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Abstract

Since the pioneering work by Granger (1969), many authors have proposed
tests of causality between economic time series. Most of them are concerned
only with "linear causality in mean", or if a series linearly affects the (con-
ditional) mean of the other series. It is no doubt of primary interest, but
dependence between series may be nonlinear, and/or not only through the
conditional mean. Indeed conditional heteroskedastic models are widely stud-
ied recently. The purpose of this paper is to propose a nonparametric test for
possibly nonlinear causality. Taking into account that dependence in higher
order moments are becoming an important issue especially in financial time
series, we also consider a test for causality up to the K-th conditional moment.
Statistically, we can view this test as a nonparametric omitted variable test
in time series regression. A desirable property of the test is that it has non-
trivial power against T'/2-]ocal alternatives, where T is the sample size. Also,
we can form a test statistic accordingly if we have some knowledge on the
alternative hypothesis. Furthermore, we show that the test statistic includes
most of the nonparametric omitted variables test statistics as special cases
asymptotically. The null asymptotic distribution is not normal, but we can
easily calculate the critical regions by simulation. Monte Carlo experiments
show that the proposed test has good size and power properties.
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1 Introduction

Causality between variables has been one of the main interests in time series
econometrics since the pioneering work by Granger (1969). We propose a nonpara-
metric test for Granger-type causality. A conceptually similar work is Bierens and
Ploberger (1997), Chen and Fan (1999), Robinson (1989), and Hidalgo (2000). The
first three papers proposed nonparametric tests on certain conditional moment re-
strictions, while the last paper introduced a nonparametric Granger causality test in
the frequency domain for weakly stationary linear processes. Hidalgo is mainly con-
cerned with the test under long range dependent observations, but it does not have
power against some alternatives of series with nonlinear dynamics. We construct a
test statistic based on moment conditions allowing for nonlinear dependence. It has
nontrivial power against T/2-local alternatives, where 7' is the sample size. The
null asymptotic distribution is non-Gaussian, but we can easily calculate the critical
region by simulation. When applied to regression analysis for cross section data,
this test reduces to a nonparametric omitted variable test, or significance test of
regressors, which was considered in Okui and Hitomi (2002).

Causality is not an easy concept to capture philosophically, but Granger (1969)
gave a practical definition to deal with it in the context of time series analysis. Sup-
pose we have a two dimensional time series (z4,v;),t = 1,---,T. We are concerned
if there exists any causality between x and y. Granger’s defintion is that y, is said
to cause z; in mean if

E[% - P($t|$t—1, e ,$1)]2 > E[% - P($t|$t—1, ey T, Y1y - - ey yl)]27 (1-1)

where P(A;|B;) is the optimum linear (or least squares) predictor of A; given B,
(see Granger (1969, p.429)), and denoted it as y; — x;. Otherwise y; - x;. An
interpretation of this definition is that we say y; causes x; when we can improve
the linear prediction of x; using the information carried by y; 1,...,y;. Granger
remarks that this definition of causality means "linear causality in mean". Under the
linearity assumption that the process has a representation y, = Z;’;_oo Ty + Uy,
we can test the null hypothesis Hy : y; - x; against Hy : y; — x4, as in Sims
(1972) or Hosoya (1977), using the property that Hy is equivalent to o;; = 0 for all
j < 0. This approach has been most commonly used since Sims (1972) (see, e.g.,
Geweke (1982), Sims, Stock and Watson (1990), Toda and Phillips (1993), Hosoya
(1991) and Lutkepohl and Poskitt (1996)). To the best of our knowledge, Hidalgo
(2000) is the newest result following this line allowing for long range dependence
without a specification on the distribution. However, this approach may fail to
detect some nonlinear causal relationships. The reason is that they construct test
statistics based on linear projections of the series of interest, but we can only say that
the error terms are uncorrelated with the series of interest, and not independent. In
many of the aforementioned research, the author(s) apply frequency domain analysis
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where causality is captured through cross-spectra, or covariances of y and x. But
covariances can easily be zero under nonlinear relationships, even if the two variables
are dependent. Then, it is unlikely that tests based on the covariances possess good
power property against certain alternatives. Péguin-Feissolle and Terdsvirta (1999)
also propose a causality test for nonlinear AR model, by expanding the nonlinear
conditional expectation by a Taylor series and testing if the coefficients are zero
or not. They study the properties of the test by simulation without theoretical
justification and conclude that it is useful. Chao,Corradi and Swanson (2001) discuss
nonlinear causality testing in the context of out-of-sample tests. The test statistic
can be considered as a simpler version of Bierens (1990), and it is not consistent
in general. We also refer to a series of papers which treats long-run causality,
namely predictability multiple periods ahead such as Breitung and Candelon (2006),
Dufour, Pelletier and Renault (2006) and Dufour and Renault (1998). McCrorie and
Chamebers (2006) point out the problem of spurious causality from aggregation of
a continuous time series to a discrete series.

We propose a nonparametric test which has power even when the observations
are nonlinearly dependent. For this purpose, we replace the linear projections by the
optimum predictor, or conditional expectations, namely we rewrite (1.1) to define
the possibly nonlinear causality as

Elzy — E(g]wi, ... ,$1)]2 > Bz, — Bz, .. 21, Y-, - - - y1)]2-
Straightforward calculation gives
Bl — B(z|ee 1,200 1,5 91)] = Blay — E(w]z o, ., 20))?

—EE@lre, . mn g, ) = Bloglee, . 2)]

Thus, we define "y, (possibly nonlinearly) causes z; in mean" if
BlE(zzi1, . w41, 91) = Blwlze, o 2)]? >0, (1.2)

and we call this simply “causality in mean” throughout this paper. Our definition
of causality is different from the usage of the word in economics or daily life, but it
is the matter of predictability. We would like test the null hypothesis,

Hy: E[E($t|$t—1, ey T Yt—1y - ey y1) - E($t|$t—1a ce- ,$1)]2 =0 (1-3)
or
Hy: E(zlxe 1,21, Y01y, 01) = BE(ze]ae 1, 21) wop. 1 (1.4)

against the alternative hypothesis (1.2). Here “with probability one” is abbreviated
to w.p.1.

We construct test statistics based on the moment conditions (1.4) for causality
in mean. This is, in statistical terms, a test for omitted variables in time series
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regression. Many such tests have been proposed in the literature, for example in
Bierens (1982, 1990), Bierens and Ploberger (1997), Chen and Fan (1999), Fan and
Li (1996) and Robinson (1989) for i.i.d. and time series observations, among others.
All these papers except the last two have nontrivial power against v/T —local alter-
native. The test proposed in this paper also has nontrivial power against v/T—local
alternatives, but it has an advantage over the previous ones in that the proposed
test can control the power properties easily and directly. Furthermore, we can show
that these previously proposed tests can be rewritten, in fact, as special cases of the
test statistic proposed below, by selecting user-determined components suitably. We
will see this in detail in Section 5. Hiemstra and Jones (1994) also consider testing
for nonlinear Granger causality, but it differs from our approach because they look
at the conditional distribution, not conditional moments. Their definition of causal-
ity is slightly stronger than the present one because they define the non-causality
as F(xy|xi_1, .. s, yi1y- - y1) = Fxy|m_y,...,21), where F(-]-) denotes a con-
ditional distribution. Therefore, non-causality in their sense implies the present
non-causality (1.4). In our impression, Hiemstra-Jones definition may sometimes
be too strong in practice. Furthermore, Dicks and Panchenko (2005) point out an
inconsistency problem of the test. We also refer to Qiao, McAleer and Wong (2009)
who applied Hiemstra and Jones test to investigate consumer attitudes. The next
section provides the test statistic for causality in mean and its null distribution as
well as the regularity conditions. Section 3 explains the power properties of the test.
Section 4 provides causality in higher order moments. Section 5 discusses about the
power properties as well as special cases of the test. We report Monte Carlo results
in Section 6. Section 7 concludes this paper. The proof of the theorem and Lemmas
are in the Appendix.

2 Test Statistic for Causality in Mean

2.1 Hypotheses and the corresponding moment conditions

This section provides heuristic arguments of how to test (1.4), and then provides
the test statistics. We restrict ourselves to the case when z; follows a nonlinear AR
model of the form

E["I’.t|l‘t—17 s Tt—ps Yt—15 - - - 7yt—q] = m(l‘t—la s Tt—ps Yt—15 - - - 7yt—q)a

and (x,y,) is a strictly stationary process. We assume p and ¢ are fixed and known
integers, and m(-) is an unknown function satisfying certain smoothness conditions.
Denote

X = ($t71, - Jt—p), Vi = (ytfla Sy yt—q); Zi = (thla Y;fl)a



and put g(X; 1) = E[2;]X;_1] then the null hypothesis m(Z; 1) = g(X; 1) is equiva-
lent to the event E(u;|Z; 1) = 0 where u; = x;—¢g(X;_1). Therefore, we can represent
the null and alternative hypotheses, respectively, as

H() : P[E(U,t|Zt,1) == 0] =1
and
H1 : P[E(U,t|Zt,1) == 0] < 1.
We further rewrite the hypotheses in terms of unconditional moment restrictions.

Let sx = {s(-)|E[s(X;-1)?] < oo} and sz = {s(-)|E[s(Z;_1)?] < oo} be the Hilbert

Ly spaces. We can decompose s, into sy and sx, where sy is a Hilbert space

orthogonal to sy. That is, for any function p(z) € sz, we can represent p(z) =
px () + px1(2) such that px(z) € sx and py.(z) € sx. Noting u, is orthogonal to
sx by construction, we have

E(w|Zi1) = 0 <= E(wp(Z_1)) =0, for Vp(2) € sx

In order for a technical reason, we slightly modify this null hypothesis to so-called
“density-weighted” version;

E(uef(Xi-1)|Zim1) = 0 <= E(uf (Xio1)p(Zi1)) = 0, for ¥p(2) € sx.

