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We present a detailed description of an architecture for fault-tolerant quantum computation, which is based on
the cluster model of encoded qubits. In this cluster-based architecture, concatenated computation is implemented
in a quite different way from the usual circuit-based architecture where physical gates are recursively replaced by
logical gates with error-correction gadgets. Instead, some relevant cluster states, say fundamental clusters,
are recursively constructed through verification and postselection in advance for the higher-level one-way
computation, which namely provides error-precorrection of gate operations. A suitable code such as the Steane
seven-qubit code is adopted for transversal operations. This concatenated construction of verified fundamental
clusters has a simple transversal structure of logical errors, and achieves a high noise threshold ∼3% for
computation by using appropriate verification procedures. Since the postselection is localized within each
fundamental cluster with the help of deterministic bare controlled-Z gates without verification, divergence
of resources is restrained, which reconciles postselection with scalability.
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I. INTRODUCTION

In order to implement reliable computation in physical
systems, either classical or quantum, the problem of noise
should be overcome. Particularly, fault-tolerant schemes have
been developed based on error correction in quantum computa-
tion [1–8]. In the usual quantum error correction (QEC), error
syndromes are detected on encoded qubits, and the errors are
corrected according to them. The noise thresholds for fault-
tolerant computation are calculated to be about 10−6–10−3

depending on the QEC protocols and noise models [6–15].
A main motivation for QEC comes from the fact that in the
circuit model the original qubits should be used throughout
computation even if errors occur on them.

On the other hand, more robust computation may
be performed in measurement-based quantum computers
[16–22]. Teleportation from old qubits to fresh ones is made
by measurements to implement gate operations, and the
original qubits are not retained. An interesting fault-tolerant
scheme with error-correcting teleportation is proposed based
on encoded Bell pair preparation and Bell measurement,
which achieves high noise thresholds ∼3% [21,22]. The
cluster model or one-way computer [18] should also be
considered for fault-tolerant computation. A highly entangled
state, called a cluster state, is prepared, and gate operations
are implemented by measuring the qubits in the cluster with
feedforward for the postselection of measurement bases. This
gate operation in the cluster model may be viewed as the
one-bit teleportation [17]. A promising scheme for linear
optical quantum computation is proposed, where deterministic
gates are implemented by means of the cluster model [23].
Fault-tolerant computation is built up for this optical scheme
by using a clusterized version of the syndrome extraction for
QEC [6]. The noise thresholds are estimated to be about 10−3

for photon loss and 10−4 for depolarization [24]. The threshold
result is also argued by simulating the QEC circuits with
clusters [25–27]. Furthermore, topological fault-tolerance in
cluster-state computation is investigated in a two-dimensional
nearest-neighbor architecture, where a high noise threshold
∼0.75% is obtained in spite of its strong physical constraint
[28]. Some direct approaches are, on the other hand, considered

for the fault-tolerant one-way computation [29–31], though
there seems to be a problem for scalability.

In this paper we present a systematic and comprehensive
description of an architecture for fault-tolerant quantum
computation, namely the cluster-based architecture, which
has been proposed recently to reconcile postselection with
scalability by virtue of one-way computation [32]. Specifically,
the fault-tolerant computation is implemented by concatenated
construction and verification of logical cluster states via
one-way computation with postselection. A number of cluster
states are constructed in parallel with error detection, and the
unsuccessful ones are discarded, selecting the clean cluster
states. The error-correcting teleportation (or its cluster version)
[21,22,30,31] requires a high-fidelity preparation of Bell
state. It is also considered that improved ancilla preparation
increases the noise threshold [33,34]. In the present cluster-
based architecture [32], even gate operations as logical cluster
states are prepared and verified by postselecting the lower-level
computation to reduce the errors efficiently (see also Ref. [29]
for an early idea). This is quite distinct from the usual
circuit-based QEC architectures, including the error-correcting
teleportation, where the errors are corrected after noisy gate
operations.

While high-fidelity state preparation is achieved by post-
selection, huge resources are generally required due to the
exponentially diminishing net success probability according to
the computation size. This is a serious obstacle for scalability
in the postselecting schemes [21,22,29]. Here, we succeed
in overcoming this problem in postselection by presenting
a systematic method of concatenation to construct logical
cluster states through verification, where the unique feature of
the cluster-model computation is fully utilized. As described
in detail later, the necessary postselections are minimized
and localized by dividing a whole cluster state into some
fundamental clusters with the help of controlled-Z (CZ) gates
without verification, say bare CZ gates. This enables the
off-line gate operations prior to the computation as the verified
logical cluster states, and provides a scalable concatenation
with postselection in the cluster-model computation. The
concatenated construction of verified clusters is implemented
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with transversal (bitwise) operations by adopting a suitable
code such as the Steane seven-qubit code, which belongs to
a class of stabilizer codes of Calderbank-Shor-Steane (CSS)
[2,3,14]. The logical measurements of Pauli operators as
well as the Clifford gates, H , S, and CZ, are implemented
transversally on such a quantum code. The non-Clifford π/8
gate is even operated for universal computation by preparing a
specific qubit and making a transversal measurement [29,30].
By exploiting this good transversal property, the cluster-
based architecture has a simple structure of logical errors in
concatenation to estimate readily the noise threshold. A high
noise threshold ∼3% can be achieved by using appropriate
verification procedures with postselection. Furthermore, the
resources usage is moderate, being comparable to or even less
than those of the circuit-based QEC architectures.

The rest of the paper is organized as follows. In Sec. II we
briefly review the usual fault-tolerant quantum computation
with circuit-based QEC. In Sec. III we introduce the main
concept of cluster-based architecture by considering a simple
model preliminarily. In Sec. IV we present a detailed descrip-
tion of an efficient architecture for the concatenated construc-
tion of verified logical clusters. The fundamental clusters and
verification protocols are suitably adopted there, namely the
hexacluster, code states, single and double verifications. Then,
performance of the architecture is analyzed in Secs. V, VI, and
VII, with respect to the noise threshold and resources usage.
Section VIII is devoted to a summary and conclusion. In the
Appendix we explain how to produce the cluster diagrams
to construct the fundamental clusters with single and double
verifications.

II. CIRCUIT-BASED FAULT-TOLERANT ARCHITECTURE

We first review the usual fault-tolerant architecture based on
the circuit-model computation with QEC. In comparison, this
will be helpful to understand the distinct feature of the cluster-
based fault-tolerant architecture, which will be investigated in
the succeeding sections.

