit tests
such as the Pearson, Kolmogorov and Cramér-von Mises tests, our test has no obvi-
ous equivalent in the IID case. In particular, while our test is formally well-defined
when the null hypothesis states that the data is IID, an IID null corresponds to the case
p(x, ·) = ψ(·) for all x, or p̄ = 0. When p̄ = 0 the test statistic in (19) is identically equal
to zero, and the test has zero power against all alternatives.

REMARK 3.3 Our test is not distribution free: the asymptotic distribution of the test
statistic depends on the null hypothesis. For other distributional goodness of fit tests
such as the Kolmogorov and Cramér-von Mises tests, the tests are either distribu-
tion free or modifications have been proposed that generate this property. However,
this is for the IID case. When dependence is present, the distribution free property is
more problematic (see, e.g., Chicheportiche and Bouchaud, 2011). Moreover, practical
problems usually involve estimated parameters, and when estimated parameters are
present all of these tests lack the distribution free property, except in very special cases.

3.1. Computing Critical Values

As shown in theorem 3.1, the asymptotic distribution of the test statistic depends on
{λ`}`≥1, the eigenvalues of the operator C corresponding to the function γ defined in
(13). In principle, these eigenvalues can be calculated using standard numerical tech-
niques for solving linear operator equations, such as Galerkin projection. However,
the simplest technique for computing the critical value cα in (19) is to simulate the test
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statistic under the null, as in algorithm 1.

Algorithm 1: Approximates cα corresponding to given α and kernel p

Fix M, T to be large integers ;
for m ∈ {1, . . . , M} do

simulate a p-Markov time series Xs
1, . . . , Xs

T ;
set Jm ← T−1

∫
{∑T

t=1 p̄(Xs
t , y)}2dy ;

end
return the 1− α quantile of J1, . . . , JM ;

A size-adjusted test is produced by setting T = n. In this case the observations {Jm}
produced by the algorithm are IID draws from the distribution of the test statistic un-
der the null hypothesis, and hence the 1− α empirical quantile of these observations
converges in probability to the 1− α quantile of its distribution as M→ ∞.

3.2. Local Alternatives

In this section we investigate the power of the test against 1/
√

n local alternatives. In
particular, the test we consider is

H0 : {Xt}n
t=1 is p-Markov vs HL : {Xt}n

t=1 is pn-Markov

where p is a fixed kernel satisfying assumption 2.1, and {pn} is the sequence of kernels
pn(x, y) := p(x, y) + k(x, y)/

√
n for some fixed k : X×X → R. To ensure that pn is a

density kernel, we require
∫

k(x, y)dy = 0 for all x. We set

Yn(y) :=
1√
n

n

∑
t=1

p̄(Xt, y) (y ∈ X)

Yn is a random element of L2, and the squared norm of Yn is the test statistic in (19).

ASSUMPTION 3.1 The functions k and p jointly satisfy the third moment condition

E sup
δ∈[0,1]

|k(X1, X2)|3
|p(X1, X2) + δ k(X1, X2)|3

< ∞

THEOREM 3.2 Let τ be the element of L2 defined by

τ(y) :=
∞

∑
t=1

E
{

p̄(Xt+1, y)
k(X1, X2)

p(X1, X2)

}
and let C be the operator in (15) corresponding to p. If HL and assumption 3.1 both hold, then
{Yn} converges in distribution to N(τ, C).
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REMARK 3.4 Theorem 3.2 implies non-trivial power for the test (19) whenever τ 6= 0.
The reason is that the test statistic is the squared norm of Yn. In the proof of theorem 3.1
it is shown that under H0 the sequence {Yn} converges in distribution to N(0, C). The-
orem 3.2 tells us that under HL it converges instead to N(τ, C).

In assumption 3.1 and in the definition of τ in theorem 3.2, the expectation is taken
under H0. The exact meaning of the claim in theorem 3.2 can be clarified as follows: Let
(Ωn, Fn) be the product space Xn := ×n

t=1X with its product σ-algebra, let Xt : Ωn →
X be the projection Xt(x1, . . . , xn) = xt, let Pn be the distribution of (X1, . . . , Xn) over
X

n constructed from p in H0, and let Qn be the distribution onXn constructed from the
local alternative pn. (Construction of Pn and Qn from their respective kernels is via the
standard definition—see, e.g., Meyn and Tweedie, ch. 3, 2009.) The claim in theorem 3.2
is that, for all continuous bounded g : L2 → R, we have

∫
g(Yn)dQn →

∫
gdν as n →

∞, where ν is the L2 Gaussian N(τ, C).

The proof of theorem 3.2 uses a contiguity argument, based on an Hilbert space exten-
sion of Le Cam’s third lemma. All additional details are given in section 7.

3.3. Simulation of ψ

In applications, the stationary density ψ that forms part of the test statistic (18) may be
intractable. In this case, one possibility is to approximate ψ via simulation. To imple-
ment this idea, consider again the setting of theorem 3.1. Fix k ∈ N, and let {X′t}kn

t=1
be a simulated p-Markov sequence that is independent of the data {Xt}n

t=1. For each
k ∈ Nwe have the following result:

THEOREM 3.3 Let {Z`}`≥1 be an IID sequence of standard normal random variables. If the
conditions of theorem 3.1 hold, then, as n→ ∞,

(20)
1
n

∫ { n

∑
t=1

p(Xt, y)− 1
k

nk

∑
t=1

p(X′t, y)

}2

dy d→ (1 + 1/k)
∞

∑
`=1

λ`Z2
`

In particular, the limit (1 + 1/k)∑∞
`=1 λ`Z2

` of the simulation-based test statistic con-
verges almost surely to that of the original test statistic (29) as the length of the simu-
lation run converges to infinity.

4. A SPECIFICATION TEST FOR PARAMETRIC CLASSES

The test (19) corresponds to the simple null H0 in (17), and represents a goodness of
fit test for individual models. This test is mainly of theoretical interest. A more prac-
tical setting is where we have a parametric class of models, and we wish to test the
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hypothesis that the data is generated by some model in this class. In this case we need
to augment our asymptotic theory to accommodate estimates of parameters.

4.1. The Test

Let Θ be a compact convex subset of RM, and let {pθ}θ∈Θ be a parametric family of
density kernels, all satisfying assumption 2.1. Let ψθ be the unique stationary den-
sity corresponding to pθ. When convenient, we write p(θ, x, y) instead of pθ(x, y), and
ψ(θ, y) in place of ψθ(y). In addition, let

p̄(θ, x, y) := p(θ, x, y)− ψ(θ, y) (θ ∈ Θ, (x, y) ∈ X×X)

Finally, we use the following notation: For each θ ∈ Θ,

• C(θ) is the operator (15) corresponding to pθ, and
• (λ`(θ))`≥1 is the sequence of eigenvalues for C(θ), as defined by (16).

Consider the null hypothesis

(21) H0 : the data {Xt}n
t=1 is pθ-Markov for some θ ∈ Θ

When the null is assumed to hold, we let θ0 ∈ Θ denote the true value of θ. In the
assumptions that follow, ‖ · ‖E denotes the Euclidean norm in RM, as opposed to ‖ · ‖,
the norm in L2, and V is the function corresponding to p(θ0, ·, ·) in assumption 2.1.

ASSUMPTION 4.1 There exists a open neighborhood U of θ0 such that the vector of
partial derivatives

Dp̄(θ, x, y) := [Dm p̄(θ, x, y)]Mm=1 :=
[

∂

∂θm
p̄(θ, x, y)

]M

m=1

exists for x, y ∈ X×X and all θ ∈ U.

ASSUMPTION 4.2 There exists a function K1 : X×X→ R with
∫

K1(x, y)2dy ≤ V(x)
and ‖Dp̄(θ0, x, y)‖E ≤ K1(x, y) for all (x, y) ∈ X×X.

ASSUMPTION 4.3 There exists an α > 0 and K2 : X×X → R with
∫

K2(x, y)2dy ≤
V(x) and ‖Dp̄(θ, x, y) − Dp̄(θ′, x, y)‖E ≤ K2(x, y)‖θ − θ′‖α

E for all θ, θ′ ∈ U and all
(x, y) ∈ X×X.

