
 1

GPU-acceleration for Moving Particle Semi-implicit Method

Chiemi Hori1, Hitoshi Gotoh2*, Hiroyuki Ikari3 and Abbas Khayyer4

1 Graduate student, Department of Civil and Earth Resources Engineering, Kyoto University
Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan, e-mail: c.hori@kt2.ecs.kyoto-u.ac.jp

2 Professor, Department of Civil and Earth Resources Engineering, Kyoto University

Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan, e-mail: gotoh@particle.kuciv.kyoto-u.ac.jp

3 Assistant Professor, Department of Civil and Earth Resources Engineering, Kyoto University
Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan, e-mail: ikari@particle.kuciv.kyoto-u.ac.jp

4 Lecturer, Department of Civil and Earth Resources Engineering, Kyoto University

Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan, e-mail: khayyer@particle.kuciv.kyoto-u.ac.jp

Abstract:

The MPS (Moving Particle Semi-implicit) method has been proven useful in computation
free-surface hydrodynamic flows. Despite its applicability, one of its drawbacks in practical
application is the high computational load. On the other hand, Graphics Processing Unit (GPU),
which was originally developed for acceleration of computer graphics, now provides unprecedented
capability for scientific computations.

The main objective of this study is to develop a GPU-accelerated MPS code using CUDA
(Compute Unified Device Architecture) language. Several techniques have been shown to optimize
calculations in CUDA. In order to promote the acceleration by GPU, particular attentions are given
to both the search of neighboring particles and the iterative solution of simultaneous linear
equations in the Poisson Pressure Equation.

In this paper, 2-dimensional calculations of elliptical drop evolution and dam break flow have
been carried out by the GPU-accelerated MPS method, and the accuracy and performance of
GPU-based code are investigated by comparing the results with those by CPU. It is shown that
results of GPU-based calculations can be obtained much faster with the same reliability as the
CPU-based ones.

Key words: Particle method, MPS method, Semi-Implicit Algorithm, GPU, CUDA

1. Introduction:

A free-surface flow analysis is indispensable to solve a lot of hydrodynamic issues. Especially, in
flood control, it is a key to conduct accurate analysis of a violent flow. In a design of a coastal
structure, a numerical wave flume has attracted considerable attention as a tool to predict

* Corresponding Author, TEL +81-75-383-3309 , FAX +81-75-383-3311

 2

hydrodynamic forces corresponding to an extreme wave precisely. In an accurate prediction of
wave overtopping discharge in addition to wave force, it is important to treat a fragmentation of
fluid like a splash flexibly. The particle method is one of the methods to meet such a requirement
because it has a high reproducibility of a complicated behavior of water surface change with a
fragmentation and coalescence of water (e.g. Gotoh, 2009).
 The most challenging problem in practical use of the particle method is related to a high
computational load. Accurate calculation using a large number of particles over 1 million is
necessary in a practical calculation, and such a calculation is not possible without incorporating
high performance CPU or parallel computing technique, however, a hardware including its
maintenance is too expensive to be widely provided to engineers as a desktop design tool.
 GPU (Graphics Processing Unit) is a multi-processor executing a large number of
three-dimensional geometry processing in a high speed. Because this kind of graphics processing is
independent of others, it is suitable for parallelization. Hence, GPU has been developed as a
hardware with parallelizing many processors which have a simpler structure than CPU.

In recent years, a floating-point arithmetic by GPU became possible, and the General-Purpose
computing on GPU (GPGPU) was tried. In 2006, CUDA (Compute Unified Device Architecture)
was opened to public, and development of a general-purpose computing code by C language has
become possible without special knowledge in graphics coding. In 2007, the Tesla, which is a GPU
without any output terminals for graphics, was released, and a full-scale entry to high performance
computing was started.