It is well known that by using QEC codes we can
protect quantum information from errors which are caused
by interaction with environment. Specifically, by adopting the
stabilizer codes we can perform syndrome detection for recov-
ery operation simply by measuring the stabilizer operators.
Several QEC gadgets have been proposed to implement the
stabilizer measurement in a fault-tolerant way [5,6,21]. A QEC
gadget was first proposed by DiVincenzo and Shor, where cat
states are used as ancillae for the syndrome measurement [5].
Subsequently, a relatively simple type of QEC gadget was
proposed by Steane [6], where encoded ancilla states are used
to extract the syndrome with transversal operations. Especially,
in the case of CSS code the logical code states can be used as
ancilla states. For example, the following circuit executes the
Z and X error syndrome extractions by using the ancilla |0L〉
states,

(1)

where the code blocks are illustrated as though for a three-
qubit code for simplicity. In order to extract reliable error
information, the syndrome extraction is repeated for some
times. An optimized way to extract the syndrome information
was also proposed in Ref. [35], where the subsequent syn-
drome extraction is conditionally performed according to the
preceding syndrome information. Another interesting QEC
gadget based on teleportation was proposed by Knill [21],
which is illustrated as follows:

(2)

Here, the encoded data qubit is teleported to the fresh encoded
qubit of the ancilla Bell state. The outcome of the encoded
Bell measurement to complete the teleportation provides
sufficiently the syndrome information, namely error-detecting
or error-correcting teleportation. Thus, it is not necessary
to repeat the syndrome extraction in this QEC gadget. The
outcome of the Bell measurement is properly propagated to
the subsequent computation as the Pauli frame [21,24].

Concatenated computation with QEC gadgets can be em-
ployed to achieve high accuracy for logical gate operations. In
the usual fault-tolerant architectures based on the circuit-model
computation [11,13,15], the concatenation is implemented by
replacing a physical (lower-level) gate operation recursively
with a logical (upper-level) one followed by QEC gadgets such
as the circuits (1) and (2). It is illustrated for a controlled-NOT

(CNOT) gate as follows:

(3)

Here, we note that any logical gate operation should be
followed by the QEC gadgets for fault-tolerant computation.
We may call this type of concatenation in terms of logical
circuits the circuit-based concatenation or circuit-based fault-
tolerant architecture.

III. CLUSTER-BASED FAULT-TOLERANT
ARCHITECTURE

A. Main concept

The cluster-based architecture pursues logical cluster states
with high fidelity for reliable computation, whereas the
circuit-based architecture concerns logical circuits with high
accuracy as described in the preceding section. (Here, the
terms “circuit-based” and “cluster-based” refer to the type of
fault-tolerant concatenation. They do not specify the physical-
level computation.) In the cluster model, quantum computation
is implemented through measurements of the logical qubits
in cluster states. Thus, high fidelity cluster states directly
mean the ability to perform quantum computation with high
accuracy. It is, however, not a trivial task to prepare such large
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entangled states with high fidelity as cluster states of logical
qubits encoded in a concatenated QEC code. This may be
done by adopting postselection (or multipartite entanglement
purification). That is, logical cluster states are constructed
through verification process; they are discarded if infection
of errors is found. It is expected generally that as the size
of an entangled state gets large, the probability to pass the
postselection decreases substantially. Thus, we have to design
suitably the cluster-based architecture so as to make it scalable,
while the postselection is made successfully. This dilemma
between postselection and scalability in concatenation can be
overcome by utilizing the unique feature of the cluster-model
computation [32]. The key elements are as follows:

(i) Fundamental clusters with certain topologies, which
are used to compose a whole cluster state to implement a
desired computation.

(ii) Verification protocols, as parts of cluster states, to post-
select the successful one-way computation for the construction
of fundamental clusters.

(iii) Transversal bare CZ gates without verification, which
are used to connect the fundamental clusters deterministically
to construct the whole cluster state scalably.

We need not verify the whole of a cluster state by
postselection, which would have resulted in divergence of
resources due to the diminishing success probability. Instead,
at each concatenation level we divide the whole cluster
state (one-way computation) into the fundamental clusters
(gate operations and ancillae). The fundamental clusters are
deterministically connected by the bare CZ gates which
operate transversally on a suitable code such as the Steane
seven-qubit code. As a result, the postselection is localized
within each fundamental cluster, which reduces the resource
usages dramatically, though maintaining fault-tolerance of
computation.

B. Preliminary model

We consider preliminarily a simple model to illustrate the
cluster-based architecture. At the same time, we introduce
cluster diagrams, which are designed to describe properly the
architecture.

We take one fundamental cluster as follows:

(4)

Henceforth we suitably define level-(l + 1) fundamental clus-
ters as cluster states of level-l qubits in concatenation of
a QEC code. (Level-0 qubits are physical ones.) In this
model the level-(l + 1) fundamental cluster (4) consists of
two level-l qubits connected with a CZ gate. We construct
this level-(l + 1) fundamental cluster through a verification
protocol as given in the following circuit:

(5)

The two-qubit cluster is formed from the two level-l logical
|+(l)〉 qubits (©1 ) through the CZ gate operation (©2 ). The
errors which are introduced to these two qubits before and
during the CZ gate operation are detected by using a sort of
the Steane’s QEC gadget (©3 ) with the ancilla |0(l)〉 qubits (©4 ).
This verification protocol is implemented with postselection
to obtain the level-(l + 1) fundamental cluster (4) with higher
fidelity (©5 ).

In the cluster-based architecture, the entanglement op-
eration with verification to construct the level-(l + 1) fun-
damental cluster is implemented by one-way computation
on a certain cluster state which is made by combining the
level-l fundamental clusters with the transversal bare CZ

gates. Specifically, the process (5) to obtain the fundamental
cluster (4) is described in terms of a cluster diagram as
follows:

(6)

Here, the elements corresponding to those in the circuit (5)
are labeled the same numbers ©1 – ©5 . We occasionally use
the two-dimensional diagrams such as (6) to abbreviate the
three-dimensional arrays to represent the whole cluster states
by omitting the coordinate for the code blocks according to
the encoding rules as explained below. [The whole three-
dimensional array of (6) will be illustrated later.] The wavy
lines in the diagram (6) indicate the bare CZ gates acting
transversally on the level-(l − 1) qubits composing the level-l
fundamental clusters. The output qubits (©5 ) are denoted
by ©◦ as the verified level-(l + 1) fundamental cluster. The
operation for encoding and transferring the level-l code state
|+(l)〉 is described by ⊕ symbolically:

(7)

Here, the level-(l − 1) qubits surrounded by the dotted line
form the level-l code state (cluster) |0(l)〉. They are teleported
upon measurements to another block of qubits as |+(l)〉 by
a Hadamard operation |+(l)〉 = H |0(l)〉 with bare CZ gates
(one-bit teleportation). The encoding operation of the level-l
code state |0(l)〉 is also described by � symbolically for the
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later use:

(8)

By applying the ⊕ encoding (7), the full three-dimensional ar-
ray of the diagram (6) is obtained with the axes corresponding
to the code blocks, logical qubits, and time as follows:

(9)

Here, we observe that the level-(l + 1) fundamental cluster (4)
is constructed through the verification by using 5 × 7 level-l
fundamental clusters (4) and four level-l logical qubits |0(l)〉
which are suitably connected with (4 + 4) × 7 level-(l − 1)
bare CZ gates.