We can now state our main result concerning asymptotic distributions:
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THEOREM 4.1 Let {θ̂n} be a
√

n-consistent sequence of estimators for θ0, in the sense that
(θ̂n − θ0) = OP(n−1/2) whenever H0 is true. Let {Z`}`≥1 be an IID sequence of standard
normal random variables, and let assumptions 4.1–4.3 all hold. Under the null hypothesis H0

we have

(22) n
∫ { 1

n

n

∑
t=1

p̄(θ̂n, Xt, y)

}2

dy d→
∞

∑
`=1

λ`(θ0)Z2
` as n→ ∞

For each θ ∈ Θ, let cα(θ) be the 1− α quantile of the random variable ∑∞
`=1 λ`(θ)Z2

` ,
where (Z`)`≥1 is IID and standard normal. In view of theorem 4.1, a test rejecting H0

when the left-hand side of (22) exceeds cα(θ0) is asymptotically of size α. However, θ0

is not observable, and hence cα(θ0) cannot be evaluated. Instead, we approximate it
with cα(θ̂n). This gives the test

(23) Reject H0 if
1
n

∫ { n

∑
t=1

p̄(θ̂n, Xt, y)

}2

dy > cα(θ̂n)

THEOREM 4.2 If the conditions of theorem 4.1 hold and cα is continuous at θ0, then the test
(23) is asymptotically of size α.

REMARK 4.1 The critical value cα(θ̂n) in (23) can be computed by the numerical meth-
ods discussed in section (3.1), replacing p with pθ̂n

.

REMARK 4.2 As mentioned in the introduction and verified in theorem 4.1, a conve-
nient feature of this test is that the asymptotic distribution of the test statistic does not
depend on the asymptotic distribution of

√
n(θ̂n − θ0).

4.2. Consistency of the Test

The test (23) is not consistent against all alternatives in the negation of the null hy-
pothesis specified in (21). In essence, the test compares Markov models by their sta-
tionary distribution, and models with identical stationary distributions cannot be dis-
tinguished. However, if we consider our test as an infinite dimension Hansen–Sargan
test, with null hypothesis given in 5, and the alternative by

H1 : inf
θ∈Θ
‖E p̄(θ, Xt, ·)‖ > 0

then the test becomes consistent whenever the following assumptions hold:

ASSUMPTION 4.4 Under H1, the sequence {Xt} is stationary and ergodic. In particu-
lar, the sample mean 1

n ∑n
t=1 h(Xt) converges in probability to the expectation Eh(Xt)

for all measurable h : X→ L2 such that Eh(Xt) exists.
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FIGURE 3.— Rejection frequency, nonstationary alternative

ASSUMPTION 4.5 The sequence θ̂n converges in probability under H1.

ASSUMPTION 4.6 The vector of partial derivatives Dp(θ, x, y) exists for all x, y in X
and all θ ∈ Θ. Moreover, there exists a function Λ : X×X→ R such that E

∫
Λ(Xt, y)2dy

is finite under H1 and ‖Dp(θ, x, y)‖E ≤ Λ(x, y) for all (x, y) ∈ X×X and θ ∈ Θ.

ASSUMPTION 4.7 The expectation E
∫

p(θ, Xt, y)2dy is finite under H1 for all θ ∈ Θ.

THEOREM 4.3 If H1 is valid and assumptions 4.4–4.7 hold, then the probability that the test
(23) rejects H0 converges to one as n→ ∞.

The proof of theorem 4.3 can be found in section 7. Note that the conditions of the the-
orem are sufficient but by no means necessary for consistency. While assumption 4.4
requires a stationary and ergodic alternative, intuition suggests that most nonstation-
ary alternatives are likely to be rejected with probability one when the sample size
is large. For example, let p in H0 be the fixed kernel given by (14), and for the alter-
native take the same model but with κ = 0. The rejection probabilities for data sizes
n = 50, 100, 150, 200 are shown in figure 3. By n = 200 the rejection probability is one.12

12Rejection probabilities were calculated by averaging over 2,000 observations.



A GOODNESS OF FIT TEST FOR ERGODIC MARKOV PROCESSES 17

5. DISCUSSION

In this section we present simulations that illustrate several features of the test.

5.1. Properties of the Test under H0

In the introduction we indicated the similarities between our test and the test pro-
posed by Aı̈t-Sahalia (1996), both of which evaluate ergodic Markov models based on
L2 comparison of densities. Aı̈t-Sahalia’s test is a seminal contribution to the literature
and his results have initiated an important line of research. However, it was argued
by Pritsker (1998) that Aı̈t-Sahalia’s test statistic requires very large data sizes to attain
its asymptotic distribution, causing excessively high rejection rates both under the null
and under the alternative when the asymptotic critical value is adopted.

Our test provides a new perspective on this problem. On one hand, our test imple-
ments essentially the same idea as Aı̈t-Sahalia’s test (i.e, comparison of stationary den-
sities using L2 norm). On the other hand, intuition suggests that it will have lower size
distortion in finite samples, since our test statistic contains information about the au-
tocorrelation structure of the null via the density kernel p, and the test has nontrivial
power against 1/

√
n local alternatives (theorem 3.2).

To investigate this idea and compare size distortions in our test and Aı̈t-Sahalia’s test,
we conducted an experiment to re-examine the critique of Pritsker (1998). The exper-
iment investigated rejection rates under a true null when the sample size is relatively
small and the asymptotic critical value is used. Following Pritsker, the underlying
model in the experiment was the Vasicek model of interest rates. For the DGP that
generates the data {Xt} we chose the particular Vasicek model given in (14), while for
H0 we hypothesed (correctly) that the data was generated by some Vasicek model.

Beginning with Aı̈t-Sahalia’s test, we computed the asymptotic critical value of the test
(see Aı̈t-Sahalia, 1996, p. 393) when α = 0.05, set n = 264 (corresponding to 22 years
of monthly observations), generated 2,000 time series of length n from the DGP, and
evaluated the test on each time series. Consistent with Pritsker (1998), we found that
Aı̈t-Sahalia’s test rejected the true null in over 50% of our samples.13 On the other hand,
when we repeated the experiment with our test in place of Aı̈t-Sahalia’s test, our test
rejected the true null in 4.7% of our samples. Thus, at least for this particular problem,
the size distortion was essentially resolved by our test.14

13The bandwidth used was the optimal bandwidth for estimating the stationary density of the Vasicek
model with the true parameters. We experimented with other bandwidths but all choices gave a rejection
rate in excess of 50%.

14As with Aı̈t-Sahalia’s test, we took α = 0.05 and n = 264. The DGP was the particular Vasicek
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5.2. Properties of the Test under H1

Next, we ran an experiment to study the power of our test. As above, we took H0 as the
hypothesis that the data was generated by some model in the Vasicek class. We then
generated data using the level effects interest rate model

(24) dXt = κ(b− Xt)dt + σXδ
t dBt (0 ≤ δ ≤ 0.5)

for different values of δ, and other parameters held fixed at the values given in (14).
When δ = 0 the Vasicek null hypothesis is true. For all other values of δ the null hy-
pothesis is false. If δ = 1/2, then (24) corresponds to the CIR model of Cox, Ingersoll
and Ross (1985). Fixing n = 264 and α = 0.05, we computed the power function with
for values of δ ranging over the interval [0, 0.5]. The results are shown as the unbroken
line in Figure 4. As δ→ 0.5, the power converges to one.15

For comparison, we also ran a conditional moment test of the same null hypothesis,
with the same sample size and the data generated by the same set of alternatives. After
estimating the parameters of the Vasicek model using maximum likelihood and then
running the regression

∂L(Xt+1, Xt)

∂σ
= β0 + β1Xt + ut+1

where L(Xt+1, Xt) is the log likelihood of (Xt+1, Xt), we conducted a two-sided test
of β1 = 0, an equality that holds whenever the Vasicek null hypothesis is true.16 This
test was repeated 2,000 times at each δ, and the resulting rejection rates are shown as
the dashed line in figure 4. For this particular experiment, the power of the conditional
moment test is much lower than that of the test proposed in this paper.17

model given in (14), while H0 was that the data was generated by some Vasicek model. In running
the experiment, we first computed the critical value cα on the right-hand side of (23) for α = 0.05,
using algorithm 1 applied to the baseline Vasicek density kernel with parameters given in (14). (Since
we wanted to compute the asymptotic critical value, we used the exact parameter values rather than
estimates. When applying algorithm 1, we set M = 2500 and T = 105.) Next we simulated 2,000 times
series {X}n

t=1 from the DGP, where n = 264. For each of these time series, we used OLS to obtain an
estimate θ̂n for the vector of parameters of the Vasicek model. With the resulting density kernel pθ̂n

, we
evaluated the test statistic on the left-hand side of (23) and compared it to the critical value. Of the 2,000
times series we generated, 4.7% of the test outcomes were rejections.