GPU computing has been also applied in CFD (Computational Fluid Dynamics) simulations. In
early times when the GPU had started to be used generally, its acceleration performance in
calculations and its visual realism of fluids motion were mainly focused. However, through the past
couple of years, its reliability for an accurate prediction has been also studied (e.g. Rossinell and
Koumoutsakos, 2008).
 As for a particle method, in case of the SPH (Smoothed Particle Hydrodynamics) method
(Gingold and Monaghan, 1982), there are a number of previous studies (e.g. McCabe et al., 2009),
because it is easy to apply GPU calculation to the explicit algorithm of the SPH method. However,
due to a fully explicit nature, the use of a numerical stabilizer (e.g. an artificial viscosity term with
empirical constants) or application of a Reimann solver tends to be indispensable in a Weakly
Compressible SPS (WCSPH) calculation.

On the other hand, semi-implicit particle-based methods such as the Moving Particle
Semi-implicit (MPS; Koshizuka and Oka, 1996) or the Incompressible SPH (ISPH; Shao and Lo,
2003) methods appear to be more stable than the fully explicit ones allowing relatively
stable/accurate calculations (e.g. Gotoh and Sakai, 2006; Khayyer et al., 2008) without an artificial
numerical stabilizer or specific solvers. However, it is difficult to implement a GPU-based MPS or
ISPH calculation due to their semi-implicit algorithm. To the best of authors’ knowledge, there has
not been any study on GPU application to the MPS method. Therefore, in this paper, key items in
the development of a GPU-based MPS code are clarified, and their efficiency on acceleration in
computation is investigated.

 3

2. Calculation Technique:

2.1. MPS method overflow
Fig. 1 shows a computational flow chart of the MPS method which is used in this paper (Ikari and
Gotoh, 2008). The time integration is mainly composed of two steps. The first step corresponds to
an explicit calculation considering the gravity and viscosity terms. The second step is an implicit
calculation accounting for the pressure term. Pressure values are obtained by solving a Poisson
equation, which is discretized into a simultaneous linear equation. As the solver of this equation, the
ICCG (Incomplete Cholesky Conjugate Gradient) method is implemented in the original MPS
method. In addition, a measure to prevent particles from encountering collision is conducted. Just
before each step, searches of neighboring particles are executed.
 In this paper, the SCG (Scaled CG) method is applied for pressure calculation in both
GPU-based code and CPU-based code, since implementation of the SCG method in GPU-based
calculations is quite easier than that of the ICCG.

2.2 Development environment

In this section, the structure of a GPU and an overview of the CUDA programming model are
presented. Fig. 2 shows the important details of Tesla C1060, or the GPU used in this study. Tesla
C1060 is an assembly of 30 multiprocessors (MP), with 8 streaming processors (SP) in each. Each
MP possesses its own shared memory (16KB) commonly used by all the 8 SPs in it.
Communications between the MPs are performed through the device memory (global memory;
4GB), which is accessible to all the SPs of the MPs (Harish and Narayanan, 2007).

The CUDA programming model is an assembly of many threads running in parallel. An
assembly of threads, which is called a block, runs on a MP. An assembly of all blocks in a single
execution is called a grid (Harish and Narayanan, 2007). The maximal number of threads that each
MP can handle at a time is 1,024. But in practice, the number of threads is limited by the amount of
shared memory and registers, so it is application-dependent (Liu et al, 2008). Resisters, which are
possessed by each MP as a set, are on-chip memories used to store temporal values.

The CUDA programming model assumes that a host (CPU) code, written in C language, calls
kernels which are executed on the device (GPU). The host code also includes instructions for setting
parallelism and communicating data between host and device (NVIDIA, 2008).

2.3. CUDA implementation of MPS method
2.3.1. Key points for the overall implementation
(a) In principle, one thread processes one particle. For example, when a thousand particles are
calculated, a thousand threads are launched. Fig. 3 briefly shows the difference in coding between
the sequential process by single thread and the parallel process by many threads.
(b) The performance improves if one uses the shared memory which can be accessed much faster
than the device memory. But as mentioned above, the shared memory’s scope is limited to blocks.
In this paper, as an essential tuning at a minimum cost, the best usage of the shared memory is made
in the following manner.

 4

If a variable is accessed more than twice from threads of the same block in the kernel, the
variable is instructed to be loaded from the device memory into the shared memory, and then the
shared memory is accessed during the calculation.