It is obvious that all four representations above are equivalent because f(X; ;) is
measurable conditionally on Z;_;. Thus, we can rewrite the null and alternative
hyptoheses as,

Hy: Bluf (X, 1)p(Z,1)] =0, for ¥p(z) € 5%
and
Hy: Bluf(X, 1)p(Z,.1)] #0, for some p(z) € sx.
2.2 Test statistics

We first heuristically describe the idea of constructing the test statistic. Let H(z) =
{hi(2)}2, be a complete basis over sy, satisfying

Varfu f(X; 1)hi(Z; 1) =1 (2.1)

and
Cov[u f(Xi—1)hi(Z1—1), ue f(Xi1)hj(Z121)] = 0 (2.2)

for all i # j. Given a sample {(x;,y;)}._,, define, for r = max(p,q) + 1 and i =
]-7 Ty kTa

o = % S uf (e )hilZ ), (2.3)
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fo some k7 < T which is determined later. Appealing to a central limit theorem
for martingale difference sequences, we have a; AN (0,1) under the null, while
la;| explodes to oo under the alternative for some i as T — oo, because u; has a
non-zero mean conditionally on Z;_; and {h;(Z)} spans a basis of s3. Therefore
we can consider a test combining these quantities as follows. Let {w;}°, be a user
determined summable positive sequence, such as w; = 0.9, then

kT o0
ST == Zwia? i} Zwie? (24)
i=1 i=1

where ¢; are i.i.d.N(0,1) random variables. It is obvious St % oo under the alter-
native because some of a; must explode.

We can construct H(Z) as follows. Given {¢;(Z)}2,, a user-determined basis of
sz, [{qi(Z2) — ri(X)} f(X)]2, forms a basis of sx, where r;(X) = Elq;(Z;_1)| X;_1 =
X]. Let

Q(Z) = (0(Z) =ri(X), -+, @ (Z) = 1 (X)) F(X) = (Qu(2), -+, Qi (2)),

and
M = Blui f(Xi-1)*Q(Zi-1)Q(Zi-1)'].
Then, supposing M is positive definite,

H(Z) = (l(Z), -+ hip(2)) = M 1PQ(2) (2.5)

satisfies the required conditions (2.1) and (2.2).

S; provides a population quantity to test the null hypothesis (1.4), however (2.4)
is infeasible. We propose a feasible plug-in test statistic. The unknown components
in (2.3) are u, f(X) and h;(Z) which are replaced by the regression residual and
their estimates. We estimate the density by a kernel method as,

fX0) = o 30 K (2:6)

where K (-) is a kernel function and h is a bandwidth decaying to zero as T — 0.
We obtain the residuals straightforwardly by

’LALt = Tt — g(Xt—l) (27)
where -
. 1 X - X
X)=——7"— K(——— 2.8
910 = iy 2o K ) 2.9
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is a nonparametric kernel estimate of g(X). Using (2.6) and (2.7), we estimate
up f(X¢ 1) by

wf(Xeoy) =2 f (X)) — 7 Y K(%)% (2.9)

We construct estimates of h;(Z) by replacing unknown quantities in (2.5) as follows.
Since r;(X)=E[¢;(Z;-1)| X;—1 = X] is unknown, we estimate it by Nadaraya-Watson
kernel estimator

B o1 X=X,
Fi(X) = Elgi(Zi-1)| X1 = X] = TR t;IK(ih Vai(Zi_1),

and f(X) is used again. Then we have an estimate for Q(Z) as,

QZ) = (@1(Z) = 11(X), -+, akp(Z) = Py (X)) F(X).
= (Qi(2),+, Qus(2))

M is estimated by its feasible sample analogue,
1 e —~
M = T ; Utf(thl)ZQ(thl)Q(thl)I-

Using these estimates, we finally produce {h;(Z)}¥7, by

~ ~

H(Z) = (h(2),+ . (2)) = M7'Q(2). (2.10)

Substituting (2.9) and (2.10) into (2.3), we make a sample analogue of (2.4),

kT
Sr=> wal, (2.11)
=1

where

T
a; = % S uf (Xem1)hi( Zims).
t=r

We give several remarks. Firstly, we use the density weight because u; =
x; — E[x| Xy 4] and ¢(Z;_1) — E[q(Z;_1)|X_1] involves a denominator of f(X;_1).
If we replace it with its estimate in constructing a feasible statistic, the random
denominator may cause a numerical problem by taking a very small number in
practice, which results in a very large value of |E[z,|X,_1]| or |E[¢(Zi_1)|Xi—1]|.
We would like to avoid such unstable feature of the test statistic. Many papers



in nonparametric and semiparametric statistics treat this problem similarly. Sec-
ondly, this procedure allows for conditional heteroscedasticity in u; because H(Z)
absorbs it due to the construction of (2.1) and (2.2). It will be convenient in prac-
tice that we need not explicitly estimate the conditional variance V' (u;|Z;—1) which
will entail a multi-step procedure. Thirdly, we de-mean in making Q(z) in order
for ﬁ Zf:p{m(xt,l) —m(X,_1)}Yhi(Z,_1) to be degenerated for any function m(X)
and its kernel estimate 7 (X) owing to this construction. This is convenient to prove
the asymptotic equivalence of a; and a,. Fourthly, it is also possible to consider a test
statistic with equal weights, or k;l Zfil a?, however it does not have power against
VT-local alternatives. In practice, it is not easy to say which performs better in
small samples, but the present procedure performs better in large samples. We di-
cuss about it in Section 3. Finally, it is also possible to test the same hypothesis
by integrated conditional moment tests (ICM) by Bierens (1984, 1990) and others.
They also have power against v/T-local alternatives, but it is not clear how much
power it has toward which direction of departure from the null unlike ours. Also,
if one has an idea on which direction the alternative may depart from the null, we
can include this information in the present test, by choosing w; and ¢;(Z) suitably.
We will discuss about this issue in detail in Section 3.

2.3 The null distribution

We give a set of regularity conditions and the null distribution of the test statistic
proposed in the previous section.

Definition 1 Let {2}, = 1,...,T be a strictly stationary time series defined
on a probability space (Q, F, P). Let F! be the o-algebra generated by {z;, ..., 2}
Then we say {z;},t =1,...,T is absolutely regular when

AEF

B(k) = E{ sup |P(A|F°,) — P(A)|} — 0 as k — oc.

We call the coefficient (k) the coefficient of absolute regularity. We note that

the ¢-mixing condition implies absolute regularity, and absolute regularity implies
strong-mixing.

We assume the following assumptions.
Assumption Al. z; = (x4, y), t = 1,...,T is a strict stationary and absolutely
regular sequence of stochastic vectors with absolute regularity coefficient g(k) =
O(k=@*+m/m) for some 1 € (0,1).
Assumption A2. E{|z, > f(X, 1)"*o4+22 (X, )14} < 0o where § > e

Assumption A3. Put u = (uy,---,u,) and let K : RP — R be an L—th order
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kernel function satisfying K(—u) = K (u),

=1 if L+--+1,=0
/ul;---u;pK(u)du =0 if Lh+--+Il, <L
#0 forsomel; +---+1,=1L,

[ K (u)?du + [|jul|” |K(u)|du < oo, and |lul" |K(u)] = 0 as |ju]| — oco. his a
positive constant decaying to zero, satisfying T-'h ™" + /Th" = o(1) as T — oc.

Assumption A4. {¢;(Z)}3°, forms a basis for sz, satisfying sup, |¢;(2)| < C, < o0
for all i and sup, | S0 {qi(Z) — r;(X)¥?| < G (kr) for (kr) — oo as T — oo.

Assumption A5. M —0asT — oo.

Assumption A6. For X = (zy,---1,), suppose f(X), ¢(X)f(X), r:(X)f(X),
muj(X) = E [u{Qi(Z:1)Q;(Ze-1)|Xe 1 = X] f(X)?

and
mai(X) = E [ui{g;(Zi-1) — rj(X)}| X1 = X] f(X)?

are L times differentiable. Furthermore, Writing
h(ll""’lp)(X) — 8l1+"'+lph(X)/afil . ,agzl)p,

(hk)t ) (X) = 91 n(X)k(X) /0g7 - - - gy,

for generic functions h(X) and k(X), assume
E{(g(Xi1)? + uf 4 up f (X)) f1 9 (X)) < o0,

E[{1 + ul f(Xpm) f (Xem1)? (gf) 1) (X21)?] < o0,
E{(f(Xim1)* 4+ up) (ri /) (X5 20)°} < o0,
E{mgljll""’lp)(thly+mgj1""’lp)(Xt71)2} < 0,
for all 7,7 and all {y,---, 1, satisfying 0 < {y,--- , [, < L, l; +---+1,= L.

Assumption A7. Eigenvalues of M are bounded and bounded away from zero
uniformly in k.

Al is a standard assumption in nonparametric time series analysis, but we believe
it can be relaxed to strong mixing condition in view of recent results such as Gao and
King (2004) and Hansen (2008). A2 is a condition used in proving that the second
order terms of U-statistics, which appear in the proof, are asymptotically negligible.
A3 is standard in asymptotic theory of nonparametric regression. In A4, (2(kr) =T
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or T? typically depending on the choice of {¢;(Z)} as in Newey (1997). We believe
A4 and A5 must be stronger than necessary, but these assumptions make the proof
of the Theorem much easier. Also we point out that similar assumptions to A4 and
A5 were made in Newey (1997) in obtaining asymptotic theory for series regression
estimators. A6 guarantees that the projection terms of U-statistics in the proof are
asymptotically negligible. Newey (1997) also assumes a similar assumption to A7.