As seen in the diagrams (7) and (8), the level-l code states
|0(l)〉 and |+(l)〉 are used for the encoding operations. They
are given as the cluster states of level-(l − 1) qubits, which
are similar to the fundamental cluster (4). [See the diagrams
(12) and (13) in the next section.] We can prepare these cluster
states for |0(l)〉 and |+(l)〉 by combining some copies of the
level-l fundamental cluster (4) with the level-(l − 1) bare CZ

gates. (Here, we do not present their preparation explicitly for
this preliminary model.) An alternative option is to include
the level-l code states |0(l)〉 and |+(l)〉 in the set of level-l
fundamental clusters, as will be adopted in the next section
for an efficient construction of fundamental clusters with high
fidelity.

The circuit (5) is executed in the diagram (6) or (9)
by measuring the level-(l − 1) qubits except for the output
©◦ qubits. Then, the syndrome information is extracted from
the measurement outcomes ( ③ and ④). If this level-l syndrome
is found to be correct, we keep the output ©◦ qubits (⑤) as
the verified level-(l + 1) fundamental cluster. Otherwise, we
discard the unsuccessful outputs. This one-way computation
completes one concatenation; the level-(l + 1) fundamental
cluster as the entangled set of output level-l qubits (©◦ ’s) has
been constructed and verified by using the level-l fundamental
clusters with bare CZ gates.

We produce many copies of the fundamental cluster by per-
forming the above procedure recursively up to a certain logical
level high enough to achieve the expected accuracy. Then,
we construct the whole cluster state to implement a desired
computation by combining these copies of the fundamental
cluster with the transversal bare CZ gates. The logical error
of the transversal bare CZ gate on the concatenated code also
becomes sufficiently small at the highest level. Thus, given
the clean enough fundamental clusters at the highest level, the
one-way computation is operated fault-tolerantly on the whole
cluster state. In this preliminary model, however, the noise
threshold will be rather low, since the verification protocol
is not optimal, and some of the qubits are connected doubly
to the bare CZ gates. A more efficient architecture will be
described in the next section, which achieves a high noise
threshold ∼3%.

C. Unique features

We should mention that the role of bare CZ gates in the
cluster-based architecture provides the essential distinction
from the circuit-based architecture. The postselection with
QEC gadgets can really achieve high accuracy for com-
putation. However, in the circuit-based concatenation the
postselection of gate operations should be performed in the
ongoing computation (even if the error-detecting teleportation
is utilized with off-line preparation of ancilla states [21]). Thus,
if errors are detected, the computation should be restarted from
the beginning, which results in divergence of resources usage.
This is because in the circuit-based architecture any logical
gate operation is necessarily followed by QEC gadgets at each
concatenation level, as seen in Sec. II.

Instead, in the cluster-based architecture bare CZ gates,
which are not accompanied by QEC gadgets, are partially used
for the one-way computation to implement the construction
process, while fault-tolerance can be ensured by the verifi-
cation and postselection of fundamental clusters. The logical
cluster states are really postselected off-line and locally since
the whole cluster is divided into the fundamental clusters with
the help of bare CZ gates. When clean enough fundamental
clusters are just constructed, we connect them with bare CZ

gates deterministically, and then start the computation. The
fundamental clusters, which represent the gate operations,
have been constructed successfully in advance by removing
sufficiently the errors via the postselection in the lower-level
one-way computation, before starting the computation at the
higher level. Thus, we may call this verification process
as preselection or error-precorrection of gate operations.
Here, it should be noted that the postselection for the whole
cluster state or computation, without the use of bare CZ

gates, increases exponentially the resources according to the
computation size. In the present architecture postselection
and scalability are reconciled quite naturally by using the
cluster-model computation.

The cluster-based architecture also exploits a good transver-
sal property by adopting a suitable code such as the Steane
seven-qubit code. That is, the operations on the physical qubits
are all transversal, and really limited after the verification
process at the lowest (physical) level. In fact, as seen in
the diagram (6), any direct operation is not implemented
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on the output qubits (©◦ ’s) through the verified construction
of fundamental cluster. The desired entanglement among
them to form the fundamental cluster at the next level is
rather generated via one-bit teleportation in the one-way
computation. Thus, they inherit transversally the errors on the
constituent physical-level qubits, up to the Pauli frame infor-
mation from the one-way computation for cluster construction.
Then, these output qubits composing the fundamental clusters
undergo the transversal bare CZ gates and measurements at
the next level for the first time. This transversal property
provides a simple structure of logical errors in concatenation
to estimate readily the noise threshold. In this respect, the
cluster-based architecture presents a practical way to construct
large entangled states, including the concatenated code states
and fundamental clusters, the errors of which are described
in a good approximation by the homogeneous errors on the
constituent physical-level qubits [34]. The details will be
demonstrated in the following sections.

IV. CONCATENATED CONSTRUCTION OF VERIFIED
CLUSTER STATES

We now introduce an efficient architecture for fault-tolerant
concatenation by adopting a set of suitable fundamental clus-
ters and elaborate verification protocols. It is really designed
to achieve high noise threshold by taking full advantage of
the present cluster-based scheme. As seen in the diagram
(6), some of the qubits are connected doubly to the bare
CZ gates for the cluster construction in the preliminary
model. This lowers the noise threshold substantially. Thus,
the topologies of the fundamental clusters should be chosen
so as to limit suitably the use of bare CZ connections (at most
one bare CZ gate to each qubit) and redundant qubits for the
cluster construction. It should also be noted that the errors on
the resultant fundamental clusters are not detected after the
construction is completed. This requires that the verification
protocols should detect fully the first-order errors except for
some of the errors introduced by the final few operations,
which are inevitably left on the output states.

A. Fundamental clusters

We adopt the following states as the level-l fundamental
clusters:

|h(l)〉,|0(l)〉,|+(l)〉. (10)

They are depicted in terms of the cluster diagrams as

(11)

(12)

(13)

where the circles denote the level-(l − 1) qubits, and the boxed
qubits are measured for Hadamard operations to obtain |0(l)〉
and |+(l)〉. The hexacluster |h(l)〉 is a cluster state of six level-
(l − 1) qubits which are connected linearly with CZ gates. This
hexacluster represents an elementary unit of gate operations as
seen later. The level-l concatenated code states |0(l)〉 and |+(l)〉
are also taken as the fundamental clusters in this architecture.
They are used as ancillae for encoding and syndrome detection.

B. Single and double verifications

The level-(l + 1) fundamental clusters are constructed by
operating the CZ gates on the level-l qubits. These gate
operations inevitably introduce errors on the output states.
Thus, as seen in Sec. III, we verify and postselect the output
states for the high fidelity construction. Specifically, we detect
the errors efficiently by combining two verification gadgets,
namely single and double verifications.

The CZ gate operation with single verification is given in
terms of a circuit as

(14)

where each dashed line with index (l) indicates that seven level-
(l − 1) wires are contained there. The single verification is the
same as the protocol (5) for the model in Sec. III. The Z error
on the level-l qubit is detected by the Z syndrome extraction
after the CZ gate operation. Furthermore, the preceding X

error on the level-l qubit is detected by the Z syndrome
extraction for the other level-l qubit since it is propagated
through the CZ gate as a Z error.