In Fig. 4, a shared memory (Variational_Velocity_s[I]) is used to store the temporal summation
of the acceleration. Each acceleration is obtained from the interaction between the target particle
and its neighboring particle. Then at the end of the kernel, the data is stored to the device memory
(global memory).
(c) The global memory accesses are performed on segments. In order to optimize the global
memory transactions, memory accesses should be coalesced whenever possible. To achieve this,
arrays of physical quantities, pressures, velocities and locations of particles are stored to be aligned
in the global memory. Moreover, a list of neighboring particles and the coefficient matrix of the
Poisson Pressure Equation are aligned as shown in Fig. 5 so that coalesced accesses are executed as
many times as possible.

In the case of single thread of CPU, a coding in Fig. 6(a) implements the same arrangement of
the data (NeighboringIdList[I][L]) as that of Fig.5(a). If this code (Fig. 6(a)) was naively translated
into a code for GPU, the schematic diagram would be Fig. 6(b). Nevertheless, the array
(NeighboringIdList[I][L]) in the code of Fig. 6(b) provides inefficiency to threads on GPU. In order
to align the data in the same way of Fig. 5(b), the array should be transposed as it is shown in Fig.
6(c).
(d) The double precision floating point computation unit is only one in each MP of the GPU used in
this paper. Consequently, the performance is around 10 times lower than for 32 bit arithmetic
treating integer and single precision floating point. But in this paper, our CUDA code supports the
double precision for floating point computations which are expected to have the double precision in
the original code for the sequential process by single CPU.
(e) The threads of a block are executed in groups of 32 threads, called warps. A warp executes a
single instruction at a time across all its threads. When conditional branching occurs in one warp, a
serialization happens and the performance gets lower. This deterioration is called
“warp-divergence”. However, the branch instruction is not considered here and the code is not
changed especially for that.
(f) Although synchronization of all threads within a block can be achieved, synchronization of all
threads in a grid is not guaranteed until all threads have executed the kernel. The barrier between
blocks is regarded as a priority, so as to ensure the variable update on the global memory. Therefore
our MPS-CUDA program consists of the collection of several lightweight kernels.

2.3.2. The search for neighboring particles

Firstly, the framework of the search for neighboring particles is explained briefly. The
framework is basically the same as that in our conventional code for a single thread (Gotoh et al,
2005). The framework consists of these operations (Fig. 7).
I. Listing particles with the cell-scale resolutions: Each particle is stored in a specific cell

according to the particle’s position. The length of the cell is as long as the radius of influence.
II. Listing neighboring particles of each particle: Neighboring particles of a target particle are

 5

searched by visiting its associated and surrounding cells possessing the list of particles.
OperationsⅠand Ⅱ have been proven to improve the efficiency in the conventional sequential

calculation (Gotoh et al, 2005). These operations are also applied in our CUDA-MPS code to ensure
the fairness of the comparison of the calculation time. In this section, the way to implement
operationⅠon GPU is stated, while implementation of operationⅡis described in 2.3.4.

In the operationⅠ, particles on each cell should be listed sequentially. It is not efficient for
thousands of parallel threads to conduct such a sequential process. Therefore, one of the relatively
more efficient ways is that one block processes one cell, and that threads of the block search
particles in the cell and synchronously make the list of its candidates. In the sequential computation,
the screening cell is arranged to cover the rectangular calculated domain. This approach is relatively
efficient in the conventional sequential computation (Gotoh et al, 2005), although a lot of amount of
memory must be consumed. However, in the GPU computing, when one block is assigned to one
cell, any idle blocks may be set. The more the number of the cells in which no particles are located,
the more the number of idle blocks. When the fluid particles distribute nonuniformly, the number of
idle blocks increases.

In this paper, a function which allocates as few cells as possible are added, in order to save
computation cost. This preparatory function is named P2 (preparation 2) in Fig. 7. The function is
implemented by applying a sliced data structure proposed by Harada et al (2008). The method is
briefly explained as follows. A space of two-dimensions is assumed. The computational region is
sliced parallel to the y-axis and is divided into several stripes. The breath of a stripe equals to the
length of the cell. On each slice, a maximum and minimum of y-coordinate among particles’
positions are searched. Then on each slice, cells are allocated only between the minimum and
maximum. A parallel reduction (Harris, 2008) is applied to the search of a maximum or minimum
value.