Theorem 1 If assumptions A1-A7 hold,

kT o0
& ~2 d 2
Sr =Y wa; — Y we asT — oo

under Hy, where €; are i.i.d. N(0,1).

3 Power of the test under non-local and the +/T-
local alternatives

The above section proposes a test statistic for causality in mean and its null distri-
bution. We discuss about its power properties. Firstly, under non-local alternatives,
the DGP can be written as,

= g(Xi1) + £(Zi1) + vy,
for some non-constant function x(Z;_1), where v, = x; — E(x4]2,_1). Because
u =, — E(xy| Xy 1) =20 — 9( Xy 1) = k(Z41) + vy,
we have
E{unf(Xe-1)hi(Zi)} = B{r(Zi—1) + b f (X)) i Zi)]
= E[r(Zi-1) [ (Xe=1)hi(Z1-1)].

This value is non-zero at least for some i. It is because if E[k(Z;_1) f(Xi—1)hi(Z—1)]
are zero for all 7,x(Z) must be identically zero since {h;(Z)} is a complete basis.

This is the source of the power of this test in the sense that
1
ﬁai £> E[H(thl)f(thl)hi(Zt,l)] = Kj, (31)

which results in

kr
SraT Y wikg, (3.2)
i=1
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and at least one for k; is non-zero. To clarify the power structure of the test, suppose
we set w; in the decreasing order without loss of generality. Suppose further only
one of the x’s is non-zero, say 1, for simplicity. If k1 = 1, Sr ~ w1, while Sy~ Wi, if
kkp = 1. Obviously, the test has a larger power in the former case because we reject
the null when S7 is large. Therefore we see that if the direction of the departure from
the null is closer to the basis functions with smaller indice 4, the test will be more
likely to reject the null, namely Sy possesses more power for the discrepancy from the
null toward h;(z) than h;(z) for w; > w;. Becasuse there is no ordering in the basis
functions, we can interchange them in fact. Therefore, if we have a prior knowledge
on the direction of alternatives, we can make use of this information to order a; to
induce a better power property. This is, we believe, a great advantage of this test
against ICM tests, that cannot control for which directions they have power. To
illustrate this, suppose we know that the alternative is likely to be the null regression
function plus sin(Z;_;), then, by choosing h{(Z;_1) = sin(Z;_1) — E[sin(Z;_1)|X;_1],
we expect a large power out of this test.

The following theorem states that Sy has a nontrivial power against v/7T-local
alternatives.

Theorem 2 Let k : RPT? — R be a measurable function in the space sx. Supppose
the following local alternatives is correct,

1
Hla . E(Ut|Zt_1) = ﬁﬁ)(zt_l).

Then, if assumptions A1-A6 hold,

)
S’T i) Zwi(q + 7'1')2

=1

under Hy,, where 7, = Elx(Z}) f(Xy)hi(Z4)].

We omit the proof because it is obvious noting that a; 4 N(7;,1) under Hy,.
We now show that flat weight w; = 1/v/ky for all 4, for example, is not permitted
in order for the test to have non-trivial power against v/T'— local alternatives, by
providing a couter example. In order for the statistic to be O,(1) under the null, we
need to modify the statistic to
o1

S

Suppose a /T —local alternative of, x(Z) = hi(Z)f(X), namely,

)
Zy 1) f(Xio1)
Y

kr
Za? — Vkr 5 N(0,2) under H,.
i=1

h
Hy: xp=9(Xi1) + i + v

~
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with, for simplicity, conditional homoscedasticity F(u:|Z; 1) = const is correct.
Then, a; LN N(7;,1), and thus E(a?) ~ 1+ 72, where 7y # 0, and 7 = 73 = - - - = 0.
In this case, we have,

kT kT
1 1
Sp=—=3 B~ Vkr + = {a} — E(d?
T Uy & P T Vi G 2t Blad)
1 &

=—— Y 7+ N(0,2)
Vhkr =

2

;1
= —— + N(0,2).

Then it obviously does not have power against this simple v/T—local alternative
because the first term in the last expression disappear asymptotically. Therefore,
flat weight does not provide a test which has power against /T —local alternatives
in general.

4 Nonparametric Test for Causality up to the K-th
Moment

In view of recent empirical studies in financical econometrics, it appears dependence
in second, third or fourth moments looks like an issue of interest. We can provide a
tool to examine if there does not exist causal relationship in such a higher order sense
using the test proposed above. The main idea is the same as in the previous section,
but we need to be careful in understanding the results as explained below. Here
we also restrict ourselves to the case when the series of interest follows a stationary
nonlinear AR process under the null.

To illustrate the motivation for such high-order causality, let’s consider, for ex-
ample, the following nonlinear dependence between series,

= g(x-1) + 0(ye1)er, (4.1)

where {y;} is a stationary time series, ¢g(-) and o(-) are unknown functions which
satisfy certain conditions for stationarity. Then y, ; obviously does not have in-
formation in predicting z; in the sense that E(x|z;_1,y;—1) = E(x¢|x4_1), but has
information in predicting 2. This type of modeling is becoming increasingly popular
in analyzing, for instance, financial data.

In general, we may like to know if y; | is useful in predicting =X for a given
positive integer K. It looks possible to give a definition of "causality in the K-th
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moment" similarly to the causality in mean, or we say "y; causes x; in the K-th
moment'" if

E[xf( — E(xﬂxt,l, . ,xl)]2 > E[xf( — E(xﬂxt,l, U T T T yl)]2. (4.2)

Then, by a similar manipulation to the derivation of (1.4), the null hypothesis of non-
causality in K-th moment corresponding to the alternative of (4.2) can be written
as

Hy:E(xf |zt . 20,9y 1) = E(xf w1, ..., 21) wap. 1. (4.3)

We should point out, however, that we need to be careful in understanding this
definition, because we will almost always conclude that there exists causality in the
K-th moment if there exists causality in the M-th moment (M < K). We illustrate
this when K =2 and M = 1. Suppose the DGP is

xy = g(mp_1, yp—1) + €1, (4.4)

where ¢; is independent of x;_1,1;_1. Obviously ¥; causes x; in mean. In terms of
the present definition of causality in the K-th moment, we conclude y; causes z; in
the 2nd moment because

E(xﬂxtfla Y1) = E({g(zi1, y0-1) + Gt}2|xt717 Y1)
= g(@1,y1-1)> + E(e})
# E(x7]x; )

in general. One way of understanding this definition is that (4.2) states that y,
causes x; up to the K-th moment rather than in the K-th moment. Formally, we
define causaltiy up to K-th moment in the following way.

Definition. We say y; does not cause x; up to the K-th moment if

E(@f |z 1, .. 2,01, 1) = B@Ma,y,...,z)] wp. 1forall k=1,--- K.

(4.5)
With this definition, there exists causality up to second moment for both (4.1)
and (4.4). When K = 1, this reduces to non-causality in mean. We note that
it is also possible to define higher-order causality in other ways (see, e.g., Comte
and Lieberman (2000) and references therein), where they check if the conditional
variance of x; given lagged x, y depends on lagged ¥ or not in defining “second-order
causality”, namely,

El{az, — E(2|Ze-1) Y| Xi1] = Bl{z: — B(x] Z01) Y| Zi-1), (4.6)

holds or not (see definition 3 (i) of Comte and Lieberman (2000)). Their interest is
in testing for second-order causality in multivariate GARCH models. Our method

14



is different from theirs in that we work on a nonparametric framework. We can
incorporate their setting of multivariate GARCH to test causality of “second-order”
nonparametrically in our framework. Also, it is not clear if the asymptotic null
distribution of their test statitics is verified.

In view of the above definition, it is easy to construct test statistic for each k.
We simply replace z; in (2.7), (2.8), (2.9) by z¥, and construct statistics &Ek), then
gi(pk) for each of £ =1, --- K. Specifically,

where

for

A®(Z) = (1"(2),--- B (2)) = MP12Q(2).

It is, however, not easy to combine these statistics into one statistic because they
are mutually correlated. One way of testing for the joint null of (4.5) is to estimate
the correlation, say by boostrap or other simulation method, and obtain the critical
value for a suitably combined statistic. This will be computationally expensive. In
order for practical use, we recommend to test causality successively especially when
K is small. We implement the test for £ = 1 first and if the null of non-casality
in mean is rejected we stop there as we already know that there is causality in the
first moment. If not rejected, we go ahead for the causality in second moment, or
k = 2. We continue this procedure until the null is rejected at certain stage or k
reaches K. Obviously there is a statistical problem that we do not know the total
size from this successive method, but at least when K is small, say 2 or 3, we may
not need to be too careful about it practically because the empirical size must be
conservative, because

P(Sé}) > C OI'Sg) > CQ|H0) = P(Svéwl) > 01|H0) + P(Sg) > CQ|H0) — P(Svéwl) > ¢y and Sg?) > CQ|H0)
< P(S) > ¢i|Hy) + P(S > e5| Hy)

where ¢; and ¢, are critical values, say, of 5% significance level, for 5‘5} ) and 5‘;2 )
respectively.
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Lastly, we point out that it is possible to skip lower moment causality tests when
one knows that there is no causality in lower orders. For instance, it is known that
we can hardly improve predition of stock returns in financial application. In such
a case, if one may wish to test for causality of second moment, it is possible to
go straight to S';Z) test without checking S'él Cf S';Z) test rejects the null, we may
conclude there exists causality only in the second moment in the sense that (4.6)
does not hold.