The cluster diagram for the single verification (14) is given
with the fundamental clusters as

(15)

where the �’s denote the encoding of |0(l)〉 for the syndrome
extraction in the circuit (14). By considering the � encoding
(8), the single-verification diagram (15) is fully illustrated in
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terms of a cluster state of level-(l − 1) qubits as

(16)

which may be compared with the diagram (9) in the pre-
liminary model. Here, we observe that the level-l CZ gate
operation with single verification, as given in the circuit (14)
and diagram (15), is implemented by using 7|h(l)〉’s, 2|+(l)〉’s,
and 2 × 7 level-(l − 1) bare CZ gates.

In order to remove sufficiently the errors in the final stage of
construction, we implement the double verification, which may
be viewed as a sophistication of the Steane’s QEC gadget in
the circuit (1). The CZ gate operation with double verification
is described as follows:

(17)

Here, the Z error verification through a CNOT gate is followed
by the X error verification through a CZ gate for high fidelity.
Furthermore, the error propagation from the primary ancilla
qubit |0(l)〉 to the data qubit through the two-qubit gate (CNOT or
CZ) is prohibited in the leading order by inspecting the primary
|0(l)〉 with the secondary |0(l)〉. In fact, this double verification
with the primary and secondary ancilla states has been applied
recently to implement a high-performance recurrence protocol
for entanglement purification [36], where its optimality for
detecting the first-order errors is discussed. We also note that
the single and double verifications in (14) and (17) both remove
the preceding errors through the CZ gate by the syndrome
extractions for the two level-l qubits.

Similar to the single-verification diagram (15), the circuit
(17) for the double verification is implemented by a cluster
diagram as follows:

(18)

The full diagram for (18) is generated by considering the �

encoding of |0(l)〉 in (8), similarly to the single-verification
diagram (16). We realize in the diagram (18) that the level-l

CZ gate operation with double verification is implemented by
combining 3 × 7 |h(l)〉’s and 8|+(l)〉’s with (8 + 2) × 7 level-
(l − 1) bare CZ gates.

C. Concatenated cluster construction

The level-(l + 1) fundamental clusters are constructed from
the level-l ones via one-way computation. In order to achieve
high fidelity, the CZ gate operations with single and double
verifications are combined by using the bare CZ gates in
a suitable way: (i) each qubit has at most one bare CZ

connection (wavy line), and (ii) the output ©◦ qubits to
form the level-(l + 1) fundamental clusters have no bare CZ

connection, and they are doubly verified in the final stage
of construction. Specifically, the level-(l + 1) hexa-cluster
|h(l+1)〉 is constructed as follows:

(19)

The 6 |+(l)〉’s are transferred by the ⊕ encoding (7), and they
are entangled through two CZ gates with single verification
(15) and three CZ gates with double verification (18) to form
the |h(l+1)〉 (the output six ©◦ qubits at the level l). This one-
way computation to construct the |h(l+1)〉 is implemented by
measuring the level-(l − 1) qubits, except those for the output
©◦ ’s, in the three-dimensional diagram for (19). [The full
diagram is generated with the code-block axis supplemented
according to the encodings (7) and (8), as the diagrams (9)
and (16).] The level-l syndromes are extracted through the
measurements of the ancilla encoded � qubits. If all the level-l
syndromes are correct, the entangled set of six level-l ©◦ qubits
survive as a verified |h(l+1)〉.

Since the cluster diagrams such as (19) look somewhat
complicated, we introduce suitably the reduced diagrams by
omitting the time axis and qubits measured in the one-way
computation. The hexacluster construction (19) is described
as follows:

(20)

Here, the single and double lines indicate the single and double
verifications, respectively, and it is understood that the single
verifications are always done before the double verifications.
We construct similarly the fundamental clusters |0(l+1)〉 and

042324-6



CLUSTER-BASED ARCHITECTURE FOR FAULT-TOLERANT . . . PHYSICAL REVIEW A 81, 042324 (2010)

|+(l+1)〉 as

(21)

where the boxed level-l qubits are measured transversally in
the X basis for Hadamard operations. We see that in these
reduced diagrams all the qubits have at least one double-line
connection, that is they are doubly verified in the final stage of
construction. We can produce systematically the construction
processes such as (19) from the reduced diagrams. The details
are described in the Appendix.

At the beginning of concatenation, the construction of the
level-2 fundamental clusters by the physical-level computation
is somewhat different from the constructions at the higher
levels. This is because the verified level-1 fundamental
clusters are not available by definition from the lower-level
construction. It may be suitable to adopt the circuit-model
computation at the physical level since both CNOT and CZ

gates are deterministically available. The level-1 |0(1)〉 and
|+(1)〉 are first encoded and verified against the Z and X

errors by measuring the X and Z stabilizers, respectively.
They are, however, not clean enough for the present purpose.
We secondly verify the X and Z errors on the |0(1)〉 and |+(1)〉,
respectively, as follows:

(22)

This operation is the same as the multipartite entanglement
purification [37]. Then, we construct the level-2 fundamental
clusters |h(2)〉, |0(2)〉 and |+(2)〉 from these verified level-1
qubits |0(1)〉 and |+(1)〉 by implementing the circuits (14) and
(17) with the bare CZ gates (l = 1) according to the reduced
diagrams (20) and (21). It is also possible to perform the
physical-level one-way computation by means of the cluster
diagrams to implement the relevant circuits for the level-
2 construction. Additional errors are, however, introduced
lowering slightly the noise threshold since the extra operations
are required for the CNOT gate operations in the one-way
computation. This will be considered explicitly in Sec. VII.

D. Universal computation

The fundamental clusters are constructed through verifica-
tion up to the highest logical level l̄ to achieve the fidelity
required for a given computation size. Then, we can perform
accurately the computation with Clifford gates by combining
the highest-level hexaclusters |h(l̄+1)〉 with the transversal bare
CZ gates and performing the Pauli basis measurements of
the level-l̄ qubits in the cluster states. Furthermore, we can
implement even non-Clifford gates for universal computation
as explained below.

In the cluster model the operation HZ(θ ) = He−iθZ/2 is
implemented by the measurement in the basis Z(±θ ){|+〉,|−〉}

with ±θ to be selected according to the outcome of pre-
ceding measurements [18]. The non-Clifford gates, e.g., the
π/8 gate = Z(π/4), however, do not operate transversally even
on the Steane seven-qubit code. Then, in order to implement
the π/8 gate with a transversal measurement, we make use of
the equivalence as follows:

(23)

As a result, the operation HZ(π/4) can be implemented by
the preparation of the state Z(−π/4)|+〉 and the measure-
ment with the I or S = Z(π/2) operation (the selection of
measurement basis X or −Y = SXS†). The preparation of
Z(−π/4)|+〉 is reduced to that of |π/8〉 = cos(π/8)|0〉 +
sin(π/8)|1〉 based on the relation

Z(−π/4)|+〉 = eiφHS|π/8〉, (24)

where φ is a certain phase. In this way we can implement the H ,
S, π/8, and CZ gates as a universal set by the transversal Pauli
basis measurements of the level-l̄ qubits, including |π/8(l̄)〉, in
the level-(l̄ + 1) cluster states [29,30].