After allocating cells, operationⅠis conducted. To reduce particles searched by threads of one
block processing the cell, two preparations are added in our GPU-based calculation. The first
preparation (P1 in Fig. 7) is changing particle numbers so that the particles’ x-coordinate positions
are arranged in ascending order. A block transition sort, which is provided by Harada et al. (2008),
is applied for this sorting. The second preparation (P3 in Fig. 7) is memorizing one arbitrary number
of particles existing in each slice. Thanks to those preparations, in the operationⅠ, threads only
have to check limited number of particles in a few slices.

Fig. 7 shows the difference between the computational flow chart of the search for the
neighboring particles by GPU-based calculation and that by CPU’s sequential calculation.

2.3.3. The Poisson Pressure Equation

A GPU is capable of adding and subtracting vectors work in the CG method, since every thread
can perfectly process one particle (one element). Inner product calculations are split into two
kernels. In one kernel, each thread prepares one product by multiplying elements, and then a
parallel reduction process is conducted in order to sum all those products in the other kernel.

On the other hand, the iterative solver includes a matrix-vector multiplication. A coefficient
matrix of the PPE is a sparse matrix. A sparse matrix-vector (SpMV) multiplication almost

 6

monopolizes the computation time in one iterative operation on a CPU, as well as on a GPU. To
make matters worse, the calculation of a parallel process by many threads on GPU would not get
much faster than that by a sequential process of CPU, if one translated the code naively. Memory
latency greatly affects performance of the SpMV multiplication (e.g. Bell and Garland, 2008). The
coefficient matrix is stored into global memory, using a format similar to the ELLPACK-R one
(Vazquez et al, 2009). Therefore, the coalesced global memory access can be achieved on loading
elements of the coefficient matrix.

However, it is impossible to do coalesced access to following two arrays of N dimension (N is
the number of total particles). One of those arrays is double precision float, storing the vector. The
other is integer, storing flags used to judge whether the particle is a non-free-surface water particle.
Since each thread accesses those arrays by using indices which are the neighboring particles’
numbers of each particle, those accesses are executed randomly. So those arrays are allocated in
read-only cached texture memory described below, in order to reduce the effect of the irregular and
random access (Takai and Nagai, 2009).

2.3.4. Utilization of texture memory

A GPU has a specific unit that accelerates address references to textures of 3D-graphics. CUDA
also supports this unit, as texture memory (NVIDIA, 2008). The texture memory is a read-only
memory. Since it is cached on-chip, it can be accessed relatively faster. On the contrary, the global
memory space is not cached. Therefore, reading global memory through texture fetching bring
about some benefits that can hide the latency of addressing calculations better, even in the situation
where uncoalesced loads from global memory happen. The effective utilization of texture memory
results in the improvement of the performance for applications with frequent random access to the
data, such as particle method. Moreover, if there is locality in the texture fetches, the texture
memory exhibits higher bandwidth.

Although the texture memory is useful for acceleration, the coding to use the texture memory is
more complicated than that to use the global memory. Hence in this paper, the texture memory is
used only in the two kernels. One is the kernel for a local search of neighboring particles (operation
Ⅱin 2.3.2), and the other is the kernel for the SpMV multiplication in the iterative solver for PPE.
The reason why the latter is treated in this way is already mentioned in 2.3.3.

The former kernel provides lots of warp-divergences which are mentioned in 2.3.1(e). In this
kernel, each thread for one particle visits its surrounding cells. Each cell contains different number
of candidate particles. Every thread in one warp must wait until every thread of the warp finishes
accessing their cells. A cell sometimes possesses much more particles than near cells do. Therefore,
a thread accessing the cell which has more particles keeps any other threads in the same warp
waiting, even if the other threads access only the cells possessing a few particles. This would result
in a non-optimized function of threads.

Consequently, in this kernel, it takes by far the longest computation time in the whole time of
the search for neighboring particles. Therefore, the speed of the calculation of the search for
neighboring particles can be increased, if that of this kernel is improved by using the texture
memory.