For the asymptotic theory of S';k), we strengthen the moment condition to

Assumption A2, E{|z,[FC+ £(X, 1) + 27FCT £(X,_1)4+0)} < o0 where

Theorem 3 Under assumptions A1, A2’,A3-A7,

kr 0o
A Lo d
S;k) = E waz g wier
i=1 i=1
fork=1,--- K.

The proof is omitted because it is straightforward.

5 Special cases - representation of other omitted
variable tests

A typical alternative test is a series of integrated moment condition (ICM) type tests
of Bierens (1984, 1990), Bierens and Ploberger (1997) and Chen and Fan (1999) and
others. This type of test is constructed as follows. Letting

T
ZT(f) = % Zﬁt eXp(ngtfl)a
t=1

we know under the null
Trem = /ZT(f)ZdM i> ZTiG?a
i=1

and it explodes under the alternatives. Here,{7;} are eigenvalues of the function
['(&1,&) = Elexp(&1X;) exp(€,Xy)], and ¢; are i.i.d. Gaussian random variables.
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This also has nontrivial power against T —local alternatives like the propose test.
However, it is not clear which direction of alternatives Tjcps has more/less power.
We believe our test is more convenient than the others because it is much clearer for
users how much power the test has to each specific direction of alternatives. More
specifically, in the present notation, supposing w; > wy > ---, the test (2.11) has
the largest power against the alternative of x; = ¢(X; 1) + hi(Z;_1) + w;, while it
has the smallest power against the alternative x; = g(X; 1) + hi (Z1) + u.

The test statistics proposed above may look like quite primitive statistics, how-
ever, it is a quite general class, in fact, in the sense that this includes important
nonparametric test statistics for omitted variable tests as special cases. We firstly
show that ICM is a special case. If we set

w; =&,
hi(Z) =€ P F(X) 7 | exp(€'Z)yy(€)de,

where ;(§) is the eigenfunction of I'(£;, &) corresponding to 7;, then we can show

that
kTt

ST = Zwlaf = TICM + Op(l).
i=1
Therefore, Tror is a special case of the present test for {w;} and {h;(Z)} chosen
as above asymptotically. Secondly, the test of omitted variables in nonparametric
regression by Hong and White (1995), Tyw, can be written as

kT kT
vk
THW = E wia? — E w; + Op(l) = ST — 0_—2T + Op(l)
i=1 i=1

where
1

0'2\/ kT
WZ) = (h(Z), - hie(Z)) = B{Q(Z)Q(Z)} ' f(X) ' Q(2),
and 0® = F(u;|X; 1). The omitted variables test by Fan and Li (1996) also has

essentially the same structure as Ty, and thus can be represented similarly. The
test by Von Neuman (1941) is also written as

T T
TVN = Zwlaf — sz + Op(]-)
1=1 i=1

w; =

with
1
=TT
WMZ) = (m(Z),- e (2)) = B{Q(Z)Q(Z)} T f(X) ' Q(Z),
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We can also show that omitted variables tests by Stute (1997) and Whang (2000)
are also represented in terms of S; as above. We also note that Ty y and Thyw
tests do not have power against v/T'—local alternatives because of the flat weight as
discussed in Section 3.

We may point out that there is an advantage in rewriting these special case
test statistics as the weighted squared sum form in terms of w; and h;(Z) in order
to see in which direction(s) of alternatives these tests have power. In some cases,
we could show that ICM tests have power only against a very limited direction of
alternatives, because only first (the largest) weight w; is extremely large, while the
others, wq, w3, - - - are relatively very small (see Hitomi (2000)). We cannot change
this structure of ICM and other tests, though the proposed test can directly change
them.

6 A Monte Carlo Study

In this section we report the results of a Monte Carlo study to investigate the
performance of our proposed test statistic. Throughout this section, z; is the time
series of our primary interest, while we want to know whether or not another time
series y; (in lags) accounts for the variation of ;. Let {n,} and {¢;} be the innovation
processes of x; and y; respectively, and we assume both follow standard Normal
distribution identically and independently.

6.1 Testing Causality in Mean

We start with the four simulation settings as below. These can be considered as
time series analogue of the experiments carried out in Okui and Hitomi (2002). The
results in this section are generated using Ox version 6.1 (see Doornik, 2007).

DGP 0: z;, =0.65z; 1+, Y= —03y; 1+ €
DGP 1: 2, =0.65z;, 1 +02y; 1 +mn, vy =—-03y 1+ ¢
DGP 2: z; = 0.6524_1 + 0.2y, 1 + 0.4sin(—2y,_1) +m, v = —0.3y,1 + &
DGP 3: z;, = 0.65x,_1 + 0.2yt2_1 + 1, oy =—03y1 + €&

Because there is no causal relationship between z; and y; in DGP 0, the null
hypothesis of Granger non-causality should be maintained. This experiment is car-
ried out to illuminate the size property of our test. DGP 1 covers the case of linear
vector autoregressive models. In DGP 2 and 3, the target time series x; depends on
the lagged covariate time series 3,1 in some nonlinear fashions. Observing x; and
Y, we want to know if y; causes x; in Granger’s sense, but we do not know in what
functional form z; depends on ;.
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The following is the specification of our test. We used normal kernel K(u) =
(27r)~'/2 exp(—u?/2) for nonparametric regression. Our bandwidth choice is C x
T-93 where T is the length of time series. C' is about 7 except for T = 100 case
where C' = 9. For basis {¢;(Z)}, we choose the following 8 functions (actually
T x 8 numbers); siny;_1, coSy;_1, Siny;_y sinx;_q, Siny; 1 coSTy_1, COS Y1 Sin Ty_1,
COS Yy_1 COS Ty_1, Sin 2y;_1, cos 2y;_1. So the number kr is set to 8 in all the experi-
ments. The weight function is chosen as w; = 0.9" to construct the test statistic S'él).
Critical value of asymptotic distribution is calculated by a Monte Carlo simulation
with this choice of w;. The upper 5% critical value is estimated as 14.38.

As a competitor to our test, we employ a nonparametric Granger (non-)causality
test of Hidalgo (2000). The basic idea of Hidalgo’s test is to use a nonparametric
estimate of cross-spectrum by which linear causality from one time series to another
is determined. It should be noted that the main contribution of Hidalgo (2000) is
to allow long memory time series in his causality test. He also showed that his test
has power against v/7T-local alternatives which will be confirmed in our simulation
study, too.

The results are summarized in Table 6.1. In each experiment the number of
iteration is fixed to 1000. Each entry shows empirical rejection rate of the null
hypothesis of Granger non-causality, hence the two columns under DGP 0 are the
empirical size, and others show empirical power. Our test for mean causality is
signified as S’(Tl ) following the notation in section 4, and Hidalgo’s nonparametric
Granger causality test is shortened as HNC. As is seen clearly, the size of S’(Tl ) is
quite decent while HNC test seems to over-reject he null in this simulation. Hidalgo’s
test depends on how many lagged cross-covariance terms, M in his notation, are used
to construct the test statistic. As he points out, it is possible to make use of some
model selection procedures to choose a plausible M, but our choice of M here is the
largest integer which does not exceed T"/%. This is the slowest rate within admissible
range. Because we would, basically, like to compare the power, not size, we did not
try to tune M such that the size distortion of HNC becomes minimum.

What is remarkable is the power of S';l) in DGP 2 and 3 cases, especially when
the sample sizes are fairly large. It performs much better than Hidalgo’s test in
general as expected, when there exists a nonlinear causality. However, it is worth
mentioning that Hidalgo’s test shows high power for DGP 1 experiment even in
small sample case (7" = 100). This is because DGP 1 is exactly the situation that
Hidalgo’s test expects, or linear causality, and we will visit this issue again in the
experiments of V/T-local alternatives.

6.2 Power under v/T-Local Alternatives

Whether or not a statistical test has power against V/T-local alternative is more
or less a theoretical issue rather than practical one. But in order to confirm the
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DGP 0 DGP 1 DGP 2 DGP 3

T SY unxc SP uNc SY HNC SU HNC
100 0.049 0.104 0.092 0427 0.115 0.221 0.109 0.118
200 0.047 0.108 0.236 0.675 0.335 0.343 0.286 0.135
300 0.049 0.129 0.455 0.859 0.614 0.466 0.565 0.150
400 0.053 0.127 0.614 0.913 0.778 0.539 0.781 0.149
500 0.054 0.130 0.760 0.964 0.911 0.627 0.899 0.158
1000 0.049 0.139 0.989 0.999 1.000 0.871 0.998 0.188

Table 1: Empirical size and power of the proposed test (5’;1)) and Hidalgo’s non-
parametric causality test (HNC).

theory, we carry out a bunch of simulations under local alternatives. For example,
in conjunction with DGP 2 setting, we put the model in the alternative hypothesis
as

2 4
Ty = 0.651;15_1 + ﬁyt—l + ﬁ Sln(—2yt_1) —+ ™

while DGP of y; is unchanged. We refer this specification to DGP 2L. DGP 1L
and DGP 3L are defined by dividing the deviation from the null by v/7 in DGP 1
and DGP 3, though we do not display the equation explicitly. Note that choosing
T = 100 leads to the specification in previous simulations for non-local alternatives.
The figures in the first row in Table 6.2 are, naturally, more or less same as those in
the first row of Table 6.1. When T grows from 100 to 1000, the coefficient of ¥,
shrinks from 0.2 to 0.02.

As Table 6.2 shows, S”;l) does have power against v/T-local alternatives. It is
striking that 5’5}) exhibits quite a good performance for DGP 3L case while the
empirical rejection rate of HNC test is as low as its empirical size, which suggests
HNC test virtually has no power for DGP 3L case. However, HNC test is superior to
our test S’(Tl) in DGP 1L and DGP 2L. DGP 1L is a case of linear vector autoregressive
model, and HNC test is specifically designed for such a linear case. DGP 2L even
includes linear causal variable (y;—1) on the RHS of the DGP of x;. 5‘5} ) captures
the causal effect of linear term by the kernel method, which might be a roundabout
way.