15Figure 4 gives the rejection frequency over 2,000 simulated time series . At each iteration, parameters
of the Vasicek model were estimated from the time series using OLS, and the test given in (23) was
evaluated. Since OLS estimates are consistent for the parameters of the Vasicek model under the null,
theorem 4.1 applies.

16Further discussion of the test is given in Pritsker (1998, p. 462).
17In the conditional moment test we used a standard t-test with OLS standard errors. Following

Pritsker, we also repeated our experiment with GMM standard errors but obtained almost identical
results. (The power of the test was slighty lower.)
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FIGURE 4.— Power against level effects model when α = 0.05 and n = 264

These results are interesting for two reasons. First, Pritsker’s results led him to con-
clude that the conditional moment test was “far more powerful [than Aı̈t-Sahalia’s test]
for distinguishing between the Vasicek null hypothesis and the CIR alternative.” He
went on to say that “The modest power of Aı̈t-Sahalia’s test suggests that the marginal
[stationary] density may not be estimated precisely enough for a test based on the
marginal density alone to be able to distinguish among various short rate models”
(Pritsker, 1989, p. 462). While our results in no way contradict Pritsker’s findings, they
do appear to validate Aı̈t-Sahalia’s intuition that tests based on the stationary density
can be useful to distinguish between short rate models.

A second point of interest is that the conditional moment test was chosen by Pritsker
because the structure of the test suggests that it should be powerful when testing a Va-
sicek null against a CIR alternative (Pritsker, 1989, p. 462). On the other hand, our test is
a general test, which is not weighted towards any particular alternative. Nevertheless,
at least for these parameter values, the power of our test is much higher.

In fact, we can further increase the power of our test against particular alternatives by
using a weighting function. Recall that, although we used the symbols dx, dy to in-
dicate integration, these symbols were introduced as short hand for the more general
expressions µ(dx), µ(dy), where µ is an arbitrary σ-finite measure. (See the discussion
at the start of section 2.) If we take µ(dy) = w(y)λ(dy) where λ is Lebesgue measure



20 VANCE MARTIN, YOSHIHIKO NISHIYAMA AND JOHN STACHURSKI

0.0 0.1 0.2 0.3 0.4 0.5
level effects parameter δ

0.0

0.2

0.4

0.6

0.8

1.0

unweighted
weighted

FIGURE 5.— Comparison of weighted and unweighted tests

and w is a nonnegative Lebesgue-integrable function, then all of our theory remains
valid. Implementation requires only that dy is replaced by w(y)dy in (23) and algo-
rithm 1. The function w can be used as a weight function to direct power towards
certain alternatives. For example, in the dashed line in figure 5, we show the effect
of using the stationary density of the CIR model as the weight function w. (All other
aspects of the experiment were identical to the unweighted case that was used to pro-
duce in the unbroken line shown in figure 4. The same line is replicated in figure 5.) As
can be seen from figure 5, use of the CIR stationary density as a weight function leads
to a considerable increase in power against the level effect alternatives.18

6. CONCLUSION

In this paper we proposed a natural goodness of fit test for ergodic Markov processes.
The test can be used to test the hypothesis that a given time series is generated by a
parametric class of ergodic Markov models. No alternative needs to be specified in
order to implement the test. Although the test is based on comparison of densities,
the test statistic contains no smoothing parameters, and the test has nontrivial power

18The stationary distribution of the CIR model is gamma with shape parameter 2κb/σ2 and scale
parameter σ2/(2κ). We used the values in (14) for the weight function.
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against 1/
√

n local alternatives. While the test is not distribution free, the critical value
can be computed consistently by simulation, and the asymptotic distribution of the test
does not depend on the asymptotic distribution of the parameter estimators. Simula-
tions in section 5 showed favorable finite sample properties.

In section 5 we briefly discussed the possibility of using weighting functions to obtain
additional power against certain alternatives. The ability to apply different weighting
functions should add to the usefulness of the test. Further investigation of this topic is
left to future research.

7. PROOFS

We begin with a brief discussion of random variables in a separable Hilbert space H .
An H -valued random variable F on (Ω, F , P) is a measurable map from (Ω, F ) into
H paired with its Borel sets. If E‖F‖ < ∞, where E is the ordinary scalar expecta-
tion, then the (Pettis vector) expectation EF of F is the unique element of H satisfying
〈EF, h〉 = E〈F, h〉 for all h ∈ H .19 If E‖F‖2 < ∞ and EF = 0, then its covariance
operator C : H →H is defined by Ch = E〈F, h〉F for h ∈H . Equivalently,

(25) 〈g, Ch〉 = E〈g, F〉〈h, F〉 (g, h ∈H )

Any covariance operator is linear, positive, symmetric and Hilbert-Schmidt.20

An H -valued random variable G is called Gaussian if 〈h, G〉 is normally distributed
on R for every h ∈ H . We say that G ∼ N(m, C) if G is Gaussian on H with mean
m ∈ H and covariance operator C. This is known to be equivalent to the statement
E exp(i〈h, G〉) = exp{i〈h, m〉 − 〈h, Ch〉/2} for all h ∈ H , from which it is simple to
obtain the characterization

(26) G ∼ N(m, C) on L2 ⇐⇒ 〈G, h〉 ∼ N(〈h, m〉, 〈h, Ch〉) for all h ∈H

PROOF OF LEMMA 2.1: Evidently (12) implies that p(x, ·) ∈ L2 for each x ∈ X. Re-
garding the claim that ψ ∈ L2, the definition of stationarity and Jensen’s inequality
give ∫

ψ(y)2dy =
∫ [∫

p(x, y)ψ(x)dx
]2

dy ≤
∫ ∫

p(x, y)2ψ(x)dx dy

From assumption 2.1 and (11), we then have∫
ψ(y)2dy ≤

∫ ∫
p(x, y)2dyψ(x)dx ≤

∫
V(x)ψ(x)dx < ∞

19Here E and E denote scalar and vector-valued expectation respectively. Existence of EF follows
directly from the Riesz representation theorem.

20For definitions and a proof see, for example, Bosq (2000, theorem 1.7).
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We can now see that p̄(x, ·) ∈ L2 for any x ∈ X, because

‖ p̄(x, ·)‖ = ‖p(x, ·)− ψ(·)‖ ≤ ‖p(x, ·)‖+ ‖ψ‖

To show that p(X, ·) is an L2-valued random variable, we need to prove that Ω 3 ω 7→
p(X(ω), ·) ∈ L2 is also measurable, in the sense that preimages of Borel subsets of
L2 are measurable in Ω. Since L2 is separable, it follows from the Pettis measurability
theorem that any mapping Ω 3 ω 7→ g(ω) ∈ L2 is measurable whenever Ω 3 ω 7→
〈g(ω), h〉 ∈ R is measurable for each h ∈ L2. Using this fact, the measurability of
ω 7→ p(X(ω), ·) is easily verified. This concludes the proof of lemma 2.1. Q.E.D.