 7

3. Verification:

3.1. Purpose
In this chapter, the results of simulations by using both the CUDA-MPS calculation code and the
conventional sequential calculation code are discussed. From now on, for the sake of convenience,
the conventional sequential calculations are called ‘only CPU’, and the CUDA calculations, which
have been implemented through this paper, are called ‘GPU+CPU’. Table 1 shows the
computational environment corresponding to the calculations of this paper.

The algorithm and implementations are optimized differently in each code so as to shorten each
calculation time. However, the methodology of the numerical solution to get an answer for a
problem, that is the flow chart shown in Fig. 1, is the same. Therefore, it is anticipated that results
by both calculations will be exactly the same. However, the results by GPU+CPU and those by only
CPU are not exactly the same. Such differences are most likely caused by the following factors.

1) Tesla C1060, or any graphic card provided by NVIDIA as of January 2010, does not have an
ECC (Error-Correcting Codes) in graphics memory systems. Therefore, wrong values may be
written into the memory accidentally (Ogawa and Aoki, 2009; Maruyama, 2009).

2) The GPU has multiply-add calculation units. FMAD (Floating-point Multiple ADd) operations
are bundled and optimized by the CUDA Compiler. Since multiply-add is used in many calculations,
GPU can achieve the high arithmetic capacity by possessing the special calculation units
additionally. But as truncated intermediate results of multiplication are used, there is a possibility
that the multiply-add results by GPU will be different from that by general X86 CPU (Fixstars
Corporation, 2009; NVIDIA, 2008). However, this optimization can be avoided manually in order
to get the same results by GPU as those by CPU. In this paper, this avoidance is carried out as far as
possible.

3) Other factors are as follows: the reliability of the compiler, the way of summation (sequential
addition by CPU or reduction by GPU), human errors, etc.

Although differences in results by only CPU and GPU+CPU after only one time integration are
small enough to ignore, in calculations which have many time integrations, significant differences
can become obvious. Furthermore, in the original MPS method, numerical errors that are obtained
by solving the PPE are prone to be accumulated (Khayyer and Gotoh, 2009; 2011). Therefore, these
errors gradually generate differences in movements of particles, so that simulations by only CPU
and GPU+CPU do not become exactly the same concerning water surface profiles or fluid velocity.

From the next section, equal importance is placed on the comparison of calculation speed up
and the accuracy of results, similar to Rossinelli et al. (2010) that have investigated those issues
carefully. Through this discussion, it is aimed to demonstrate that GPU+CPU calculations are as
reliable as only CPU ones and meet practical calculations.

 8

3.2. 2-Dimensional calculation results
2-D simulations are conducted for verification of CUDA-MPS code. The radius of influence is

chosen to be 4.0d (d : diameter of particle) for the Laplacian model and 2.1d for the gradient model
(Koshizuka and Oka, 1996).

3.2.1. Comparison of calculation time
 The calculation time per one time step is compared. The calculated domain is shown in Fig. 8.
Simulations under five cases are conducted. Total numbers of particles are 7,080, 11,676, 24,360,
89,520 and 109,211 in each case by changing diameter of particle to 4.0, 3.0, 2.0, 1.0 and 0.9 mm,
respectively.

All calculations in this paper apply a variable time increment, which is set to satisfy the
Courant’s stability condition. So in the case of different diameters of particles, even if the physical
times are the same, their total numbers of time steps will become different. That is the reason why
the calculation time per one time step in this section is calculated by dividing a net running time by
its total number of time steps.

Fig. 9 shows the time fraction in the five cases simulated by only CPU or GPU+CPU. Each
segment shows, beginning, search for neighboring particles (neighboring), generation of matrix
(matrix), preconditioning by diagonal scaling (scaling), iterative computation (pcg solver), external
calculation (gravity and viscosity terms; external), writing output into text files (output) and others.
It must be noted that the part of output includes time dedicated to the transfer of memory between
device and host in the case of GPU+CPU. From this figure, it can be stated that the iterative
calculation takes up most of the calculation time both on only CPU and on GPU+CPU.

Fig. 10 shows the improvement factor of using GPU+CPU in comparison to only CPU results.
Regarding relatively many particles, it can be observed that GPU+CPU is more than 10 times faster
than only CPU in generation of matrix, preconditioning and external calculation. In the kernels
handling these tasks, one thread can process one particle more easily than in the other kernels.

