
PHYSICAL REVIEW A 81, 012104 (2010)

Direct observation of geometric phases using a three-pinhole interferometer
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We present a method to measure the geometric phase defined for three internal states of a photon (polarizations)
using a three-pinhole interferometer. From the interferogram, we can extract the geometric phase related to the
three-vertex Bargmann invariant as the area of a triangle formed by interference fringes. Unlike the conventional
methods, our method does not involve the state evolution. Moreover, the phase calibration of the interferometer
and the elimination of the dynamical phase are not required. The gauge invariance of the geometric phase
corresponds to the fact that the area of the triangle is never changed by the local phase shift in each internal state.
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I. INTRODUCTION

When a quantum system evolves in time and returns to
its initial state, the final and initial wave functions can differ
by a phase factor composed of two parts: a dynamical phase
proportional to the time integral of the instantaneous energy
and a geometrical phase, which depends only on the path traced
in the ray space and not on the energy and the rate of evolution.
The geometric phase was originally discovered by Berry [1]
in the adiabatic and cyclic evolution of a pure quantum state.
Since then it has been generalized to nonadiabatic evolution
[2,3] and noncyclic evolution [4,5]. Its applications in practical
fields such as fault-tolerant quantum computation [6,7] and
weak measurement [8] are also proposed.

Most approaches for observing the geometric phase, such as
the interferometric and polarimetric methods [9–15], require
the state evolution. Note that the geometric phase induced
by such evolution appears as the global phase factor, which
cannot be measured directly. Therefore in order to observe
the geometric phase, we must prepare the reference state, that
is, the state that is left unevolved, and measure the relative
phase between the evolved and the reference states. To remove
additional phase shifts associated with the aforementioned
operations, phase calibration is required [16]; that is, the
relative phase must be determined by comparing the cases
with and without the state evolution. Moreover, the dynamical
phase must be eliminated from the relative phase. These
two considerations, namely, the phase calibration and the
elimination of the dynamical phase, lead to experimental
complications.

On the other hand, based on the quantum kinematic
approach [17], the geometric phase can be attributed to
the geometric structure of the Hilbert space, and not to the
state evolution. In particular, an important consequence of the
kinematic approach has been to show the close relationship
between the geometric phase and the Bargmann invariant [18].
The n-vertex Bargmann invariant is a complex quantity that
is determined by n points in the ray space. The phase of
the n-vertex Bargmann invariant is identical to the geometric
phase for a closed ray-space curve obtained by connecting
the corresponding n states with geodesics. The geometric
phase for a smooth curve can be obtained from the Bargmann
invariant by approximating a smooth curve with a chain of
geodesics. In this sense, the phase of the Bargmann invariant,

particularly that of the three-vertex Bargmann invariant, is the
primitive building block of the geometric phase.

The purpose of this article is to report a method to measure
the geometric phase or the three-vertex Bargmann invariant
without the state evolution. All we need to do is to prepare
the three states and let them interfere directly. In our method,
the phase calibration and elimination of the dynamical phase
are not required. As shown in Fig. 1, we assign three states,
|ψj 〉 (j = 1, 2, 3), to the internal states of the photon from
three pinholes and obtain a three-pinhole interferogram, which
contains three distinct interference fringes due to each pinhole
pair. Using a certain data processing, we can extract the
geometric phase directly from the interferogram.

II. GEOMETRIC PHASE AND BARGMANN INVARIANT

In 1956, Pancharatnam [19] introduced the definition of
the phase relation between any two (nonorthogonal) states.
Assume that |ψ1〉 and |ψ2〉 are two different states and
that |ψ1〉 is exposed to the U(1) shift eiφ . By superim-
posing two such states, we have the intensity I ∝ 1 +
|〈ψ1|ψ2〉| cos(φ + arg〈ψ1|ψ2〉). The interference fringes are
shifted by arg〈ψ1|ψ2〉, the relative phase between two states. In
particular, when they constructively interfere or arg〈ψ1|ψ2〉 =
0, |ψ1〉 and |ψ2〉 are said to be in-phase.

A remarkable feature of this relation is its nontransitivity;
even if |ψ1〉 is in-phase with |ψ2〉 and |ψ2〉 with |ψ3〉, the
relative phase between |ψ1〉 and |ψ3〉 is, in general, not zero.
It is easy to show that the nonzero phase difference between
|ψ1〉 and |ψ3〉 can be written as

�3(ψ1, ψ2, ψ3) = arg〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉
=

∑
(i,j )cyclic

arg〈ψi |ψj 〉, (1)

where (i, j )cyclic ≡ (1, 2), (2, 3), (3, 1). �3 is called the
Pancharatnam phase [19]. The product 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3

|ψ1〉 is the Bargmann invariant [18] for the three states.
Equation (1) is gauge invariant, that is, independent of the
choice of the local phase factor of each state because the bra
and ket vectors for each state appear in a pair. The phase �3

is the primitive building block of the geometric phase based
on the quantum kinematic approach [17]. It turns out that
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FIG. 1. Coordinate system of three-pinhole interferometer. The
three pinholes are irradiated by monochromatic light and the three
spherical waves interfere. We can extract the geometric phase for three
states, |ψ1〉, |ψ2〉, and |ψ3〉, from the three-pinhole interferogram.