For the proof of theorem 3.1, we need the preliminary result that if X ∼ ψ, then
E p̄(X, ·) = 0. Taking X ∼ ψ, this amounts to the claim that, for any h ∈ L2 we have

E
∫

p̄(X, y)h(y)dy = 0

Note that for each y ∈ Xwe have

(27) E p̄(X, y) =
∫

p(x, y)ψ(x)dx− ψ(y) = ψ(y)− ψ(y) = 0

As a consequence, if Fubini’s theorem is valid, then

(28) E
∫

p̄(X, y)h(y)dy =
∫

E p̄(X, y)h(y)dy = 0

as claimed. To check the validity of Fubini’s theorem, observe that∫
| p̄(x, y)h(y)|dy ≤ ‖ p̄(x, ·)‖‖h‖ ≤ (‖p(x, ·)‖+ ‖ψ‖)‖h‖

Applying assumption 2.1 and (11), we obtain

E‖p(X, ·)‖ ≤
[

E
∫

p(X, y)2dy
]1/2

≤
[∫

V(x)ψ(x)dx
]1/2

< ∞

Hence E
∫
| p̄(X, y)h(y)|dy < ∞, and Fubini’s theorem is valid.

LEMMA 7.1 If {Xt} is a V-uniformly ergodic Markov process on X, then Mt = (Xt, Xt+1)

is a V-uniformly ergodic Markov process on X×X.

PROOF: To see that {Mt} is Markov, pick any bounded measurable h : X×X → R.
We have

E[h(Mt) |Mt−1, . . . , M1] = E[h(Xt, Xt+1) |Xt, Xt−1, . . . , X1]
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Applying the Markov property of {Xt}, the right-hand side of this equation is equal to
E[h(Xt, Xt+1) |Xt, Xt−1]. Hence {Mt} is Markov as claimed, since we have shown that

E[h(Mt) |Mt−1, . . . , M1] = E[h(Mt) |Mt−1]

Next consider ergodicity. By assumption, {Xt} is V-uniformly ergodic, and hence there
exists a function V : X→ [1, ∞) such that (10) holds.21 Given this function V, define V̂
on X2 by V̂(x, y) = V(y). Pick any h : X2 → R such that |h| ≤ V̂. Fix (x1, x2) ∈ X. Let
ψt be the marginal density of Xt when X2 = x2. Observing that ψ̂(x, y) = ψ(x)p(x, y)
is the stationary density of {Mt} and ψ̂t(x, y) = ψt(x)p(x, y) is the marginal density of
Mt given M1 = (x1, x2), we then have∣∣∣∣∫ hψ̂t −

∫
hψ̂

∣∣∣∣ = ∣∣∣∣∫ ∫
h(x, y)ψt(x)p(x, y)dxdy−

∫ ∫
h(x, y)ψ(x)p(x, y)dxdy

∣∣∣∣
=

∣∣∣∣∫ gψt −
∫

gψ

∣∣∣∣
for g(x) :=

∫
h(x, y)p(x, y)dy. Since

|g(x)| ≤
∫
|h(x, y)|p(x, y)dy ≤

∫
V(y)p(x, y)dy ≤ cV(x)

for some constant c,22 we can apply the definition of V-uniform ergodicity of {Xt} to
obtain ∣∣∣∣∫ hψ̂t −

∫
hψ̂

∣∣∣∣ = ∣∣∣∣∫ gψt −
∫

gψ

∣∣∣∣ = c
∣∣∣∣∫ (g/c)ψt −

∫
(g/c)ψ

∣∣∣∣ ≤ c‖ψt − ψ‖V

Since h is an arbitrary function satisfying |h| ≤ V̂, this implies that

‖ψ̂t − ψ̂‖V̂ ≤ c‖ψt − ψ‖V

Dividing through by V̂(x1, x2), we obtain

‖ψ̂t − ψ̂‖V̂

V̂(x1, x2)
≤ c
‖ψt − ψ‖V

V̂(x1, x2)
= c
‖ψt − ψ‖V

V(x2)
≤ c sup

x2∈X

‖ψt − ψ‖V

V(x2)

Taking the sup of the left hand side over all (x1, x2) inX2, and observing that the right-
hand side converges to zero in t by V-uniform ergodicity of {Xt}, we conclude that
{Mt} is V̂-uniformly ergodic. Q.E.D.

21See Meyn and Tweedie (2009, chapter 16, p. 392) for the definition of V-uniform ergodicity.
22Since {Xt} is V-uniformly ergodic, existence of this constant c may be obtained by appealing to

Meyn and Tweedie (2009, theorem 16.0.1 part (iv) and the bound (V4) on p. 376).
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7.1. Theorems 3.1 and 3.3

PROOF OF THEOREM 3.1: We begin the proof by showing that

(29) n−1/2
n

∑
t=1

p̄(Xt, ·)
d→ ∑

`≥1
λ1/2
` Z`v`

in L2.23 To simplify notation, let F(Xt) := p̄(Xt, ·). We have established that F(Xt) is an
L2-valued random variable satisfying EF(Xt) = 0 and ‖F(x)‖2 ≤ V(x) for all x ∈ X.
By Stachurski (2010, theorem 3.1), we have

(30) n−1/2
n

∑
t=1

F(Xt)
d→ N(0, C0) (n→ ∞)

where the covariance operator C0 is defined by

(31) 〈g, C0h〉 = E〈g, F(X∗1)〉〈h, F(X∗1)〉
+ ∑

t≥2
{E〈g, F(X∗1)〉〈h, F(X∗t )〉+ E〈h, F(X∗1)〉〈g, F(X∗t )〉}

Here g and h are arbitrary elements of L2, and {X∗t } is any stationary p-Markov process.
We claim that C0 = C, the operator defined in (15). This amounts to the claim that
〈g, C0h〉 = 〈g, Ch〉 for any such g and h, or

〈g, C0h〉 =
∫ ∫

γ(y, y′)g(y)h(y′)dydy′

where γ is the function in (13). To verify this, pick any g, h ∈ L2, and define

κst(y, y′) :=
∫

p̄s(x, y) p̄t(x, y′)ψ(x)dx

Letting 〈g, κsth〉 :=
∫ ∫

g(y)κst(y, y′)h(y′)dydy′ and using the definition of γ in (13), we
can now write∫ ∫

γ(y, y′)g(y)h(y′)dydy′ = 〈g, κ11h〉+ ∑
t≥2
{〈g, κ1th〉+ 〈g, κt1h〉}

We need to show that the individual terms in this expression agree with the corre-
sponding terms on the right-hand side of (31). We will only check that

(32) 〈g, κ1th〉 = E〈g, F(X∗1)〉〈h, F(X∗t )〉
23As usual, if E is a metric space, then a sequence of E-valued random variables (Yn) converges in

distribution to an E-valued random variable Y if Eg(Yn)→ g(Y) for every continuous bounded g : E→
R. The limit on the right-hand side of (29) is an L2 limit, and the following proof shows that this limit
exists almost surely.
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since other terms are similar. By the law of iterated expectations, we have

(33) E〈g, F(X∗1)〉〈h, F(X∗t )〉 = E[〈g, F(X∗1)〉E[〈h, F(X∗t )〉 |X∗1 ]]

Using the Markov property, we see that E[〈h, F(X∗t )〉 |X∗1 ] is equal to∫
〈h, F(z)〉pt−1(X∗1 , z)dz =

∫ ∫
h(y) p̄(z, y)dypt−1(X∗1 , z)dz

=
∫

h(y)
[∫

p̄(z, y)pt−1(X∗1 , z)dz
]

dy

Applying the definition of the k-th order density, we obtain∫
p̄(z, y)pt−1(X∗1 , z)dz =

∫
{p(z, y)− ψ(y)}pt−1(X∗1 , z)dz

=
∫

p(z, y)pt−1(X∗1 , z)dz− ψ(y) = p̄t(X∗1 , y)

Combining these equalities, we have now shown that

E[〈h, F(X∗t )〉 |X∗1 ] =
∫

h(y) p̄t(X∗1 , y)dy

Inserting into (33) and using the definition of κ1t, we now have

E〈g, F(X∗1)〉〈h, F(X∗t )〉 = E
[∫

g(y) p̄(X∗1 , y)dy
∫

h(y′) p̄t(X∗1 , y′)dy′
]

=
∫ [∫ ∫

p̄(x, y) p̄t(x, y′)g(y)h(y′)dydy′
]

ψ(x)dx

=
∫ ∫ [∫

p̄(x, y) p̄t(x, y′)ψ(x)dx
]

g(y)h(y′)dydy′

=
∫ ∫

κ1t(y, y′)g(y)h(y′)dydy′ = 〈g, κ1th〉

The proof of (32) is now complete.