On the other hand, the calculation time of the search of neighboring particles or the iterative
computation is not so efficiently shorter than expected. The acceleration of the whole calculation
time seems to depend on that of the iterative computation time, and then the performance is
improved by a factor of 7 plus at the most.

3.2.2. Accuracy
(1) Evolution of an elliptical drop
 The simulation of an evolution of elliptical water drop (Monaghan, 1994; Khayyer and Gotoh,
2008; 2009) is carried out by using each code. The initial fluid configuration is a circle of radius 1.0
m subjected to no external forces but an initial velocity field as (-100x, 100y) m/s. The domain is
represented by a total number of 7,845 particles being 2.0cm in diameter.

The snapshots showing the particle configuration with the horizontal velocity distribution at t =
0.008s are depicted in Fig. 11. In this calculation, both results gained by the two computational
architectures seem almost the same from a qualitative aspect.

Values of semi-minor axis, semi-major axis and their product are obtained by calculating with

 9

only CPU, GPU+CPU and an analytical solution (Khayyer and Gotoh, 2009). The time histories of
those values are shown in Fig. 12. Differences between the simulated results and the analytical ones
are intensified as the drop continues to evolve. But both simulations seem to result in almost the
same results.

For further verification of two simulations, numerical errors of GPU+CPU results compared
with values obtained by only CPU are plotted in Fig. 13. The vertical axis’s value equals to
|(aGPU+CPU-aonly CPU)/aonly CPU|×100[%], for example in semi-minor axis (aonly CPU: values obtained by
only CPU, aGPU+CPU: values obtained by GPU+CPU). This figure indicates that the maximal value
of GPU-based calculation’s errors is less than 5.0×10-5%, in this specific simulation.

To simulate 0.010 seconds in physical time, the net running times required for the only CPU
and GPU+CPU calculations are 104.5s and 25.4s (103.7s and 24.4s if outputs and memory transfers
are excluded), respectively. For this relatively small number of particles, the performance is higher
than that shown in Fig. 10. Since this calculation treats only water particles, branch instruction
depending on particle types occurs relatively a few times. Accordingly, warp-divergences under this
condition are fewer than those in a dam break simulation. Therefore, the speed up is slightly
improved.
(2) A dam break with impact

The results of a dam break simulation illustrated in Fig. 8 are compared. The particle diameter is
4.0mm, and the number of total particles is 7,080.

It can be stated that both calculations present the same results prior to the water impact on the
wall as shown in Fig. 14. However, after the impact, distributions of scattering particles appear to
become slightly different. Fig. 15 shows the snapshots of water particles expressing a violent
plunging jet impact at t = 0.750s. In this figure, GPU+CPU depicts a few particles in the air
chamber beneath the plunging jet and reveals a visible difference from only CPU.

Nevertheless, these differences are expected to be improved by a GPU released in the near
future. Above all, global profiles of water surface and velocity distributions seem almost the same,
even in such a case where a violent flow and long time integration are included.

4. Conclusive Remarks:

In this paper, in order to accelerate the MPS-based calculations which requires comparatively
higher computational load, basic examinations on GPU application are carried out. Indispensable
items for an acceleration of arithmetic code by CUDA are pointed out, and the items which can
bottleneck the acceleration in the standard MPS code are considered. In the neighboring particle
search, an efficient calculating process to generate neighbors’ list on GPU is shown. In the SCG
method for pressure calculation, which is easy to be translated but difficult to be accelerated, the
calculating procedure is examined in detail. It is clarified that the memory latency in a sparse
matrix-vector multiplication is bottleneck of the acceleration, and its appropriate remedy is
examined.

In some previous studies on GPU application to the SPH method, the achievements of several
ten times of acceleration ratio were reported. The acceleration ratio in this paper is about 3 to 7

 10

times. The MPS calculation by using only CPU without GPU is generally faster than the (fully
explicit) SPH calculation due to its independency on speed of sound and hence incorporation of
relatively larger calculation time steps. Therefore, it can be said that the GPU-accelerated MPS
calculation shows comparable or rather better performance.