The level-1 |π/8(1)〉 is encoded by the usual method
[13,21]. Then, similarly to the other fundamental clusters the
upper-level |π/8(l+1)〉 (l � 1) is encoded with the lower-level
|π/8(l)〉, as shown in the following reduced diagram:

(25)

where the π/8 circle indicates the transfer of |π/8(l)〉 through
a H rotation, similarly to the � and ⊕ encoding operations.
The logical failure of |5π/8(l+1)〉, however, cannot be detected
in the construction of |π/8(l+1)〉 because it has also the
correct syndrome. Thus, this small mixture of |5π/8(l+1)〉
is not reduced by the concatenation, though the constructed
|π/8(l+1)〉 is kept on the code space by verification, retaining
the logical fidelity as the |π/8(1)〉. This slightly noisy |π/8(l̄)〉
(l + 1 = l̄) is even useful to obtain the desired high fidelity
|π/8(l̄)〉 at the highest level by using the magic state distillation
with Clifford operations [38,39].

V. NOISE THRESHOLD

We have described in the previous section how to construct
the verified fundamental clusters in concatenation, which en-
ables us to implement universal computation fault-tolerantly.
In the following sections we investigate the performance of this
cluster-based architecture, including a high noise threshold by
postselection and reasonable resources usage for scalability.

The construction of fundamental clusters is performed via
the one-way computation at the lower level. This provides
readily the threshold condition for the cluster-based architec-
ture: The error probability for the measurement of each logical
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qubit, which composes the verified fundamental clusters,
should be reduced arbitrarily by raising the concatenation
level. The errors in measuring the logical qubits are twofold:
(i) the errors on the logical qubits themselves, and (ii) the errors
on the Pauli frames, which are propagated as byproducts of
one-way computation [18]. The errors of (ii) are thus given by
induction as some multiple of those of (i) in the leading order.
We also note, as discussed in Sec. III, that the cluster-based
architecture exploits a good transversal property on a suitable
code, which provides, in collaboration with the postselection,
a simple concatenation structure of the logical errors in the
verified fundamental clusters. Here, we estimate the noise
threshold by considering these features of the cluster-based
architecture. In this calculation we adopt the noise model as
follows:

(i) A two-qubit gate is followed by A ⊗ B errors with
probabilities pAB (A,B = I,X,Y,Z, and AB �= II ).

(ii) The physical qubits |0〉 and |+〉 are prepared as mixed
states with an error probability pp:

|0〉 → (1 − pp)|0〉〈0| + pp|1〉〈1|, (26)

|+〉 → (1 − pp)|+〉〈+| + pp|−〉〈−|. (27)

(iii) The measurement of a physical qubit in the A

(X,Y,Z) basis is described by positive-operator-valued mea-
sure (POVM) elements {M+

A ,M−
A } with an error probability

pM :

M+
A = (1 − pM )E+

A + pME−
A , (28)

M−
A = (1 − pM )E−

A + pME+
A , (29)

where E±
A = (I ± A)/2 are the projectors to the ±1 eigenstates

of the Pauli operator A, respectively.

A. Homogeneous errors in verified clusters

We first consider the errors on the level-0 (physical-
level) qubits encoded in the level-2 fundamental clusters.
Although the correlated errors are introduced in the encoding
process of the level-1 qubits, they are detected and discarded
by postselection sufficiently through the single and double
verifications in the circuits (14) and (17) for the level-2 cluster
construction. These verification protocols are implemented by
the transversal operations. Thus, it is reasonably expected
that the level-0 qubits encoded in these verified level-1
qubits, which compose the level-2 fundamental clusters,
have independently and identically distributed (homogeneous)
depolarization errors in the leading order [34]. Specifically,
the homogeneous error probabilities εA (A = X,Y,Z) for the
level-0 qubits are determined by those pAB for the physical
two-qubit gates which are used transversally for the double
verification in the final stage of construction. This is illustrated
in the circuit (17) as

(30)

providing the homogeneous errors,

εX = pXI , εY = pYI , εZ = 2pZI , (31)

up to the higher-order contributions. The errors preceding the
double verification, including the preparation error with pp,
are fully detected and discarded by postselection in the leading
order, as discussed below the circuit (17).

The verified level-2 fundamental clusters are connected
with the transversal bare CZ gates to construct the level-3
fundamental clusters as shown in the diagram (19). After the
one-way computation with postselection, the output level-2
qubits are left successfully, composing the level-3 fundamental
clusters. Here, it should be noted that the output level-2 qubits,
©◦ ’s in the diagram (19), are never touched directly in the
level-3 cluster construction. Instead, the entanglement by the
verified CZ gates is transferred via teleportation (one-way
computation) transversally to the output level-2 qubits to
form the verified level-3 fundamental clusters. Thus, each
constituent level-0 qubit in these entangled level-2 qubits
inherits transversally the homogeneous errors εA in Eq. (31)
after the double verification in the level-2 cluster construction.
The above argument is extended recursively to the verified
level-l fundamental clusters (l � 2). As a result, the errors
in the verified fundamental clusters (before the bare CZ

connections in the next-level construction) are reasonably
described in terms of the homogeneous errors εA on the level-0
qubits. This fact really simplifies the error structure in the
cluster-based architecture. Furthermore, the Pauli frame errors
are removed in the leading order for the output qubits through
the double verification. Thus, the cluster-based architecture
provides a scalable way to construct a concatenated code
state whose errors are well approximated by the homogeneous
errors, which was assumed in Ref. [34].

B. Noise threshold calculation

We next consider the errors for the measurement of
the logical qubits in the one-way computation to construct the
verified fundamental clusters. The level-l clusters with the
homogeneous errors εA on their constituent level-0 qubits
are used for the level-(l + 1) cluster construction. As seen
in the previous section, e.g., the diagram (16), some pairs
of level-(l − 1) qubits in these level-l clusters are connected
by the bare CZ gates. As a result, extra errors are added
transversally to the constituent level-0 qubits through the bare
CZ connection, as shown in the following diagram:

(32)

Then, the homogeneous errors after the bare CZ connection
are given in the leading order as

ε′
X = εX +

∑

B=I,X,Y,Z

pXB, (33)

ε′
Y = εY +

∑

B=I,X,Y,Z

pYB, (34)
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ε′
Z = εZ + εX + εY +

∑

B=I,X,Y,Z

pZB. (35)

Now we are ready to calculate the error probability for
the measurement of the bare-connected level-l qubit which
is implemented in concatenation by the transversal measure-
ments of the constituent lower-level qubits. Consider first the
level-1 qubits composing the level-2 fundamental clusters,
which are measured in the level-1 one-way computation for
the level-3 cluster construction. Note here that the level-0
qubits (constituents of the level-1 qubits) are not assigned the
Pauli frames in the circuit-model computation at the physical
level to construct the level-2 fundamental clusters. (Even if the
cluster-model computation is adopted at the physical level, the
Pauli frame error can be neglected in a good approximation,
which is left only as the second-order error contribution after
the double verification.) Thus, the measurement of the level-1
qubit is affected by the errors ε′

A on the level-0 qubits and the
physical measurement error pM . The logical error probability
for the X measurement of the bare-connected level-1 qubit is
then calculated in the leading order on the Steane seven-qubit
code with distance 3 as

p(1)
q � 7C2(ε′

Z + ε′
Y + pM )2 ≡ 7C2

(
p(0)

q

)2
, (36)

where p(0)
q is defined as the error probability for the X

measurement of the bare-connected level-0 qubit. It is apparent
here that by choosing properly the physical basis the errors for
the Z and Y measurements are arranged to be smaller than p(0)

q

for the X measurement, i.e., ε′
Z � ε′

Y � ε′
X.