The preceding argument has shown that C0 = C. Combining this result with (30), we
have shown that

n−1/2
n

∑
t=1

F(Xt) = n−1/2
n

∑
t=1

p̄(Xt, ·)
d→ N(0, C)

To finish the proof of (29), it remains to show that

G := ∑
`≥1

λ1/2
` Z`v` ∼ N(0, C)



26 VANCE MARTIN, YOSHIHIKO NISHIYAMA AND JOHN STACHURSKI

To show that G is a zero-mean Gaussian element of L2, we must show that 〈G, h〉 is
zero-mean Gaussian in R for every h ∈ L2. It suffices to show that this property holds
on an orthonormal subset of L2.24 Choosing (v`) as our orthonormal subset, we have

〈G, v`〉 = ∑
k

λ1/2
k Zk〈vk, v`〉 = λ1/2

` Z` ∼ N(0, λ`)

To prove that G ∼ N(0, C), we also need to prove that C is the covariance operator
of G, or E〈G, g〉〈G, h〉 = 〈g, Ch〉 for any g, h ∈ L2. It suffices to show the same for
h, g ∈ {v`}`∈N. Fixing j, k ∈ N, we have

E〈G, vj〉〈G, vk〉 = Eλ1/2
j Zjλ

1/2
k Zk = λk1{j = k}

On the other hand, since vk is an eigenfunction of C with eigenvalue λk, we have
〈vj, Cvk〉 = 〈vj, λkvk〉 = λk1{j = k}. Hence C is the covariance operator of G, and
G ∼ N(0, C) as claimed.

Finally, consider the claim (18). We have just shown that n−1/2 ∑n
t=1 p̄(Xt, ·)

d→ G. The
continuous mapping theorem and Parseval’s identity now give

1
n

∫ { n

∑
t=1

p̄(Xt, y)

}2

dy =

∥∥∥∥∥n−1/2
n

∑
t=1

p̄(Xt, ·)
∥∥∥∥∥

2
d→ ‖G‖2 =

∞

∑
`=1
〈G, v`〉2 =

∞

∑
`=1

λ`Z2
`

The proof of theorem 3.1 is now complete. Q.E.D.

PROOF OF THEOREM 3.3: Let p and {Xt}n
t=1 be as in (17). Define

(34) ψn(y) :=
1
n

n

∑
t=1

p(Xt, y) and ψ′kn(y) :=
1
n

kn

∑
t=1

p(X′t, y)

Let (U`)`≥1 and (U′`)`≥1 be mutually independent IID sequences of standard normal
random variables. Fix k ∈ N, and consider the decomposition

n1/2(ψn − ψ′kn) = n1/2(ψn − ψ)− k−1/2(kn)1/2(ψ′kn − ψ)

Note that n1/2(ψn − ψ) and (kn)1/2(ψ′kn − ψ) are independent random functions in L2.
By theorem 3.1, we have

n1/2(ψn − ψ)
d→∑

`

λ1/2
` U`v` and (kn)1/2(ψ′kn − ψ)

d→∑
`

λ1/2
` U′`v`

24Let (e`) be any orthonormal subset of L2, and suppose that 〈G, e`〉 is zero-mean Gaussian in R for
each ` ∈ N. Pick any h ∈ L2. Then 〈G, h〉 = ∑`〈G, e`〉〈h, e`〉. The right-hand side is the almost sure limit
of zero mean Gaussians, and hence is itself zero-mean Gaussian.
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By independence and continuity of addition and scalar multiplication in L2, we then
have

n1/2(ψn − ψ′nk)
d→∑

`

λ1/2
` U` − k−1/2 ∑

`

λ1/2
` U′`v` = ∑

`

λ1/2
` (U` − k−1/2U′`)v`

Applying the continuous mapping theorem and the Pythagorean law, we obtain

n‖ψn − ψ′nk‖2 d→ ‖∑
`

λ1/2
` (U` − k−1/2U′`)v`‖2 = ∑

`

λ`(U` − k−1/2U′`)
2

The left-hand side of this equation is equal to the left-hand side of (20). Moreover, if
Z` is standard normal, then (1 + 1/k)Z2

` and (U` − k−1/2U′`)
2 have the same law. This

completes the proof of (20). Q.E.D.

7.2. Local Alternatives: Theorem 3.2

Let H be defined as L2 ×R, with inner product

〈g, h〉 = 〈g1, h1〉+ g2h2 (g = (g1, g2) and h = (h1, h2))

(Here 〈g, h〉 is the inner product in H and 〈g1, h1〉 is the inner product in L2. The no-
tation does not distinguish between them, but the meaning will be clear from context.)
With the norm ‖h‖ =

√
〈h, h〉, the space H is a Hilbert space, and the norm topology

of H corresponds to the product topology of L2 ×R.

The next result is an extension of the Cramér-Wold theorem to H :

LEMMA 7.2 Let Un := (Yn, `n) be a random sequence in H , where Yn is a random element
of L2 and `n is a random variable for all n. Let U be a Gaussian random element of H with
distribution N(m, S). If {Yn} is tight in L2 and

〈Un, h〉 d→ N(〈h, m〉, 〈h, Sh〉) in R for all h ∈H

then Un
d→ U in H .

PROOF: Suppose for the moment that {Un} is tight in H . In this case, to show that
Un converges in distribution to U in H , we need only show that 〈Un, h〉 converges in
distribution to 〈U, h〉 in R for all h ∈ H (Bosq, 2000, theorem 2.3). This is immediate
from the hypotheses of the lemma and the characterization (26), which tells us that
〈U, h〉 has distribution N(〈h, m〉, 〈h, Sh〉).

It remains to show that {Un} is tight in H . To see that this is so, note that, as required
in the lemma, 〈Un, h〉 converges in distribution for all h ∈ H . Choosing h = (0, 1), we
see that `n converges in distribution, and is therefore tight.
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Now fix ε > 0. Since {Yn} and {`n} are both tight, we can find compact sets Ka ⊂ L2

and Kb ⊂ R with P{Yn /∈ Ka} < ε/2 and P{`n /∈ Kb} < ε/2 for all n. The set Ka × Kb
is compact in the product topology on H , and we have

P{Un /∈ Ka × Kb} ≤ P{Yn /∈ Ka} ∪ {`n /∈ Kb} ≤ P{Yn /∈ Ka}+ P{`n /∈ Kb} < ε

We conclude that {Un} is tight in H , completing the proof of lemma 7.2. Q.E.D.

LEMMA 7.3 Let Yn, Qn and Pn be as defined in section 3.2, let

r(x, y) :=
k(x, y)
p(x, y)

, σ2 := Er(Xt, Xt+1)
2 =

∫
r(Xt, Xt+1)

2dPn

and let `n : Xn → R be the log likelihood ratio

`n = log
dQn

dPn
= log

{
∏n

t=2 pn(Xt−1, Xt)

∏n
t=2 p(Xt−1, Xt)

}
If Un := (Yn, `n) and U = (Y, `) has distribution N(m, S) for m = (0,−σ2/2) and S
satisfying

〈h, Sh〉 = 〈h1, Ch1〉+ 2〈τ, h1〉h2 + h2
2σ2 (h = (h1, h2) ∈H )

then Un
d→ U under Pn.