In this paper, the standard MPS code for two-dimensions is accelerated by GPU under a few
relatively simple conditions. However, in order to predict violent fluid motion more precisely, GPU
accelerations should be applied to 3D-MPS code, as the parallelization on cluster PC (e.g. Ikari and
Gotoh, 2008). Moreover, development of the GPU code of the refined particle methods (Shao and
Gotoh, 2005; Gotoh and Sakai, 2006; Khayyer and Gotoh, 2009; 2010; 2011) is also included in our
future works.

References:

Bell, N. and Garland, M. 2008. Efficient Sparse Matrix-Vector Multiplication on CUDA, NVIDIA

Technical Report NVR-2008-004, p32.
Fixstars Corporation. 2009. NVIDIA CUDA Information Site. http://gpu.fixstars.com/. (in

Japanese)
Gingold, R. A. and Monaghan, J. J. 1982. Kernel Estimates as a Basis for General Particle Methods

in Hydrodynamics, J. Comp. Phys., 46, 429-453.
Gotoh, H. 2009. Lagrangian Particle Method as Advanced Technology for Numerical Wave Flume.

International Journal of Offshore and Polar Engineering, 19, 3, 161-167.
Gotoh, H., Ikari, H., Memita, T. and Sakai, T. 2005. Lagrangian particle method for simulation of

wave overtopping on a vertical seawall. Coast. Eng. J. 47(2 & 3), 157-181.
Gotoh, H. and Sakai, T. 2006. Key issues in the particle method for computation of wave breaking.

Coastal Engineering, 53, 171-179.
Harada, T., Masaie, I., Koshizuka, S., Kawaguchi, Y. 2008. Accelerating Particle-based Simulations

Utilizing Spatial Locality on the GPU. Transactions of JSCES, Paper No.20080016. (in Japanese)
Harish, P. and Nrayanan, P. J. 2007. Accelerating Large Graph Algorithms on the GPU using

CUDA, HiPC 2007, LNCS 4873, 197-208.
Harris, M. 2008. Optimizing Parallel Reduction in CUDA. NVIDIA CUDA SDK 2.0.
Hu, C.H., Kashiwagi, M. 2004. A CIP Method for Numerical Simulations of Violent Free Surface

Flows, Journal of Marine Science and Technology, 9(4), 143-157.
Ikari, H. and Gotoh, H. 2008. Parallelization of MPS method for 3D wave analysis, Advances in

Hydro-science and Engineering, 8th International Conference on Hydro-science and
Engineering (ICHE), Nagoya, Japan.

Khayyer, A. and Gotoh, H. 2008. Development of CMPS method for Accurate Water-Surface
Tracking in Breaking Waves. Coast. Eng. J., 20, 2, 179-207.

Khayyer, A. and Gotoh, H. 2009. Modified Moving Particle Semi-implicit methods for the
prediction of 2D wave impact pressure. Coastal Engineering, 56, 4, 419-440.

Khayyer, A. and Gotoh, H. 2010. A higher order Laplacian model for enhancement and
stabilization of pressure calculation by the MPS method. Applied Ocean Research, 32, 1,

 11

124-131.
Khayyer, A. and Gotoh, H. 2011. Enhancement of stability and accuracy of the moving particle

semi-implicit method. J. Comp. Phys., 230, 8, 3093-3118.
Khayyer, A., Gotoh, H. and Shao, S. D. 2008. Corrected Incompressible SPH method for accurate

water-surface tracking in breaking waves. Coastal Engineering, 55, 3, 236-250.
Koshizuka, S. and Oka, Y. 1996. Moving-particle semi-implicit method for fragmentation of

incompressible fluid, Nucl. Sci. and Eng., 123, 421-434.
Liu, W., Schmidt, B., Voss, G. and Muller-Wittig, W. 2008. Accelerating molecular dynamics

simulations using Graphics Processing Units with CUDA, Computer Physics Communications,
179, 634-641.

Maruyama, N., Nukada, A. and Matsuoka, S. 2009. Software-Based ECC for GPUs. Presented at
Symposium on Application Accelerators in High Performance Computing, Urbana, Illinois, US,
July 27-31, 2009.