6.3 Testing Causality up to 2nd Moment

To demonstrate the usefulness of the methodology proposed in Section 4, we consider
the following nonlinear time series model as DGP 4.
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DGP 1L DGP 2L DGP 3L

~

T SY unxc SP HNC SU HNC
100 0.092 0427 0.115 0221 0.109 0.118
200 0.133 0.457 0.166 0.238 0.156 0.128
300 0.164 0.500 0.228 0.267 0.224 0.137
400 0.151 0.498 0.213 0.265 0.235 0.138
500 0.166 0.529 0.213 0.289 0.224 0.144
1000 0.157 0.569 0.227 0.326 0.279 0.162

Table 2: Empirical power of the proposed test (S';l)) and Hidalgo’s nonparametric
causality test (HNC): case of local alternatives.

DGP 4: o} = w+Hay? |+ po?
yo = o, m~ NID(0,1)

r, = 0.65x, 1 ++/1+y? &, € ~ NID(0,1),

where w = 0.05, « = 0.1, § = 0.8. In other words, y; is generated by GARCH(1,1)
model and it enters into the variance of the innovation of x;. So z; does not depend
on y;_1 in mean but there exists causality in the 2nd moment. Therefore at least
theoretically, neither S’(Tl ) (our test in mean) nor Hidalgo’s nonparametric Granger
causality test will not be able to detect such type of dependency. But our test SA”:(FZ),
based on the kernel regression of z7 onto y; 1, is expected to detect the causality.
The bandwidth in this second stage regression is set to 5.6 x 7703

Before we observe the empirical power, we must investigate the size property
of the two-stage test employed here. The leftmost column in Table 6.3 shows the
empirical size of this successive application of 5‘}2 ) after S’(Tl ) analyzed in DGP 0
setting. If both tests take 5% as their significance levels, the overall size should
be slightly less than 10% . The figures under DGP 0 in Table 6.3 show that the
successive test has good size property for 7" around 300 or more. The results for T =
100 and 200 turned to be conservative because not 5’5}) but 5’;2) is very undersized.

The results for DGP 4 are summarized in the three columns under the heading
of DGP 4 in Table 6.3. As for HNC, the figures in the table are hardly interpretable.
It may uncover even sloppier size or it may be exhibiting the weak power. Quite
the contrary, the figures in the column of S'TI) are all close to the size (5%), and the
power in the columns of ‘SA';Z) grows when the sample size T gets large. Here we note
that the figures in ‘SA';Z) column are the empirical rejection frequencies divided by the
number of cases for which S';l) did not reject the null. For example in 7" = 1000

case, 72 out of 1000 times S';l) rejected the null of Granger non-causality in mean.
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For the accepted 928 cases we perform the test by S;Q). It has lead to 386 times
rejection of non-causality in 2nd moment, namely the ‘power’ is 0.416.

As a final case, we consider the case where z; depends on 1;_; in 2nd moment
as well as in mean.

DGP 5: Ty = 0.651}71 —+ O.Qytfl + 1+ yt27177t7 Y = —0-33/:571 + €
This is a challenging situation for the test we propose. We expect S:(pl) to detect

causality from 0.2y;_; term, but then it will stop the procedure and we do not
proceed to second stage with S;Q). Hence just the same as in DGP 4, we apply 5’;2)
when ‘SA';I) fails to detect the causality in mean. The three columns under the heading
of DGP 5 in Table 6.3 show that ‘SA';I) suffers at small sample stages, but finally has
moderate power at 7" = 1000. When the sample size is large, ‘SA';Z) manages to detect

the causality in the 2nd moment even if S';l) failed to detect the causality in mean.
As for HNC, again it shows considerably good performance because the true DGP
includes linear causality from y;_;. Though the overall size control could be difficult,
combining HNC with S’:(FZ) might help in some practical situation.

DGP 0 DGP 4 DGP 5

T SU&sY sV 8P uNe S sP HNC
100 0.052  0.075 0.003 0.166 0.178 0.023 0.435
200 0.067  0.046 0.047 0.185 0.271 0.167 0.646
300 0084  0.059 0.072 0.208 0.388 0.265 0.797
400 0075  0.066 0.128 0211 0.466 0.434 0.867
500 0.088  0.080 0.162 0.217 0.605 0.597 0.918
1000 0.099  0.072 0.416 0.257 0.920 1.000 0.995

Table 3: Empirical size and power of successive tests when causality in 2nd moment
exists (DGP4) and when causality both in mean and in variance exists (DGP 5).

6.4 Application to Price-Volume Causality

As an application to real data, we investigate the causality between stock price
and traded volume. Price-Volume charting has been very popular among technical
trading, and it is often said that the change in volume precedes the price movement.
Ideally, the rise of price will be followed by the increase in the volume, while the fall
of price often observed after the shrink in the traded volume. It is sometimes called
‘counter clockwise’ relationship between volume and price.
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We use weekly price and volume data of Nikkei 225 futures. The sample period
starts at 1st week of September 1988 and ends in the 4th week of October 2007, of
which sample size is T = 1000. To ensure the stationarity of the data, both price
and volume are transformed to the changes in percentage. We call these variables
in change dp; and dv; respectively.

Our primal concern is to investigate if there is any causality from past volume
change to the present price change. Hence we give dv, ; the role of y;, ;, and perform
the nonparametric causality test in mean using S'él). The result is 5‘5} ) = 1154 <
14.38, which leads to accepting the null of non-causality in mean. Then we proceed
to the second stage, and regress dp? nonparametrically on dv; ;. The resulting test
statistic is SZ(FZ) = 20.81 > 14.38, which implies the rejection of non-causality in 2nd
moment.

To make sure, we check the reverse causal relatlonshlp, exchanging the role of dp;
and dv;. The results are S = 9.95 < 14.38 and S = 9.30 < 14.38, hence both
causality in mean and in 2nd moment are not detected. Combining these results, we
may conclude that the volatility of Nikkei 225 futures is caused by its past volume
change, but there seems to be no evidence for the reverse order causality.

7 Concluding Remarks

Granger causality tests proposed previously do not detect certain nonlinear causal
relationships. The reason is that they construct test statistics based on a linear
representation of the time series appealing to, say, the Wold decomposition, but we
know only that the error terms are uncorrelated with the series of interest, rather
than independent. Observing this fact, we proposed a nonparametric testing proce-
dure for Granger-type causality in the case of any form of nonlinear dependence.

The test can be viewed as a test for omitted variables in time series regression.
We show that the test has nontrivial power against v/T-local alternatives like ICM.
But it has an advantage over other omitted variables test in that the power properties
are clear, and thus we can incorporate a priori information, if ever, in forming a test.
Furthermore, it is possible show that those previously proposed omitted variables
tests can be represented in terms of the present test asymptotically.

The Monte Carlo study shows that the test performs well with decent empirical
size, in general, and good power property for both causality in mean and causality up
to second moment. Compared with the Hidalgo’s test, Sy does slightly worse when
the series exhibit linear dependence in mean in fact, but in the case of nonlinear
dependence, especially nonlinear dependence in conditional variance, it obviously
outperforms the Hidalgo’s test. We also show an empirical example for finanaicial
data.
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Appendix
A Proofs of Theorem

(Proof of Theorem 1) Denote

a= 2= 3w (Xi)h(Zm) = <= 3 (Xi) MHQ(Zim),

T T
1 ~

a=— Zu/t\f(Xt—l)ﬂ(Zt—l) = ﬁ ZJt\f(Xt—l)M_%Q(Zt—l)a

t=r t=r

and
W = diag(wy, -+, Wgy).

We would like to show that

aWa — Zwie? 20 (A.1)
i=1
and
aWa—aWa 0 (A.2)

as T'— oo. We first prove (A.1). For Ve > 0 and V0 > 0, we can choose m such that
Y et Wi < 0€/2 because {w;} is a summable sequence. As m is a finite number
independent of 7', m < kr < T holds for sufficiently large 7. Then we have

kT oo k 2 00 9
B4, wiad| + BT, wiel
P13 w3 ws) < EZEmarl AR
k
ziim+1 wj + Zz?im+1 w;
)
4]

< <€

where the first inequality is due to Markov inequality, the equality uses F(a?) =

FE(€?) = 1. We look at the remaining first m elements. We only need to show

% N(0, I,). (A.3)

am
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Let A = (A, -+, An)" be any fixed m—vector, then

Z)\az—\/—zuthtl)\h Ztl \/—th

where E(v|Z;—1) = 0, V(v;) = >0 A2, Appealing to the CLT for stationary Mar-
tingale differences (see, e.g. Theorem 7.11 of Bierens (2004)) with Cramér-Wold
device, we have (A.3), which completes the proof for (A.1).

We prove (A.2) next. Noting that

aWa—aWa=(a—a)W(a—a)+(a—a)Wa+a'W(a—a)
and
(@—a)Wal? = [a'W(a—a)* <||(a—a)W:|]?||Wza||* < (a—a)'W (a—a)-a'Wa,

it suffices to show
(@—a)W(a—a) >0 (A.4)

as a'Wa = O,(1) by (A.1). Write further
a-—a = —(= Z{Jt\f(Xt )M 7%Q(th1) - Utf(thl)MféQ(th)}
= % ;{U/t\f(th) - Utf(thl)}MféQ(th)

H(M 3 — M3)

Zutf Xt 1 thl)

1 L
7 2w XM HA) Q)

+smaller order terms
= Ayr+ Aor + Asr + smaller order terms.