PROOF: In what follows, all probabilities and expectations are evaluated under Pn.
We begin by obtaining a more convenient expression for the likelihood ratio `n. Writing
pt for p(Xt−1, Xt) and kt for k(Xt−1, Xt), we have

`n =
n

∑
t=2
{log(pt + kt/

√
n)− log(pt)}

Expanding the log function around pt yields

`n =
1√
n

n

∑
t=2

kt

pt
− 1

2n

n

∑
t=2

k2
t

p2
t
+

1
3n3/2

n

∑
t=2

k3
t

[pt + λn−1/2 kt]3

For some λ ∈ [0, 1]. Since (Xt−1, Xt) is itself ergodic (see lemma 7.1) and

k3
t

[pt + λn−1/2 kt]3
≤ sup

δ∈[0,1]

|k(Xt−1, Xt)|3
|p(Xt−1, Xt) + δ k(Xt−1, Xt)|3

it follows from assumption 3.1 that 1
n ∑n

t=2 k3
t /[pt + λn−1/2 kt]3 = OP(1), and hence

(35) `n =
1√
n

n

∑
t=2

r(Xt−1, Xt)−
1

2n

n

∑
t=2

r(Xt−1, Xt)
2 + oP(1)
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Now we return to the proof of lemma 7.3. Taking into account lemma 7.2 and the fact
that {Yn} is tight in L2—as implied by the convergence in (29)—it suffices to show that

(36) 〈Un, h〉 d→ N(−h2σ2/2, 〈h1, Ch1〉+ 2〈τ, h1〉h2 + h2
2σ2)

for arbitrary h ∈ H . Fixing such an h = (h1, h2), the definition of Un and our expres-
sion for `n in (35) gives

〈Un, h〉 = 1√
n

n

∑
t=1
〈h1, p̄(Xt, ·)〉+ h2

1√
n

n

∑
t=2

r(Xt−1, Xt)− h2
1

2n

n

∑
t=2

r(Xt−1, Xt)
2 + oP(1)

Since (Xt−1, Xt) is ergodic (lemma 7.1) we have

h2

2
1
n

n

∑
t=2

r(Xt−1, Xt)
2 → h2

σ2

2
in probability

As a result of this convergence and Slutsky’s theorem, the result (36) will be confirmed
if we show that

(37)
1√
n

n

∑
t=2

q(Xt−1, Xt)
d→ N(0, 〈h1, Ch1〉+ 2〈τ, h1〉h2 + h2

2σ2)

for q(Xt−1, Xt) := 〈h1, p̄(Xt, ·)〉+ h2r(Xt−1, Xt). To see that this is indeed the case, ob-
serve first that E〈h1, p̄(Xt, ·)〉 = 0 under H0, as shown in (28), and also that

Er(Xt−1, Xt) =
∫ ∫ k(x, y)

p(x, y)
ψ(x)p(x, y)dxdy =

∫ [∫
k(x, y)dy

]
ψ(x)dx = 0

It follows that Eq(Xt−1, Xt) = 0, and, as a result of V-uniform ergodicity of (Xt−1, Xt)

(lemma 7.1) and the CLT for V-uniformly ergodic Markov processes (Meyn and Tweedie,
2009, theorem 17.0.1), we have

1√
n

n

∑
t=2

q(Xt−1, Xt)
d→ N(0, v), v := Eq(X1, X2)

2 + 2
∞

∑
t=2

Eq(X1, X2)q(Xt, Xt+1)

It remains only to show that v = 〈h1, Ch1〉+ 2〈τ, h1〉h2 + h2
2σ2, which is the right-hand

side of the variance in (37). Prior to proving this, we observe that all of the following
statements are valid, and will be used without comment below:

• Er(X1, X2) = 0 and E[r(Xt, Xt+1) |X1] = 0 for all t ≥ 1.
• E[r(X1, X2)r(Xt, Xt+1)] = 0 for all t ≥ 2.
• E[〈h1, p̄(X1, ·)〉r(Xt, Xt+1) = 0 for all t ≥ 1.
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(The first of these statements has already been established above, and the proofs of the
rest are similar.) Turning now to the evaluation of v, note that

Eq(X1, X2)
2 = E{〈h1, p̄(X1, ·)〉2 + 2〈h1, p̄(X1, ·)〉h2r(X1, X2) + h2

2r(X1, X2)
2}

= E〈h1, p̄(X1, ·)〉2 + h2
2σ2

while, for any given t ≥ 2,

Eq(X1, X2)q(Xt, Xt+1) = E〈h1, p̄(X1, ·)〉〈h1, p̄(Xt, ·)〉+ E〈h1, p̄(Xt, ·)h2r(X1, X2)

As a result, we have

v = E〈h1, p̄(X1, ·)〉2 + 2
∞

∑
t=2

E〈h1, p̄(X1, ·)〉〈h1, p̄(Xt, ·)〉

+ 2
∞

∑
t=2

E〈h1, p̄(Xt, ·)h2r(X1, X2) + h2
2σ2

Applying (31) (and recalling that C0 and C were shown to be equal below that equa-
tion) we obtain

E〈h1, p̄(X1, ·)〉2 + 2
∞

∑
t=2

E〈h1, p̄(X1, ·)〉〈h1, p̄(Xt, ·)〉 = 〈h1, Ch1〉

Finally, using the definition of τ, we obtain v = 〈h1, Ch1〉 + 2〈τ, h1〉h2 + h2
2σ2. This

verifies (37), and completes the proof of lemma 7.3. Q.E.D.

LEMMA 7.4 For `n, ` defined in lemma 7.3, we have `n
d→ ` and E exp(`) = 1 under Pn.

PROOF: We saw in lemma 7.3 that, under Pn, we have 〈h, Un〉
d→ 〈h, U〉 for all h ∈H ,

where U ∼ N(m, S) for m and S defined in lemma 7.3. Specializing to h = (0, 1) obtains
the first claim in lemma 7.4. Regarding the second claim in lemma 7.4, for this same
h we have ` = 〈h, U〉 = N(〈m, h〉, 〈h, Sh〉), and given the definitions of m and S in
lemma 7.3,

N(〈m, h〉, 〈h, Sh〉) = N(−σ2/2, σ2)

∴ E exp(`) = exp
(
−σ2

2
+

σ2

2

)
= 1

when expectation is taken under Pn. This completes the proof. Q.E.D.

We are now ready to complete the proof of theorem 3.2.
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PROOF OF THEOREM 3.2: We saw in lemmas 7.3 and 7.4 that if `n = dQn/dPn is the
log likelihood ratio, then under Pn we have(

Yn

`n

)
d→
(

Y
`

)
∼ N(m, S)

and, moreover, E exp(`) = 1. Applying the abstract version of Le Cam’s third lemma
presented in van der Vaart and Wellner (1996, theorem 3.10.7), we then have

Yn
d→ π under Qn

when π is the probability measure on L2 defined by

π( f ) = E exp(`) f (Y) for all bounded measurable f : X→ R

To complete the proof of theorem 3.2, we need only show that

(38) π := N(τ, C)

To see that this equality holds, let V be a random element on L2 with V ∼ π. In view
of (26), to verify (38) it sufficies to show that, for arbitrary fixed a ∈ L2, we have

(39) 〈a, V〉 ∼ N(〈a, τ〉, 〈a, Ca〉)

To establish (39), observe that, from the definition of π, the moment generating func-
tion of 〈a, V〉 is

M(t) := E exp(t〈a, V〉) = E exp(`) exp(t〈a, Y〉) = E exp(t〈a, Y〉+ `)

If h ∈ H is defined as h = (ta, 1), then 〈h, U〉 is precisely t〈a, Y〉 + `. Since 〈h, U〉 is
always Gaussian, we know that t〈a, Y〉 + ` is Gaussian. Its expectation and variance
are given by

E(t〈a, Y〉+ `) = E〈(ta, 1), U〉 = 〈(ta, 1), m〉 = 〈(ta, 1), (0,−σ2/2)〉 = −σ2/2

and

V〈(ta, 1), U〉 = 〈(ta, 1), S(ta, 1)〉 = t2〈a, Ca〉+ 2t〈τ, a〉+ σ2

where the final expression follows from the definition of S given in the statement of
lemma 7.3. To finish the proof, we observe that, since t〈a, Y〉+ ` is Gaussian with mean
and variance as derived above, we must have

E exp(t〈a, Y〉+ `) = exp
{
−σ2

2
+ t〈τ, a〉+ t2 〈a, Ca〉

2
+

σ2

2

}
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Cancelling the two instances of σ2/2, we find that the moment generating function of
〈a, V〉 is

M(t) = exp
{

t〈τ, a〉+ t2 〈a, Ca〉
2

}
(t ∈ R)

This is precisely the moment generating function for the N(〈a, τ〉, 〈a, Ca〉) distribution,
and hence we have established (39). This completes the proof of theorem 3.2. Q.E.D.