The outcomes of the measurements of the level-1 qubits
are propagated to the neighboring qubits by updating the
Pauli frames according to the rule of one-way computation
[18]. Then, the errors on the measurement outcomes with
the probability p(1)

q are accumulated during the computation.
The blocks of seven output level-1 qubits (level-2 qubits) to
form the level-3 fundamental clusters are, however, doubly
verified in the final stage of one-way computation. Thus, the
propagation of the preceding measurement errors as the Pauli
frame error is prohibited by postselection in the leading order
for these output level-1 qubits, as discussed in the circuit (17):

p
(1)
Pauli ∼ (

p(1)
q

)2
. (37)

Subsequently, the level-2 one-way computation is per-
formed by using the level-3 fundamental clusters to construct
the level-4 fundamental clusters, where the constituent level-2
qubits are measured. Some of the level-2 qubits are connected
with the transversal bare CZ gates for the first time in this
computation. The measurement of the (bare-connected) level-
2 qubit is executed by measuring the (bare-connected) level-1
qubits transversally. The seven level-1 measurement outcomes
together with the seven level-1 Pauli frames determine the
level-2 measurement outcome. Then, by considering Eq. (37)
the error probability for measuring the level-2 qubit after the
bare CZ connection is given in the leading order as

p(2)
q � 7C2

(
p(1)

q + p
(1)
Pauli

)2 � 7C2
(
p(1)

q

)2
. (38)

As for the logical error left on the Pauli frame of each output
qubit after the cluster construction, similarly to Eq. (37), it is
reduced by the double verification as

p
(l−1)
Pauli ∼ (

p(l−1)
q

)2
(l � 2). (39)

Thus, the error probability p(l)
q for measuring the level-l qubit

is calculated in concatenation as

p(l)
q � 7C2

(
p(l−1)

q

)2 � (
7C2p

(0)
q

)2l /
7C2. (40)

The threshold condition is then given from Eq. (40) as

p(0)
q = Dpg < 1/7C2, (41)

and the noise threshold is estimated as

pth � (7C2D)−1, (42)

where pg represents the mean error probability for physical op-
erations (D ∼ 1). Typically with pAB = (1/15)pg for ε′

A and
pM = (4/15)pg [22], where D = 17/15, the noise threshold
is estimated approximately as pth � 0.04.

C. Numerical simulation

We have made numerical calculations to confirm the above
estimation of the error probability p(l)

q for measuring the logical
qubit and the noise threshold pth for computation by simulating
the construction of fundamental clusters.

First, we have constructed the level-2 fundamental clusters
according to the diagrams (20) and (21) by implementing
the CZ operations with single and double verifications for
the level-1 encoded qubits in the circuits (14) and (17) with
bare CZ gates (transversal operation of physical CZ gates).
Then, we have checked the error probabilities εA (A = X,Y,Z)
for each level-0 qubit which is contained in the output
level-1 qubits as the verified level-2 fundamental clusters. In
Fig. 1 εA/(pg/15) are plotted as functions of the physical
error probability pg , where pAB = pg/15, pM = (4/15)pg

and pp = (4/15)pg [22] are specifically adopted. In the case
of pg < 1% they are in good agreement with the leading
values εX/(pg/15) = εY /(pg/15) = 1 and εZ/(pg/15) = 2 in
Eq. (31). On the other hand, in the case of pg > 1% εA/(pg/15)
become larger due to the higher-order contributions, which
are thus significant for p(1)

q . It has been also checked for
pg � 3% that these errors are almost independent among the
level-0 qubits; the correlated errors are one order of magnitude
smaller than the independent ones even when the higher-order
contributions are significant for εA. We have then evaluated

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.001  0.01

ε A
/(

p g
/1

5)

pg

x
y
z

FIG. 1. The error probabilities εA/(pg/15) (A = X,Y,Z) for each
level-0 qubit are plotted as functions of the physical error probability
pg together with their leading values εX(pg/15) = εY /(pg/15) = 1
and εZ/(pg/15) = 2.
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FIG. 2. The error probability p(1)
q for measuring the level-1 qubit

after the bare CZ connection is plotted as a function of the physical
error probability pg . The error probabilities p

(1)
Pauli for the Pauli

frames (X,Y,Z) of the level-1 qubit are also plotted as functions
of pg in comparison with p(1)

q . The upper-most line indicates p(0)
q in

comparison to infer the threshold.

the error probability p(1)
q for measuring the output level-1

qubit (component of the level-2 fundamental cluster) after
operating the bare CZ gate on it. It is plotted in Fig. 2 as a
function of pg .

Next, we have constructed the level-3 fundamental clusters
by simulating the one-way computation for the level-1 qubits
(level-2 cluster states) in the diagrams such as (19) or their full
three-dimensional versions. Then, we have calculated the error
probabilities p

(1)
Pauli for the Pauli frames (X,Y,Z) of the level-1

qubit which is contained in the output level-2 qubit (component
of the level-3 fundamental cluster). They are plotted in Fig. 2
as functions of pg in comparison with the error probability p(1)

q

for measuring the level-1 qubit. This result really confirms that
p

(1)
Pauli is suppressed substantially by the double verification, to

be of the second order of p(1)
q , as shown in Eq. (37).

By using these values of p(1)
q and p

(1)
Pauli for the level-1 qubit,

we have calculated the error probability p(2)
q for measuring the

output level-2 qubit (component of the level-3 fundamental
cluster) after the bare CZ connection. It is plotted as a function
of pg in Fig. 3 together with the leading term 7C2(p(1)

q )2

(dotted line) as given in Eq. (38). (The error effect for p(2)
q

due to the bare CZ connection is already taken into account
transversally as a contribution in p(1)

q .) Here, it is found that
for pg > 1% near the threshold the level-2 qubit error p(2)

q

becomes significantly higher than its leading value (dotted
line) due to the higher-order contributions including the Pauli
frame error. The logical error probability, however, decreases
through concatenation as p(2)

q < p(1)
q < p(0)

q for pg � 3%.
This certainly indicates that the noise threshold pth is about
3%, which is in reasonable agreement with the leading-order
estimate in Eq. (42). The noise threshold pth ∼ 3% of the
present architecture is considerably higher than those of the
usual circuit-based architectures with the Steane seven-qubit

10-5

10-4

10-3

10-2

10-1

 0.01

p q
(2

)

pg

pq
(2)(3%)=2.32%

pq
(1)(3%)=2.55%

pq
(2)

pq
(1)

leading

FIG. 3. The error probability p(2)
q for measuring the level-2 qubit

after the bare CZ connection is plotted as a function of the physical
error probability pg , together with the leading term 7C2(p(1)

q )2 (dotted
line). The upper-most line indicates p(1)

q in comparison to infer the
threshold.

code. It is also comparable to those of the two C4/C6

architectures, error-correcting and postselecting ones [21].