�3 is simply related to the geometric phase associated with
the geodesic triangle in the ray space. For a two-state system
such as the polarization of a photon, �3 is proportional to the
solid angle of the spherical triangle on the Bloch sphere with
vertices at |ψ1〉, |ψ2〉, and |ψ3〉 [19,20].

III. GEOMETRIC PHASE AND RIDGE LINES

As shown in Fig. 1, consider three pinholes irradiated by
monochromatic light that has the wave number k. Without
loss of generality, we may consider that the three pinholes are
located at aj (j = 1, 2, 3) on the source plane z = 0 with their
origin at the circumcenter of the triangle formed by the three
pinholes, and these vectors have the same length a (see Fig. 1).
The state of each photon from the pinholes is composed of two
parts: the spatial part that is represented by the spherical wave
and the internal state of the photon, namely, the polarization
state. Assuming that the transmission probabilities of the three
pinholes are the same for simplicity, the state on an observation
plane at a distance of L is represented by [21]

|�(r)〉 = C

3∑
j=1

ei(k|R−aj |+φj )

|R − aj | |ψj 〉, (2)

where R is the position vector on the observation plane
z = L; r ≡ R − (R · ez)ez, the transverse component of R
with the unit vector ez along the z axis; C, the dimensionless
normalization constant; φj , the phase of the j th source; and
|ψj 〉, the polarization state of the j th source. |R − aj | is the
distance from the j th source to a given observation point R.

We make a paraxial approximation in the far-field regime,
and moreover, we assume the stronger condition, |R − aj | �
(L3/k)1/4 � L. Under these assumptions, the spherical wave
function in Eq. (2) is approximated as

eik|R−aj |

|R − aj | ∼ 1

L
exp

[
ik

(
L + r2 + a2

2L
− r · aj

L

)]
, (3)

where r ≡ |r|. Therefore, the intensity distribution of the
interference field, p(x, y), can be written as

p(x, y) = ‖|�(r)〉‖2

= C2

L2

{
−3 +

∑
(i,j )cyclic

Pij (x, y)

}
, (4)

with

Pij (x, y) = 2(1 + |〈ψi |ψj 〉|
× cos[kij · r − φij + arg〈ψi |ψj 〉]), (5)

where kij ≡ k(ai − aj )/L and φij ≡ φi − φj . Equation (5)
corresponds to the double-slit interference fringe between the
two states, |ψi〉 and |ψj 〉 [19]. Therefore, the three-pinhole
interferogram (4) contains three sets of interference fringes
with different directions.

In order to extract the geometric phase from the total
interferogram (4), we should focus our attention on the phase
of the interference fringes Pij , since their visibility |〈ψi |ψj 〉|
includes no information about the geometric phase in Eq. (1).
Here, we consider the phase condition to attain the maximum
of each interference fringe in Eq. (5),

kij · r = φij − arg〈ψi |ψj 〉 + 2nijπ, (6)

where nij are integers. Equation (6) defines three distinct sets
of parallel lines, which we call ridge lines, on the observation
plane z = L. The area S of the triangle formed by the three
distinct ridge lines, which we call a ridge triangle, is calculated
as

S = L2

4k2S0
{�3(ψ1, ψ2, ψ3) − 2nπ}2, (7)

where n = n12 + n23 + n31 and S0 is the area of the triangle
formed by the three pinholes. Equation (7) shows three
important features of a ridge triangle. First, the area of the
ridge triangle is essentially related to the geometric phase �3.
In particular, we call a ridge triangle that includes no ridge lines
inside as elemental. Assuming 0 � �3 < 2π , ridge triangles
with n = 0 and 1 in Eq. (7) are elemental. The area with
n = 0 is proportional to the square of the geometric phase �3

and that with n = 1 is proportional to the square of 2π − �3.
Second, we should note that the area S does not depend on
the choice of the local phases φi , because the geometric phase
�3 is gauge invariant. By introducing a phase shift to one of
the pinholes, two sets of ridge lines are displaced but the areas
of the ridge triangles are conserved. Third, any geometry of
the three pinholes can form the ridge triangle related to the
geometric phase since Eq. (7) is proportional to the square of
the geometric phase regardless of the vectors ai .