McCabe, C., Causon, D. M. and Mingham, C. G. 2009. Graphics Processing Unit Accelerated
Calculations of Free Surface Flows using Smoothed Particle Hydrodynamics, 4th international
SPHERIC workshop, Nantes, France, May 27-29, 2009, 384-391.

Monaghan, J. J. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 399-406.
NVIDIA. 2008. NVIDIA CUDA Compute Unified Device Architecture Programming Guide,

Version 2.0.
NVIDIA. Compute unified device architecture, http://www.nvidia.com/object/cuda_home.html.
Ogawa, S. and Aoki, T. 2009. GPU Computing for 2-dimensional incompressible-flow Simulation

based on Multigrid method. Transactions of JSCES, Paper No.20090021. (in Japanese)
Rossinelli, D., Bergdorf, M., Cottet, G.-H. and Koumoutsakos, P. 2010. GPU accelerated

simulations of bluff body flows using vortex particle methods. J. Comp. Phys., 229, 3316-3333.
Rossinelli, D. and Koumoutsakos, P. 2008. Vortex methods for incompressible flow simulations on

the GPU. Visual Comput, 24, 699-708.
Shao, S. D. and Gotoh, H. 2005. Turbulence particle models for tracking free surfaces. Journal of

Hydraulic Research, 43, 3, 276-289.
Shao, S. D. and Lo, E. Y. M. 2003. Incompressible SPH method for simulating Newtonian and

non-Newtonian flows with a free surface. Adv. Water Resour., 26, 7, 787–800.
Takai, Y. and Nagai, G. 2009. Fast calculation of conjugate gradient method by GPU, Proceedings

of the Conference on Computational Engineering and Science, Tokyo, Japan, May 12-18, 2009,
14, 283-284. (in Japanese)

Vazques, F., Garzon, E. M., Martinez, J. A. and Fernandez, J. J. 2009. The sparse matrix vector
product on GPUs. http://www.ace.ual.es/TR/SpMV.GPU.pdf.

 12

Fig. 1. Computational flow chart of the MPS method

 13

Fig. 2. Tesla C1060 structure

(a) Loop iteration by single thread of CPU (N is the number of particles.)

(b) Light and simple task by each thread on GPU

(The case that the number of threads is less than or equal to the number of particles)

Fig. 3. The schematic diagram of coding of processing particles

 14

Fig. 4. The schematic diagram of coding of shared memory usage on GPU

 15

(a) The memory access pattern by single thread of CPU

(b) The memory access pattern by many threads of streaming processors on GPU

Fig. 5. The alignment of neighboring particle list

(a) Two-dimensional array that fits the sequential process by single threads of CPU

Fig. 6. The schematic diagram of coding of two-dimensional array

 16

(b) Two-dimensional array that does not fit the parallel process by many threads on GPU

(c) Two-dimensional array that fits the parallel process by many threads on GPU

Fig. 6. (continued)

 17

Fig. 7. Computational flow chart in the search for neighboring particles

Table 1. The computation environment in this paper

Fig. 8. Calculated domain of dam break (Hu and Kashiwagi, 2004)

 18

0 5 10

only CPU

GPU+CPU

only CPU

GPU+CPU

only CPU

GPU+CPU

only CPU

GPU+CPU

only CPU

GPU+CPU

[sec]

neighboring
matrix
scaling
pcg solver
external
output
other

 7,080

11,676

24,360

89,520

109,212

Fig. 9. Calculation time fraction

Fig. 10. Speedups by GPU+CPU

 19

Fig. 11. Snapshots of water drops as they evolve to narrow ellipses at t = 0.008s

 20

Fig. 12. Computational and theoretical variation of the elliptical drops

 Semi-minor (a), semi-major (b) axes, and axes production (ab)

Fig. 13. Differences between results obtained from the GPU+CPU and the only CPU

Semi-minor (a), semi-major (b) axes, and axes production (ab)

 21

t = 0.350 s only CPU

GPU+CPU

(m/s)

Fig. 14. Snapshots of water particles in dam break simulations at t = 0.350s

t = 0.750 s only CPU

GPU+CPU

(m/s)

Fig. 15. Snapshots of water particles in dam break simulations at t = 0.750s