Similarly as above, we immediately know

A WA 50 (A.5)

AW Ayr 50 (A.6)
and

AW Asr 5 0 (A.7)
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imply (A.4). Therefore, (A.5), (A.6) and (A.7) suffice to show (A.2). We start with
(A.6). Because

1

Apr = (N4 — M)

\/17 > uf(Xi-)Q(Zi-1),

we have

AW Agp < || AW ()2 < || Agr |2 |W 22

T
A1 1 1 1
< IME = M |P = Y uef (X )QUZe )P W
\/T t=r

As {w;} are summable, ||[Wz[2 =S fil w; < oo. By Lemmas 5, 6, and Assumption

AT, A

k|| M — M][*

_ = O
A3 (M) b

min

Co(kr)* k7

[N = M3 < ).

Also,

E||%;utf(xt_l>cz(zt_1>||2 - ;E{%;utﬂ&_l)@(a_l)}?

Z E{ui f(X4-1)*Qi(Z1-1)?}

ACTkr E{ui f(X;-1)*}
Ckr.

IAINA

Combining them, we have

Co(kr)* k3

AW dgr = 0,2,

and thus, (A.6) holds by Assumption A5.
Because

2

kT
E(AyWAr) = ) wkE
i=1

% S (Xi) — uef (Ko 1) Vsl Ze 1)

< C sup E
1<i<kr

b

= S (Xica) = (Y1)} Zec)
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it is sufficient to show, by Markov inequality,

2

E LT S {wf (X)) — wf (Xe1)hi(Zia)| =0 (A.8)

VT

as T' — oo uniformly in ¢ in order to prove (A.5). We rewrite the quantity in the
square brackets into a U statistic form as follows.

1 <~ 7\ * T-1 T
ﬁ ;{Utf(th) —u f(Xe 1) hi(Zi1) = VT ( 9 ) Z Z U; (W, W),

t=r s=t+1
where W, = (x4, Z; 1) and

1 thl - Xsfl
—_ K(— -
h» ( h

1 X1 — X,_

(W W) = 3[ua—x9 )= unf(Xe 1) s(Ze )

2
)= (X (Ze)|
We consider the projection which will be used later. For W = (z,7) and u =
T — g(X)7
u; (W) = E{U;(W,, W)}
1
= —h(2) /g(X + hu) (X + hu) K (u)du

+%xhi(Z) / F(X + hu)K (u)du — %uf(X)hz-(Z)-

In order for the Hoefdding decomposition, put ¢;(Wy, W) = U;(Wy, W) — uy;(Wy) —
u1;(Wy) and write

ﬁ( g >1§s§;1 Uy (W,, W,)
_ % tiuu(wt) + ﬁ( : )1282121 6: (W, W)

Then we want to show, in order to prove (A.8), that

V{% tz_: ur(Wi)} — 0, (A.9)
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and

e{vr(T)'E 5 s, }20 410

T S=

t=
uniformaly in 7. We first prove (A.16). We immediately know that

fort > s because E(u|Z;—1) = 0, E(2¢|Zi—1) = g(X4—1) under Hy, and E{h;(Z;—1)|X-1} =
0. Also, by Assumptions A3 and A6, we can show

with

hi(Z) oo
won =52 sy [Tt
S0y, <L N
ht-+l,=1

x Az (X + (o)W (0

where fU)(X) = 0f (X)/0a't - - 0zl . Based on the above, it is straightforward
to prove (A.16) because E{u;(W;y)} = 0, V{uy;(Wy)} = O(h*!) by Assumptions
A4, A6 and (A.11).

We follow the same track as Yoshihara (1976) to prove (A.17). The squared sum

2
{ —t ZsT:tH o; (W, Ws)} involves a double summation term

t=r
T-1 T
SN d(Wi, W),
t=r s=t+1

terms with triple summation such as

T-2

!
_

T
Z i(Wh, Wo) (Wi, W)

t=r s=t+1u

+

and those with quadruple summation of the form

T
Z d)z Wta d)z WuaW)

t=r s=t+1u=s+1v=u+1
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We evaluate the expectation of these terms individually. We follow the same track as
Yoshihara (1976) to obtain the bounds for the expectations of these quantities. De-
fine Fy, ... 1, (w1, -+, wy,) be the joint distribution function of Wy, -, W, . Firstly,
under Assumption A2, A4, we have

/WmeM”MﬂwMFWﬂ

S / |UZ'(’U)1, w2)|2+5dF(w1)dF(w2) + C (A12)
1 X, - X
< € [l - P (S P2
+{z1 = g(X)}F(X0)hi(Z) [P dF (wy)dF (ws) + C (A.13)
< C{pPH) L1} = Oy (A.14)

The first inequality holds because Flu,;(W;)|?*° is of smaller order than E|U;(W;, W,)|**9.
The last inequality is valid uniformly in ¢ because |h;(Z)| < 2C,f(X) due to As-
sumption A4. Lemma 4 yields

|/¢ wy, we)?dFy 5 (w1, wy) — /gzﬁz wy, wy)2dF (w,)dF (wy)] < 402*5 (s —t)%

but (A.14) holds also for § = 0, and thus [ ¢;(wy, w2)?dF(w,)dF (ws) = O(h7P).
Combining them, we have

B{6:(W, W,)?} = / bu10n, ) 2dFy (w1, w3)

2p(1+4)

< C{hP+h"3% B(s—t)7 ).

Because
T-1 T pems 21T
5 n 1
§ § Bls—t)rs =) > (s—t) @0 =) (s—t) "7 <CT,
t=1 s=t+1 t=1 s=t+1 t=1 s=t+1

for v =2(6 —n)/{n(2+ )} > 0, we have

—2T-1 2p
1 1 h2+s
E{ (1)'% % aomw }<O(W ) = Ol + )

t=r s=t+1

which goes to zero because of Assumption A3.
We consider

r(3) X ¥ swanm

t=r s=t+1u=s+1
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next. We have, similarly to the computation of (A.14),
)
/|¢i(w17w2)¢i(wlaw3)|1+2dFt,s(w1aw?)dFu(w?))

/ (6, wa)| 4 { / 16111, w) [+ dF () }F (1, w5)
S C(h_p6 + 1) = CQh.

IN

Then, by Lemma 4, we have

| [ 6itwn,wm) s ), s, w) ~ [ 61w, ws) B n, ) F ()
<4C27 B(s — 1)75s.
Noting [ ¢;(wq, w3)dF (w3) = 0 by construction, we have
E{i (Wi, W,) (W, W)} < 4C27 B(s — )75 < Ch~F (s — 1) 17

which yields

2—4

|E{T< )ZZ Z@Wt, $) (Wi, W, )}|sc'}2,;.

t=r s=t+1u=s+1

We can pick § < 2 as long as E|z;|?*° exists. Thus, the expectation of the triple
sum decays to zero.

For the quadruple summation, we consider the cases (i) ¢ < s < u < v and
s—t>v—wuand (i)t <s <u<wvands—1t<wv—wu asin Yoshihara (1976).
Because both cases can be handled similarly, we consider only the first case (i). Note
that

/ |¢i(w1, w2)¢i(w3; w4) |1+§ dFt,s,u(wla W2, ’UJ3)dF(U)4)

IN

/|¢i(w1,w2)|1+g{/ |¢i(w3;w4)|1+ng(w4)}dFt,s,u(w1;w27w3)
< C(h P +1) = Cy.

Then
|/¢i(w1,w2)¢i(w3,w4)dFt,s,u,u(w1,w2,w3,w4)

/¢z whw2)¢z(w3,w4)dFtsu(w1,w2,w3)dF(w4)| < 40—3(0 - U)Q%‘s
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Noting [ ¢;(ws, ws)dF(wy) =0, we have

E{8u(Wh, W)s(Wa, W)} < 4C37 (s — 1)7'5,

and thus
T -2 Ch213(5(*21g)?75)
2pd n
P (1) S S p< om0l
t<s<u<v (Th,l’) n(2+9)

s—t<v—u

By assumption (n < 1 & 6 > n/1 —n) and (Th? — o0), this decays to zero as
T — oco. Combining these results, we have (A.17).
Now to prove (A.7), similarly to the proof for (A.5), it suffices to show

E(A3;;) — 0 (A.15)

uniformly in ¢ where Asy;is the i—th element of Az, namely,

1 o
Az = ﬁ ; Utf(th)mi{Q(th) - Q(thl)}

where m;indicates the i—th row of M~=. It is easily seen that |[m;||> < 1/Amin < C
by Assumption A7, where A,,;, is the minimum eigenvalue of M. We write Asp; in
the U-statistic form,

T -17-1 T
A3Ti - ﬁ( 2 > tX: ;IW(WMWS)a

where

thl - Xsfl

VOV = [(f (i) = 0 (X {@umr) = QU)K ()

—{u f(Xio)hi(Zi1) +us f(Xs1)hi(Zs1) }] -

The projection is, for W = (2, 2), u =z — ¢(X), ¢(Z) = Q(Z)/f(X) and r(X) =
E{q(Z,1)[ X = X},

Uli(W) = E{W(Wtaw)}
= Luf(X)m, /{q(Z) — (X 4 )} X+ h) K (u)du

Fguf (XPmi{a(Z) — r(X)}F(X).
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In order for the Hoefdding decomposition, put 1;(W;, W) = V;(Wy, Wy) —vy;(W;) —
v1;(Ws) and write

( >_1§ZVW,5, = XT:hWt+f< >_1T2:IZ¢ZW,5,

t=r s=t+1 = t=r s=t+1

Then we want to show, in order to prove (A.15), that

| 7
V{ﬁ ; vi(Wi)} — 0, (A.16)
and

e{vi(T)'E 3 wanw, }20 w17

t=r s=t+1

uniformly in 4. It is straightforward to prove that {vy;(1};)} is a martingale difference
sequence, we can further show

v; (W) = hlks; (W) + o(hY)
with

' 0<1l, I, <L i=1
L+ - +1,=1L
x {miq(2) f (X)) = (mir ) (X) ]

Therefore, (A.16) is true. For (A.17), we basically need to look at V;(W;, Wy) as
v1;(W;) are of much smaller order. We omit the proof for (A.17) because it can be
treated in exactly the same manner as (A.10).