7.3. Theorems 4.1 and 4.2

LEMMA 7.5 Let the conditions of theorem 4.1 hold, and let X be a random variable on X
having distribution ψ(θ0, ·). For all m ∈ {1, . . . , M}, we have

(40) EDm p̄(θ0, X, ·) := E ∂

∂θm p̄(θ0, X, ·) = 0

PROOF: To establish (40), we must first show that the functional expectation EDm p̄(θ0, Xt, ·)
is well defined. A sufficient condition is that

(41) E‖Dm p̄(θ0, X, ·)‖2 =
∫ [∫

Dm p̄(θ0, x, y)2dy
]

ψ(θ0, x)dx < ∞

From assumption 4.2 we have |Dm p̄(θ0, x, y)| ≤ K1(x, y), and hence

(42)
∫

Dm p̄(θ0, x, y)2dy ≤
∫

K1(x, y)2dy ≤ V(x)

From (11) we see that
∫

V(x)ψ(θ0, x)dx is finite, which in turn gives the restriction in
(41).

The second step is to show that EDm p̄(θ0, Xt, ·) = 0. From the definition of the func-
tional expectation, we need to show that

(43) E
∫

Dm p̄(θ0, Xt, y)h(y)dy = 0

for every h ∈ L2. To see this, pick any h ∈ L2. In view of assumption 4.2, Fubini’s
theorem applies, and

E
∫

Dm p̄(θ0, Xt, y)h(y)dy =
∫

E Dm p̄(θ0, Xt, y)h(y)dy

Using assumption 4.2 again, we can interchange expectation and differentiation to ob-
tain

E Dm p̄(θ0, Xt, y) = DmE p̄(θ0, Xt, y) = 0

where the last equality is due to H0 and (27). The validity of (43) is now established.
Q.E.D.
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PROOF OF THEOREM 4.1: Assume the conditions of theorem 4.1. We begin by show-
ing that

(44) n−1/2
n

∑
t=1

p̄(θ̂n, Xt, ·)
d→ ∑

`≥1
λ`(θ0)

1/2Z`v`(θ0)

in L2. To do so, let

Yn(y) := n−1/2
n

∑
t=1

p̄(θ0, Xt, y) and Ŷn(y) := n−1/2
n

∑
t=1

p̄(θ̂n, Xt, y)

Since H0 is assumed true, theorem 3.1 gives Yn
d→ ∑`≥1 λ1/2

` (θ0)Z`v`(θ0). The conver-
gence in (44) amounts to the claim that Ŷn converges in distribution to the same limit.
This will hold whenever

(45) ‖Yn − Ŷn‖
p→ 0 (n→ ∞)

(cf., e.g., Dudley, 2002, lemma 11.9.4). In order to establish (45), we write

(46) p̄(θ̂n, x, y)− p̄(θ0, x, y) = Dp̄(θ0, x, y)>(θ̂n − θ0) + R(θ̂n, x, y)

where R is the remainder term and > indicates inner product in RM. We then have

Ŷn(y)−Yn(y) = n−1/2
n

∑
t=1

[ p̄(θ̂n, Xt, y)− p̄(θ0, Xt, y)]

= n−1/2
n

∑
t=1

[
Dp̄(θ0, Xt, y)>(θ̂n − θ0) + R(θ̂n, Xt, y)

]
Using the triangle inequality for the L2 norm, we obtain

(47) ‖Ŷn −Yn‖ ≤
∥∥∥∥∥n−1/2

n

∑
t=1

Dp̄(θ0, Xt, ·)>(θ̂n − θ0)

∥∥∥∥∥+
∥∥∥∥∥n−1/2

n

∑
t=1

R(θ̂n, Xt, ·)
∥∥∥∥∥

Consider the first term on the right-hand side of (47). Using the triangle inequality
again, we see that this term is bounded above by

M

∑
m=1
|θ̂m

n − θm
0 |
∥∥∥∥∥n−1/2

n

∑
t=1

Dm p̄(θ0, Xt, ·)
∥∥∥∥∥ =

M

∑
m=1
|θ̂m

n − θm
0 |n1/2

∥∥∥∥∥ 1
n

n

∑
t=1

Dm p̄(θ0, Xt, ·)
∥∥∥∥∥

Fix m ∈ {1, . . . , M}. From lemma 7.5, (42) and the CLT of Stachurski (2010), the se-
quence of random elements n1/2 1

n ∑n
t=1 Dm p̄(θ0, Xt, ·) converges in distribution to a
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centered Gaussian in L2. Applying the continuous mapping theorem, the norm of this
random function also converges in distribution, and hence

n1/2

∥∥∥∥∥ 1
n

n

∑
t=1

Dm p̄(θ0, Xt, ·)
∥∥∥∥∥ = OP(1)

Since |θ̂m
n − θm

0 | = oP(1) by assumption, we then have

|θ̂m
n − θm

0 |n1/2

∥∥∥∥∥ 1
n

n

∑
t=1

Dm p̄(θ0, Xt, ·)
∥∥∥∥∥ = oP(1)OP(1) = oP(1)

for each m ∈ {1, . . . , M}.

∴
M

∑
m=1

n1/2|θ̂m
n − θm

0 |
∥∥∥∥∥ 1

n

n

∑
t=1

Dm p̄(θ0, Xt, ·)
∥∥∥∥∥ = oP(1)

We have now shown that the first term on the right-hand side of (47) is oP(1). It remains
to show that the second term is also oP(1). In other words, we aim to show that

(48)

∥∥∥∥∥n−1/2
n

∑
t=1

R(θ̂n, Xt, ·)
∥∥∥∥∥ = op(1)

Using the mean value theorem, we can write

R(θ̂n, Xt, y) = {Dp̄(θ̃, Xt, y)− Dp̄(θ0, Xt, y)}>(θ̂n − θ0)

where θ̃ lies on the line segment between θ0 and θ̂n. It follows that∣∣∣∣∣n−1/2
n

∑
t=1

R(θ̂n, Xt, y)

∣∣∣∣∣ =
[

1
n

n

∑
t=1
{Dp̄(θ̃, Xt, y)− Dp̄(θ0, Xt, y)}

]>
n1/2(θ̂n − θ0)

Applying the Cauchy-Schwartz inequality in RM, we obtain

(49)

∣∣∣∣∣n−1/2
n

∑
t=1

R(θ̂n, Xt, y)

∣∣∣∣∣ ≤ Fn(y) n1/2‖θ̂n − θ0‖E

where ‖ · ‖E is the norm in RM, and

Fn(y) :=

∥∥∥∥∥ 1
n

n

∑
t=1
{Dp̄(θ̃, Xt, y)− Dp̄(θ0, Xt, y)}

∥∥∥∥∥
E
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From (49) we obtain the L2 norm inequality∥∥∥∥∥n−1/2
n

∑
t=1

R(θ̂n, Xt, ·)
∥∥∥∥∥ ≤ ‖Fn‖ ·OP(1)

Hence, to establish (48), it suffices to prove that ‖Fn‖ = oP(1). By the definition of Fn,
we have