VI. RESOURCES USAGE

The physical resources (qubits and gates) are calculated
by counting the numbers of hexaclusters, ancilla code states,
and bare CZ gates which are used in the diagrams for the
construction of fundamental clusters. In this calculation we
present recursion relations of the resources R(l)

α required for
the components α = S,D,h,0,+ corresponding to the single
verification, double verification, hexacluster |h〉, ancilla qubits
|0〉, and |+〉, respectively.

The single verification in the diagram (15) or its full version
(16) uses 1 × 7 |h(l)〉’s, 2 |+(l)〉’s and two level-l transversal
bare CZ gates, that is

R
(l)
S = 1 × 7R

(l)
h + 2

(
R

(l)
+ + R

(l)
b

)
(l � 2), (43)

where

R
(l)
b = 7l (44)

indicates the resources for a level-l transversal bare CZ gate
(the number of physical CZ gates). Similarly, the resources
R

(l)
D for the double verification, which uses 3 × 7 |h(l)〉’s, 8

|+(l)〉’s, and (8 + 2) level-l bare CZ gates in the diagram (18),
are given as

R
(l)
D = 3 × 7R

(l)
h + 8

(
R

(l)
+ + R

(l)
b

) + 2R
(l)
b (l � 2). (45)

Furthermore, the resources used to construct the level-(l + 1)
fundamental clusters |h(l+1)〉, |0(l+1)〉 and |+(l+1)〉 are counted
from the reduced diagrams (20) and (21) as

R(l+1)
α =

∑

β=S,D,0,b

nβ
αR

(l)
β

p
(l+1)
α

(α = h,0,+; l � 1), (46)
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with the numbers of the respective level-l components

(
nS

h,n
D
h ,n0

h,n
b
h

) = (2,3,6,10), (47)

(
nS

0 ,nD
0 ,n0

0,n
b
0

) = (6,7,11,26), (48)

(
nS

+,nD
+,n0

+,nb
+
) = (5,7,10,24), (49)

and the success probabilities p(l+1)
α for the clusters |α(l+1)〉

to pass the verification process with postselection. Here, the
bare CZ gates are used in the processes, (i) the n0

α encodings
with |0(l)〉 (⊕), and (ii) the [2(nS

α + nD
α ) − n0

α] connections
between the outputs after the verifications and the inputs to
the subsequent verifications, where n0

α is subtracted for the
final outputs (©◦ ). Thus, the number of the level-l bare CZ

gates is given by nb
α = 2(nS

α + nD
α ), i.e., nb

h = 10, nb
0 = 26, and

nb
+ = 24. The bare CZ gates are also used in the verification

diagrams, which are properly counted in R
(l)
S and R

(l)
D . The

level-1 resources are given in the circuits (14), (17), and (22)
as

R
(1)
S = 3R

(1)
b + 2R

(1)
0 , (50)

R
(1)
D = 9R

(1)
b + 8R

(1)
0 , (51)

R
(1)
0 = R

(1)
+ = 69

/
p

(1)
0 . (52)

Here, R(1)
0,+ is counted as follows. The Steane seven-qubit code

state is encoded into seven physical qubits by using nine CNOT

gates [7]. This code state is preliminarily verified through
three stabilizer measurements, each of which consumes one
ancilla qubit and four CNOT gates. At this stage 7 + 9 + 3 ×
(1 + 4) = 31 resources are used for each preliminarily verified
code state. Then, the code sate is secondly verified according
to the circuit (22), where two preliminarily verified code states
and seven (transversal) CNOT gates are used. Thus, the number
of resources used to prepare the level-1 code state amounts
to R

(1)
0,+ = (2 × 31 + 7)/p(1)

0 = 69/p
(1)
0 including the success

probability p
(1)
0 = p

(1)
+ .

The success probabilities p(l)
α have been evaluated in the

numerical simulation for the cluster construction. In Fig. 4 we
plot especially p

(l)
0 (�p

(l)
+ < p

(l)
h ) as functions of the physical

error probability pg for the levels l = 1,2,3,4. The level-1 p(1)
α

appears to be rather high since the physical-level computation
is implemented in the circuits with less operations. Then, the
level-2 p(2)

α decreases substantially due to the low fidelity
of the level-2 fundamental clusters for the level-3 cluster
construction. However, the success probabilities p(l)

α almost
approach unity at level-4 and higher as the error probability
p(l)

q for the logical qubit is reduced rapidly for pg < 1% below
the threshold.

The resources are evaluated by using the above recur-
sion relations with the success probabilities p(l)

α simulated
numerically, depending on the computation size N , where
the highest level is given as l̄ ∼ log2(log10 N ) to achieve the

accuracy 0.1/N . The results of R
(l̄)
0 (>R

(l̄)
h,+) are shown in

Fig. 5 for the present architecture of verified logical clusters
(LC) with pg = 10−2 and 10−3, which are compared with
the resources for the circuit-based Steane’s QEC scheme
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FIG. 4. The success probabilities p
(l)
0 are plotted as functions of

the physical error probability pg for the levels l = 1,2,3,4.

with pg = 10−3 [10]. Each step in these graphs indicates the
rise of the highest level l̄ by one. We find that the present
architecture really consumes much less resources than the
Steane’s QEC scheme for pg � 10−3 (checked numerically
also for pg = 10−4). This indicates that the overhead costs paid
for the verification process with postselection in the cluster
construction are worth enough to save the total resources usage
by reducing rapidly the logical error probability. Thus, the
present cluster-based architecture is quite efficient with respect
to both noise threshold and resources usage, compared with the
usual circuit-based QEC schemes with the Steane seven-qubit
code.

We also compare the present architecture with the posts-
electing and error-correcting C4/C6 architectures [21]. The
postselecting C4/C6 architecture makes use of the usual
circuit-based nondeterminism for fault-tolerant gate operation,
which is different from the error-precorrection in the cluster-
based architecture. Thus, it requires for scalability the con-
struction of a large QEC code state at a certain level with
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FIG. 5. Resources for the present architecture of verified logical
clusters (LC) with pg = 10−2 and 10−3, which are compared with
those for the Steane’s QEC scheme with pg = 10−3.
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the decoding of the lower-level error-detection code, in order
to implement the standard fault-tolerant computation at the
higher levels. The resources usage of the postselecting C4/C6

architecture amounts to be large for the overhead cost of
the large QEC code state. On the other hand, the noise
threshold and resources usage for the error-correcting C4/C6

architecture with the Fibonacci scheme are both comparable to
those for the present cluster-based architecture with the Steane
seven-qubit code.