B Lemmas

The following lemma by Yoshihara (1976) is useful to prove Theorem 1. The proof
is omitted.

Lemma 4 Let {z}, t =1,...,T be an absolutely reqular sequence of random vari-
ables with coefficient 5(k). Let t; < ... < t,, be integers. Let F(a,b) be the distribution
function of zy,,...,z,(a < b). Let s(§) = s(&4,...,&) be a Borel-measurable func-
tion. Then for § > 0,

/5(§)dF(1an)—/S(f)dF(l,j)dF(j+1,n) < BMYOEILB (40 — )}/

providing M = [ |s(€)|"dF(1,4)dF(j + 1,n) exists.
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The next two lemmas are used to prove the theorem.

Lemma 5 Under A1-A6,

B - < CIC(?(T% r) X +Cgco(T)

Proof. Recall r;(X;—1) = Elq;j(Z1-1)|Xi—1] for j = 1,-++ kr , and u; = x, —
9(Xi-1) where g(Xi—1) = Ely|Xi1], and let ¢;(Zi-1) = q;(Zi-1) — rj(Xi-1). The
(4,1) element of M — M is,

Z Y (X1)35(Ze)(Zi—1) — B [uf [H(Xi=1)3(Zi1) @ Zi-1))

where
T
. 1 Xeo1 — X
_ = — K|———
f(Xiq) Th 2 ( n ) )
1 <& X X

2 s—1 — t—1

q](Zt—l) = QJ(Zt—l) - —Thp SEZ Qj(Zs—l)K ( h > /f(Xt 1)
and
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Decompose A;; as the followings,

A

= EZ v fA (X))@ (Zim) ) a(Zem){ f (Xomr) — (X))

7,0

~

_% ;ut PG (Ze) i (Ze) {3(Xem) F(Xemr) — 9(Ximt) F(Xem)}
o 2 ut (X )aZ iz DU (X0) = (X0 0))

__Zu§f3 (X ) a(Ze ) (X ) F(Xy) — (X 1) F(X0)}

i Zut (X ) Ze Dl Ze L) = [ )}

T ZUff?’(Xt_l)dj(Zt_1){ﬁ(Xt_1)f(Xt_1) — 1 (Xe—1) f(Xi1) }

4 SR P X G (L)l Zemr) - B [ (X0 ) Ze ) 2]

+(smaller order terms)
= A1j7l + Agj,l + A3j,l + A4j7l + A5j7l + Agj,l + A7j7l + (smaller order terms).

Let W, be Wy = (24, Z;—1), and define U, (W3, W) and its projection uf(w) as
follows,

1 B B 1 X1 — X
Ul(Wt,Ws) = 5{$tutf3(Xt—1)CIj(Zt—1)Ql(Zt—1)ThpK< ! A L 1)

1 X, 1 — X;_
3 ~ ~ s—1 t—1
+$susf (Xs—l)%(Zs—l)QZ(Zs—l)ThpK < A )}7

ui(Wy) = E[UL(W,W,)]lw=w,
_ %{xtutf?’(xtl)qy(zt V)i
+Elzuy f* (X4-1)q5(Z-1)

(Ze-1) f(Xi1)
G(Zi-1)| X ] F(Ximr) + Op(R7) }
Note that

Elrsus f2 (X5 1) (Zs1)@(Zs1)| Xso1 = X]| = Elzgu f2(Xo21)3(Zi-1)@(Zi-1) | X1 = X]
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by the stationality of W;. In order for the Hoefdding decomposition, put ¢, (W3, W) =
Uy (Wi, Wy) — u§ (W) — u§(W,). With Uy (W, W) and its projection, Ay;; is repre-
sented as

Ay = ZZM Wi, W) — —Zﬁtutf (Xe-1)@i (Zi—1)@(Zi—r) f(Xy1)

- T zt:ui}(Wt) T zt:xtutf3(Xt—1)q~j(Zt—l)(jl(Zt—l) f(Xio1) + = Z Z o1 (W, W,

= % Z {E [20uG;(Z-1) @1 (Z-1)| Xo=1) — 2G5 (Z—1) @ (Z—1) } fH(Xi—1) + O(R")

-1 T

+%Z > ei(W, W), (B.1)

t=r s=t+1

First we show that the 3rd term of R.H.S is a smaller order term than the first term of
RHS.V <T2 tT 1"1 Zs t+1 Pr(Wi, W, )) includes £ [¢2(Wta W), E [p1(Wy, W) o1 (Wi, W)

and E [¢1 (W, Wi) 1 (W, W, )], we evaluate each term.

/WmemHMﬂwMFWﬂ

S / |U1(U)1, w2)|2+5dF(w1)dF(w2) + C (B2)
1 X, - X

< € [ o 0P K ()P P (wn)dF (ws) + C

< C{h P 11} = Oy (B.3)

Lemma 4 yields
2
|/¢1 (w1, ws)? dF} s(wy, wo) /¢1 wy, w)2dF (w,)dF (wy)] < 4CHF B(s—t)ﬁ

but (B.3) holds also for § = 0, and thus [ ¢;(wy, ws)?dF (wy)dF (ws) = O(h7P).
Combining them, we have

E{¢1(WtaWs)2} = /¢1(w1;w2)2dFt,s(wlaw2)

< C{h P+ 15 B(s — 1) ).

Because
S T-1 T e T-1 T
Y —_ 7’ — —
E E B(s —t)2+ :E E (s — )"+ = E (s —t)~'77" < OT,
t=1 s=t+1 t=1 s=t+1 t=1 s=t+1



for v =2(6 —n)/{n(2+46)} > 0, we have

—2T-1 2p
1 1 1 1 b 1
{< ) 2 Z P I } T T2 h%éf;“) = 70 T ) = © <T> '

t=r s=t+1

-2

We consider < g ) e Zf;tlﬂ 5:34—1 &1 (W, Ws) 1 (Wy, Wy,) next. We have,

similarly to the computation of (B.3),

/ (61 (w1, w) by (w1, w3) S dF o (r, w2) AF (u3)

/ |61 (wr, wa) |2 { / |1 (w1, ws) |2 dF, (ws) YdF, 4 (wy, ws)
S C’h_p(s = CQh.

IN

Then, by Lemma 4, we have

[ 61t 021601, )P 05) — [ 1 (an, )01, ), ) )
2 s
< 43P (s - 1)t
Noting [ ¢ (w1, w3)dF (w3) = 0 by construction, we have

52s j2
[E{1 (W, Wy)y (Wi, W) Y| < ACT B(s — 1)355 < Ch™3%5 (s — )7~
which yields

< >2TZZ % > (Wi, W)y (W, W)

t=r s=t+1u=s+1

For the quadruple summation, we consider the cases (i) t < s <u < v and s —t >
v—uand (i)t <s <u <wvand s—t<wv—u asin Yoshihara (1976). Because both
cases can be handled similarly, we consider only the first case (i). Note that

/ |¢1 (wh w2)¢1 (w3, w4) |1+%dFt,s,u(wla Wa, wg)dF(w4)

/|¢1(w17w2)|1+g{/|d)1(w3aw4)|1+ng(w4)}dFt,s,u(wlaw27w3)
S C(h_p6 + 1) = Cgh.

IN

Then
‘/¢1(w17w2)¢1(w37w4)dFt,s,u,v(wlaw27w37w4) —/¢1(w1,w2)¢1(w3,w4)dFt,s,u(w1,w2,w3)df
2 s
< ACH B(v — u)7+s.
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Noting [ ¢;(ws, ws)dF(wy) =0, we have

1B 61 (W W) (War, W)]| < ACE (s — 1735,

and thus

( ) ZZZZ¢1 Wi, W, ¢1 Wu;W) < %CTth_

t<s<u<v
s—t<v—u

2p(8—n—nd)
1 Ch™ e+ ( 1 )
_= — s = (0] — .
T (Thpyitees T
Since the first term of the right hand side of (B.1) is a sum of stationary mar-
tingale difference random variables,

Bl(Ay)] = %E (B [ (Ze )i Ze) X ] = wondy (Ze)@( Zen)} (X)) | + O
< PR ) P +o (1)
then
ZZE [(Alj,l)ﬂ < xtut Zq] (Zi qu (Zi-1) Xt 1)]
< 4#E [ (X))
= o(1).
Similarly,

Ay = % Z {wdi(Zio1) @ (Zim)m(Xor) £ (Xi1)
_E[ut(jj(zt—l)(jl(zt—l) |Xt—1]$tf4(Xt—1)} + O(hL)
+(small order term).

The first term of the right hand side is a sum of martingale difference random
variables since z; = u; + m(X;_1) and
Ut‘jj(thl)(ﬁ(thl)m(thl)fél(thl) - E[UthVj(thl)C’]Vz(thl)|th1]$tf4(Xt71)
= {UtQj(thl)QZ(thl)m(thl) - E[Utﬂfj(thl)Cﬁ(th)|th1]m(Xt71)} f4(th1)
+ w Bl G (Z1-1) @ (Zi-1) | X ]z fH(Xm1),
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both terms of right hand side are martingale differences. Thus

E [(A2,)?]