‖Fn‖ ≤
1
n

n

∑
t=1

[∫
‖Dp̄(θ̃, Xt, y)− Dp̄(θ0, Xt, y)‖2

E dy
]1/2

Let U be an open ball centered on θ0 defined in assumption 4.3. Note from the defini-
tion of θ̃ that θ̃ ∈ U whenever θ̂n ∈ U. As a result, on the set {θ̂n ∈ U} we have

‖Fn‖ ≤
1
n

n

∑
t=1

[∫
K2(Xt, y)2 dy ‖θ̃ − θ0‖2α

E

]1/2

≤ ‖θ̃ − θ0‖α
E

1
n

n

∑
t=1

V(Xt)
1/2 ≤ ‖θ̂n − θ0‖α

E
1
n

n

∑
t=1

V(Xt)
1/2

Fixing δ > 0, we have

P{‖Fn‖ > δ} ≤ P{θ̂n /∈ U}+ P{‖Fn‖ > δ and θ̂n ∈ U}

≤ o(1) + P

{
‖θ̂n − θ0‖α

E
1
n

n

∑
t=1

V(Xt)
1/2 > δ

}

By assumption, ‖θ̂n − θ0‖α
E = oP(1). Moreover,

∫
V(x)1/2ψ(θ0, x)dx < ∞ by Jensen’s

inequality and (11), so by the scalar law of large numbers for V-uniformly ergodic
Markov processes (Meyn and Tweedie, theorem 17.1.7), we have n−1 ∑n

t=1 V(Xt)1/2 =

OP(1).

∴ ‖θ̂n − θ0‖α
E

1
n

n

∑
t=1

V(Xt)
1/2 = oP(1)

∴ P{‖Fn‖ > δ} = o(1) + o(1) = o(1)

We conclude that ‖Fn‖ = oP(1), and hence (48) is valid.

Looking back, we have shown that (45) and hence (44) is true. To complete the proof of
theorem 4.1, we need to prove (22). Rewriting (44), we know that

(50) Ŷn := n−1/2
n

∑
t=1

p̄(θ̂n, Xt, ·)
d→

∞

∑
`=1

λ`(θ0)
1/2Z`v`(θ0) =: G
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in L2. The continuous mapping theorem and Parseval’s identity now give

1
n

∫ { n

∑
t=1

p̄(θ̂nXt, y)

}2

dy = ‖Ŷn‖2 d→ ‖G‖2 =
∞

∑
`=1
〈G, v`(θ0)〉2

Using the definition of G in (50), we have ∑∞
`=1〈G, v`(θ0)〉2 = ∑∞

`=1 λ`(θ0)Z2
` . The proof

of theorem 4.1 is now complete. Q.E.D.

PROOF OF THEOREM 4.2: Let Tn be the test statistic on the left-hand side of (23). The
claim in the theorem amounts to

(51) lim
n→∞

P{Tn ≤ cα(θ̂n)} = 1− α

We have Tn
d→ ∑` λ`(θ0)Z2

` and cα(θ̂n)
p→ cα(θ0), where the second result is due to

continuity of cα at θ0. Slutsky’s theorem yields Tn − cα(θ̂n) + cα(θ0)
d→ ∑` λ`(θ0)Z2

` . As
a result,

lim
n→∞

P{Tn ≤ cα(θ̂n)} = lim
n→∞

P{Tn − cα(θ̂n) + cα(θ0) ≤ cα(θ0)}

= P

{
∑
`

λ`(θ0)Z2
` ≤ cα(θ0)

}
= 1− α

Here the last equality is valid by the definition of cα(θ0). Q.E.D.

7.4. Consistency: Theorem 4.3

PROOF OF THEOREM 4.3: Recalling that the test statistic is n‖n−1 ∑n
t=1 p̄(θ̂n, Xt, ·)‖2

and observing that

ε ≤ ‖E p̄(θ̂n, Xt, ·)‖ ≤
∥∥∥∥∥ 1

n

n

∑
t=1

p̄(θ̂n, Xt, ·)− E p̄(θ̂n, Xt, ·)
∥∥∥∥∥+

∥∥∥∥∥ 1
n

n

∑
t=1

p̄(θ̂n, Xt, ·)
∥∥∥∥∥

where ε > 0 is the value of the infimum in the definition of H1, we see that the claim
in the theorem will be valid whenever

(52)

∥∥∥∥∥ 1
n

n

∑
t=1

p̄(θ̂n, Xt, ·)− E p̄(θ̂n, Xt, ·)
∥∥∥∥∥ =

∥∥∥∥∥ 1
n

n

∑
t=1

p(θ̂n, Xt, ·)− E p(θ̂n, Xt, ·)
∥∥∥∥∥

converges in probability to zero as n → ∞. The term in (52) is bounded above by
(I) + (I I) + (I I I) where

(I) :=

∥∥∥∥∥ 1
n

n

∑
t=1
{p(θ̂n, Xt, ·)− p(θ1, Xt, ·)}

∥∥∥∥∥ , (I I) :=

∥∥∥∥∥ 1
n

n

∑
t=1

p(θ1, Xt, ·)− E p(θ1, Xt, ·)
∥∥∥∥∥
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and (I I I) :=
∥∥E p(θ1, Xt, ·)− E p(θ̂n, Xt, ·)

∥∥. Here θ1 is the in probability limit of θ̂n.
We claim that all of these terms converge to zero. To begin, consider first the term (I).
Evidently

(I) ≤ 1
n

n

∑
t=1

∥∥{p(θ̂n, Xt, ·)− p(θ1, Xt, ·)}
∥∥

By the mean value theorem in RM we have

(53) |p(θ̂n, Xt, ·)− p(θ1, Xt, ·)| ≤ ‖Dp(θ̄, Xt, ·)‖E · ‖θ̂n − θ1‖E

where θ̄ lies on the line segment between θ1 and θ̂n. Taking the the L2 norm and then
the average over t, we obtain

(I) ≤ ‖θ̂n − θ1‖E
1
n

n

∑
t=1

[∫
‖Dp(θ̄, Xt, y)‖2

E dy
]1/2

Applying assumption 4.6 and Jensen’s inequality, we obtain

E
[∫
‖Dp(θ̄, Xt, y)‖2

E dy
]1/2

≤
[

E
∫

Λ(Xt, y)2 dy
]1/2

< ∞

Since this expectation is finite and {Xt} is assumed to be stationary and ergodic, the
ergodic law of large numbers implies that

1
n

n

∑
t=1

[∫
‖Dp(θ̄, Xt, y)‖2

E dy
]1/2 p→ E

[∫
‖Dp(θ̄, Xt, y)‖2

E dy
]1/2

Hence we have (I) ≤ oP(1)OP(1) = op(1) as claimed.

Turning to the term (I I), the claim that this is oP(1) follows directly from assump-
tion 4.4, provided that the expectation E p(θ1, Xt, ·) exists. This L2 expectation exists
whenever the scalar expectation of the norm of p(θ1, Xt, ·) is finite. Finiteness of this
scalar expectation is a direct consequence of assumption 4.7.

Regarding (I I I), another application of (53) gives

(I I I) ≤ E ‖p(θ1, Xt, ·)− p(θ̂n, Xt, ·)‖ ≤ E ‖θ̂n − θ1‖E

[∫
‖Dp(θ̄, Xt, y)‖2

E dy
]1/2

Using assumption 4.6 and the Cauchy-Schwartz inequality, we obtain

(I I I) ≤ E ‖θ̂n − θ1‖E

[∫
Λ(Xt, y)2 dy

]1/2

≤
[

E ‖θ̂n − θ1‖2
E E

∫
Λ(Xt, y)2 dy

]1/2

The term E
∫

Λ(Xt, y)2 dy is finite by assumption 4.6. Moreover ‖θ̂n − θ1‖E = oP(1)
implies ‖θ̂n − θ1‖2

E = oP(1), and the latter is uniformly bounded as a result of the
compactness of Θ. Hence E ‖θ̂n − θ1‖2

E converges to zero.

We conclude that (I) + (I I) + (I I I) = oP(1) + oP(1) + o(1) = oP(1). Hence the term in
(52) is oP(1) and the proof is done. Q.E.D.
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