VII. MISCELLANEOUS

We further discuss some issues concerning the performance
of the cluster-based architecture.

A. Memory error effect

The memory errors may be significant in the cluster-
based architecture without recovery operation. The qubits to
form the clusters are not touched directly (but via one-bit
teleportation) through the concatenated constructions after the
level-1 verification. Then, the memory errors accumulate until
they are measured in the upper-level construction. The memory
errors are added as p(0)

q + l̄(nτmpg), where τmpg denotes the
probability of memory error with the effective waiting time τm

for one measurement, and n is the number of waiting time steps
at each concatenation level (e.g., n = 12 for the hexacluster).
The noise threshold is thus estimated roughly as

pth ∼ [7C2{1 + log2(log10 N )nτm}]−1, (53)

depending on the computation size N with the highest level
l̄ ∼ log2(log10 N ). For example, pth ∼ 1% for N ∼ 1020 and
τm = 0.1 (n ∼ 10), which will be tolerable for practical
computations.

It seems difficult to surmount essentially the problem of
memory error in the present framework. As a partial resolution
for the memory error accumulation, the fundamental clusters
as two-colorable graph states may be refreshed at the first one
or two logical levels by using a purification protocol [37,40].
This process will relax the deterioration of the noise threshold
to some extent though it requires a significant overhead
cost. However, the purification at the higher levels are not
realistic since the success probability of purification drops
exponentially with the increasing number of physical qubits in
the logical clusters.

B. One-way computation at the physical level

We may use the one-way computation even at the physical
level, instead of the circuit computation, for the construction
of level-2 fundamental clusters. The level-1 qubits are encoded
through the verification by the cluster versions of the circuits
in (22). Then, the level-2 hexacluster is constructed through
the single and double verifications as given in the reduced
diagram in (20) by combining the physical qubits and level-1

code states with the transversal bare CZ gates:

(54)

The level-2 code states are constructed similarly according to
the reduced diagrams in (21). The homogeneous errors for the
resultant level-1 qubits (components of the level-2 clusters)
are estimated in the first order by inspecting the double
verification process in the final stage, where extra CZ gates
are required for the CNOT gate operations inducing additional
errors: εX = pXI , εY = pYI , εZ = pp + pXZ + pIZ + pZY +
pYY + pZI + pZI . The noise threshold is slightly lowered as
pth � 0.03 with D = 5/3 in Eq. (42).

C. Application of other QEC codes

So far we have considered only the Steane seven-qubit code
in the present architecture. Here, we briefly discuss application
of some other QEC codes, say code C. If the code C is a
self-dual CSS code or a CSS code which has high symmetry
such as the Bacon-Shor subsystem code, the cluster-based
architecture can be applied straightforwardly by taking the
hexacluster and the graph state equivalents of the code states
of C as the fundamental clusters. The behavior of logical errors
is, however, somewhat different, depending on the distance of
C as seen in the following two examples.

We first consider the four-qubit error detection code C4.
The Fibonacci scheme can be used for the C4 code to generate
deterministically the logical measurement outcomes from the
physical ones in one-way computation. Then, the cluster-based
concatenation can be carried out with the error detection code
C4 almost in the same way as with the Steane seven-qubit
code. In this case, we may reduce the resources to prepare
the level-2 fundamental clusters with high success probability,
since the number of error locations is smaller than that for
the Steane seven-qubit code [21,41]. As a trade-off the error
probability for the Pauli frame becomes p

(1)
Pauli ∼ p3

g , while
the error probability for measuring the level-1 qubit is p(1)

q ∼
p2

g . Thus, the Pauli frame provides a more significant error
contribution near the threshold than the case of the Steane
seven-qubit code with p

(1)
Pauli ∼ p4

g .
We next consider the Golay code, which is a 23-qubit self-

dual CSS code with distance 7. In this case, although we have to
pay much more resources at the lowest level, the logical errors
are reduced substantially as p(1)

q ∼ p4
g and p

(1)
Pauli ∼ p8

g [10,42].
Thus, it will be possible to improve the noise threshold of the
cluster-based architecture by using the Golay code.

We further mention that even with the Steane seven-qubit
code the present architecture has a room to improve its
performance. The optimal decoding (adaptive concatenation)
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technique [43], which boosts the correctable error of the
Steane seven-qubit code up to ∼11%, is readily available
to improve the noise threshold by generating efficiently the
logical measurement outcomes in one-way computation.

VIII. CONCLUSION

We have investigated an efficient architecture for fault-
tolerant quantum computation, which is based on the cluster
model of encoded qubits. Some relevant logical cluster states,
fundamental clusters, are constructed through verification
without recovery operation in concatenation, which provides
the error-precorrection of gate operations for the one-way
computation at the higher level. A suitable code such as the
Steane seven-qubit code is adopted for transversal operations.
This construction of fundamental clusters provides a simple
transversal structure of logical errors in concatenation, and
achieves a high noise threshold by using appropriate verifi-
cation protocols, namely the single and double verifications.
Since the postselection is localized within each fundamental
cluster with the help of deterministic bare CZ gates without
verification, divergence of resources is restrained, which
reconciles postselection with scalability. Detailed numerical
simulations have really confirmed these desired features of the
cluster-based architecture. Specifically, the noise threshold is
estimated to be about 3%, and the resources usage is much
less than those of the usual circuit-based QEC schemes with
the Steane seven-qubit code. This performance is comparable
to that of the error-correcting C4/C6 architecture with the
Fibonacci scheme. Some means may hopefully be applied
for the cluster-based architecture to improve its performance,
including the error-detecting C4 code with the Fibonacci
scheme, other self-dual CSS codes such as the Golay code,
which are more robust for logical encoding than the Steane
seven-qubit code, and the adoptive concatenation or optimal
decoding.
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APPENDIX

We can produce systematically the diagrams for cluster
construction from the reduced ones (20) and (21), according to
the following rules: (i) Replace the single edge with the single
verification (15). (ii) Replace the double edge with the double
verification (18) so that the double verifications are always
placed at the right side (namely later in time) of the single
verifications. (iii) Put the ⊕ encodings on the input qubits at the
leftmost (initially in time). (iv) Apply the bare CZ gate (wavy
line) to connect the output qubit of the preceding verification to

the input qubit of the following verification. In the case that the
double verification is followed by the other double verification,
we cut off the leftmost qubit of the following verification by
measurement before connecting these double verifications, in
order to remove the redundant H rotation. This prescription is
illustrated in the following diagram:

(A1)
The cluster diagram (19) for |h(l+1)〉 is generated according to
these rules (i)–(iv). The cluster states for |+(l+1)〉 and |0(l+1)〉
are constructed similarly in the following diagrams, where
the pairs of the same characters such as (a)-(a) are actually
connected by the bare CZ gates:

(A2)

(A3)
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