— %E [(Ut(jj(Zt—1)5l(Zt—l)g(Xt—l)f4(Xt_1))2]

2B [y (Ze ) Ze )0 (X ) FAXe ) Bl (Za )t e )Xo Jre (0]
+%E |(Blwads(Ze )aZe )IX e (X 1) +0 (%)
< B [ ()R (Zi)g (X)) P (Xi)]
+% (E [(th](Zt 1)Ql(Zt—1) (Xt l)f (Xt 1))2] v
(E [(E[Ut%(zt 1)Ql(Zt—1)|Xt 1]17tf (Xt 1))2])1/2
2 (Bl ()7 ) | X (X))
And
YD E[(A)7] < %E U qu Zyy Zqz Zi-1)9*(Xe-1) f° (Xt—l)]
+;ii ACAE [u2g*(Xon) 13 (X))
(4CE [E[u?| X, )2 15X, 1))
% Elu; ZQNJZ-(ZH) Z@f(zt1)|Xt1]$?f8(Xt1)]
< 4@1*7 [uf g (Xi 1) fH(Xi )]
+3203’%T (B [u2g?(X, ) f4(X, ) (B [E2|X, )2 15X, 1))
a8 g g x, a2 )]
1
(3
Similarly
Ay =~ S Az (7 ) ~ B a7 )6 )X ]} £ ) + 000,
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Bl(d?) < 7B [ (G2 Pen)] +o ()

< 2B [l () (X))
and
kr kr 1 kr
ZZE [(A3j,l)2] < ZE qu (Z) (X 1)]
j=1 1=2 ],1
Cg G (k;)kTE [uffs(Xt,l)]

= o(1).

Since A5j,l = Agj’l
kr kr

ZZE (As5,)%] = o(1).

j=1 1=2

Agg = %Z {uf@(Z—1)rj(Ximr) — B [uj@(Zi-1)| Xio1] 4(Ziza)  fH(X21) + O (BY)

The first term of the right hand side is a sum of martingale difference random
variables since ¢;(Z;_1) = ¢;j(Zi—1) + r;(X;—1) and

2~
t
{Ut(h (Z- 1)7”] (Xi-1) U% @(Zi-1 7”] (X)) | X 1]} 4

(
{w;@(Zim1)ri(Xeor) — E [uj@(Zim1)| X ] a5(Zin) } FA( )
E|
_QJ(Zt—l)E [Uth(Zt 1)7“3(Xt 1)|Xt 1] (Xt—l)-
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Thus

B (4] = o [ (Ze )X ) 7))
2

_fE (W@ (Zi-1)rj(Xom1) B [uf@(Zi-1) | Xi—1] ;(Zi=1) £2(Xim1)]

B (B [aZe) X)) (2 ()] +o 1)

IN

Og%E [ui @i (Zi1) 2 (X )]

2 (B [ 2 X)X )])

(£ [(B [ga(ZXa])” (X))

+O§%E 1B [ui @i (Zi 1)1 X 1] f5(Xi)]

1/2

IN

OZ%E [w/ @7 (Zi1) P (X))
+4C;‘% (B [ul f4(Xem)])
(E [(E (21X, 4])? fS(Xt,l)])

+O§%E (B [u} G (Zi1)| X ] F2(X)] -

1/2
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Then,

kr kr kr
> D ElAy)] < Cj%ZE qu (Ze-)f*(Xe 1)]
j=1 I=1 J=1

kr kT

—|—404 ZZ ulfd (X, 1)])1/2
(B [E [uf]Xi1] fS(XH)})”?
+C§%JZ:;E 2 u?i(ﬁ(zt—lﬂXt—l] fS(Xt—l)]

=1
G

O (1 [t X)) 7 (8 [ (1] 2]

IN

+C§W¢E [E [U?|Xt—1] fS(thl)]
= o(1).

S50 S B [(Asga)’] = 0(1)., since Agjy = Au,.
Denote m],l(Wt) be

mj (W) = uf f1(Xi-1) @5 (Zi1)@(Ze—r).

The last term is

A?j,l = —X:U?f4 Xt 1 Zt 1) z(th) - F [U?fél(thl)ij(th1)sz(th1)]

= = Z m; (W) — E[myj, (W),
and

B [(A5)?] = o D0 3 Covlmy (W), my(1V,))

t st
9 t—1
= T YD Cov(my (W), mu(We-i)-
t =0
Since an absolute regular process is ana-mixing process and «,, < [,, mixing

inequality implies

Cov(my (Wi),my(Wi)) < 225 4 1)a 5 |y

IN

D5
< 2217V L)l I () |2,
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1/(2+9)
where [[m; (W)|l,s = (E [|mj,l(wt)|2+5]) . Thus

E[(47,)7] = % ZiCOV(mj,z(Wt)amﬂ(Wti))

t
_ 2 1 1-2/(2+0
4(21 1/(2+0) 4 1) ||mj,l(Wt)||2+5 = ZZBZ /(2+9)

<
t =0
44 (0l—1/(2+6 2 r4 2447 2/ (2+9) 1-2/(2+5)
< i@ ) (B[ x))™) ZZﬁ
t
and
kr k
~ 2 k% 1-1/(2+0) 2 r4 2447 %/ (29 1-2/(2+9)
;;E [(47;)°] < ch4(2 +1) (E [(xtf (Xi-1)) ]) _ZZB :
Combining above results, we have,
kT kT kT kT kT kT
=5 9 SLIEIISES 9 SACHERS 3) S 0s
=1 1=1 j=1 [=1 7j=1 I1=1
kT kT kT kT kT kT
+ZZE [(Ayp)?] + ZZE [(As;0)°] + ZZE [(Ag,)7]
j=1 =1 j=1 I1=1 j=1 I=1
kr kp
+Y D) E[(A7)]
j=1 [=1
Co(kT) @ (kr)kr
< T + C’ + Cs 7
Co (k) k_T G (kr)kr
< Cmax< T T e

= o(1).

Lemma 6 Let X be a symmetric and positive definite k x k matriz. It is possible to
1

define symmetric matrices X2 and X~> satisfying X2Xe=X and X~> = (X2)~n
If X2 is differentiable with respect to X,

Auec(X2)
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Suppose further X has eigenvalues A\, (X) > --- > A (X) > 0 and corresponding
k x k eigenvector matriz Ex satisfying ExE' = E'Ex = I. Similarly, let M be
a k X k symmetric and positive definite matriz with eigenvalue decomposition M =
EAFE'" where A = diag(\, -+, \1) with A\, > --- > Xy >0 and EE' = F'E = I.

1

Define X 2 = ExA?EYy with Ax = diag(M(X), -, (X)), M2 = EA 2 E'
and M? = EA2E'. When X2 is differentiable at X = M, then we have

(ii) vee(X 3 =M"3) = —(M @M~ 2) (M > @I+ L,@M?) vec(X —M)+o(|| X —M]||)

and

K||X - M|P
< 2= FI

(idd) |IX 2 — M 2| < 33 +o([|X — M[P).
1

(Proof)
1
Let X2 = ExAZE’, then X3X~2 = I; and X3X3 = X. Differentiating both
equalities, we have

and

(dX2)X "7 4+ X2(dX™2) =dI, =0

(dX2)X2 + X2 (dX?) = dX.

Because vec(ABC) = (C' ® A)vec(B) and (A® B)(C ® D) = AC ® BD for com-
formable matrice A, B,C, D, we obtain,

vec(dX 2) = —(I,@ X2) N[, X 2 )vec(dX?) = —(X 2@ X" 2)vec(dX?) (B.4
( ) =—( )

and

vee(dX?) = (I, ® X* + X ® I;) 'vec(dX). (B.5)

Substituting (B.5) into (B.4), we have

vee(dX 2) = —(X 2@ X 2)([; ® X2 + X2 ® I;) 'vec(dX)

which completes the proof for (i). It is straightforward that (i) holds if X 2 is
differentiable at X = M. To prove (iii), using (ii), we have

IN

X2 — M72|]> = vee(X "2 — M~ 2)'vec(X 2 — M%)

vee(X — MY (Ly@ M2 + M2 @ L)' (M~ @ M) (M> @ I, + I ® M2)"vec(X — M)
+o(||X — M|P)

lvee(X — M)|P|(Iy @ M2 + M2 @ L,) "(M '@ M (M @I + I, ® M2) ||
+o(||X — M|P).
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I =

We evaluate the norms in the last quantity. We obviously have ||vec(X — M)
| X — M|[2. Because M? = EAZE' and M ' = EA"'E’, we have,

M:@I,+ I, @ M: =(E®@E)A> @I + I, ® \2)(E' ® E')
and

M7'eM'=(EQE) AN '@ A ) E ®F.
Therefore, using (A ® B)"! = A~ @ B! for invertible matrices A, B, we have

(e ® M2 + M2 @ L) (M~ @ M) (M2 ® I + I ® M2)™"||?

= [(E®E) A @+ [, @ A7) (E'® E')

X(EQ E)(AT'@ A™)(E'® E')

X(E®@E)A* @ I+ I, ® A*) " (E' ® E')||?

(E@E) A2 @ i+, @ A2) MA@ A NA2 @ Iy + [, @ A2) " H(E' @ E)||?
< (M@ + T, @ A2) (A 2@ A ) (A2 @ I + I, @ A2)?)

& 1 1 k2
. <
22 (VA + V)" NAT T A

=1 =1

We use that A2 @ I, + I, ® A2 and A~! ® A~! are diagonal matrices in the last
inequality. Thus
k|[X — M|]?

X2 = M 2|2 <
X\

+o(||X — MIJ?).
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