IV. EXTRACTION OF RIDGE LINES

A straightforward method to determine the ridge lines is
the observation of individual interference fringes Pij (x, y)
in Eq. (5) by closing one of the three pinholes. However,
instead of using the three interferograms Pij (x, y), we can
extract all the ridge lines from a single-shot interferogram
p(x, y) with the three pinholes. First, we introduce the
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vectors

bi ≡ ez × (aj − ak) = L

k
ez × kjk, (8)

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). The vector bi on
the observation plane z = 0 is determined only from the
geometry of the three pinholes. Considering the directional
derivative along bi , we can eliminate one of the interference
fringes, Pjk(x, y), from the total interferogram p(x, y) since bi

is orthogonal to kjk . The other two fringes remain as sinusoidal
functions. In addition, by applying another directional deriva-
tive along bj , we can isolate the oscillation term of Pij (x, y)
from p(x, y) as

(bi · ∇)(bj · ∇)p(x, y)

∝ 〈ψi |ψj 〉| cos[kij · r − φij + arg〈ψi |ψj 〉]. (9)

Then, a set of the ridge lines can be retrieved from Eq. (9).
Examples are shown in Fig. 3. Interferograms for the three
pinholes are shown in Fig. 3(a) and the three sets of ridge lines
thus extracted are shown in Fig. 3(b).

As a result, we can determine the pure geometric phase
instantaneously as the square root of the area of the ridge tri-
angle extracted directly from the three-pinhole interferogram
for three arbitrary states.

V. EXPERIMENTS

Our experimental setup is shown in Fig. 2. The light
source is a 532-nm green laser. The source illuminates a
thin copper foil that is perforated with three 0.1-mm-radius
pinholes forming an equilateral triangle of side length 1.5 mm.
At a distance of approximately 2 m from the three pinholes,
the interfering patterns are captured using a charge-coupled

FIG. 2. (Color online) Experimental setup for three-pinhole
interference with different polarization states. In front of the upper
pinhole, we placed a film-type linear polarizer, LP1, attached to a
rotatable mount with graduated scales for adjusting the angle θ ,
whereas in front of the lower left and right pinholes we placed
film-type quarter-wave plates having orthogonal fast axes, 0◦ (QWP1)
and 90◦ (QWP2), respectively, behind a linear polarizer LP2 with
a fixed angle of 30◦. Incident light on the pinholes is circularly
polarized, and transmittance of light through each pinhole is 50%.
Under this configuration, the visibility of the fringe Pij (x, y) is more
than or equal to 0.5, which is sufficient to retrieve clear ridge lines.

device (CCD) camera. The CCD camera has an image
resolution of 640 × 480 pixels, with the size of each pixel
being 9 µm × 8 µm. According to the setting of polarization
elements in Fig. 2, the polarization states from the left, right,
and upper pinholes are |ψ1〉 = (

√
3|H〉 + i|V〉)/2, |ψ2〉 =

(i
√

3|H〉 + |V〉)/2, and |ψ3〉 = cos θ |H〉 + sin θ |V〉, where |H〉
and |V〉 are the horizontal and vertical polarization states,
respectively.

On a Poincaré sphere, |ψ1〉 and |ψ2〉 are both located at a
latitude of ±60◦ on the prime meridian, and |ψ3〉 is located on
the equator at a longitude of 2θ , which can be varied according
to the setting of LP1. The geometric phase is proportional to
the solid angle � of the spherical triangle formed by |ψ1〉,
|ψ2〉, and |ψ3〉 on the Poincaré sphere; that is, �3 = −�/2. It
is calculated as

�3(ψ1, ψ2, ψ3) = tan−1

(
1√
3

tan θ

)
, (10)

which moves between 0 and 2π with respect to θ .
Figure 3 shows our experimental results. Figure 3(a) shows

the experimentally obtained interferograms for several values
of θ , and Fig. 3(b) shows the ridge lines extracted from
the above interferograms. The shaded triangles in Fig. 3(b)
are the elemental ridge triangles (n = 0) and the area of

FIG. 3. (Color online) Ridge triangles and geometric phases for
θ = 0◦, 50◦, 90◦, and 130◦. (a) The three-pinhole interferogram
obtained in our experiment. The actual size of each figure is
1.5 mm × 1.5 mm. (b) Ridge lines extracted from the above interfer-
ograms. (c) Corresponding spherical triangle on the Poincaré sphere.
(d) Geometric phase versus area of ridge triangle. The area of the ridge
triangle is normalized by the maximum area. The solid line indicates
the theoretical curve, and it shows a quadratic characteristic.
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FIG. 4. (Color online) Ridge triangles for θ = 90◦ with (a) no
shifts, (b) shift on pinhole 1, (c) shift on pinhole 2, and (d) shift
on pinhole 3. The ridge triangle is parallel displaced, but it is not
deformed for a local phase shift. The actual size of each figure is
1.5 mm × 1.5 mm.

the ridge triangle varies with the spherical triangle on the
Poincaré sphere [see Fig. 3(c)]. The relationship between
the elemental ridge triangle and the geometric phase is
quantitatively analyzed in Fig. 3(d), in which the area of the
elemental ridge triangle normalized by the maximum area is
plotted as a function of the geometric phase calculated from
Eq. (10). The solid line in Fig. 3(d) is the theoretical curve
calculated from Eq. (7), and the experimental results [dots
in Fig. 3(d)] are found to agree well with the theoretical
prediction. In Fig. 3(b), we can also see the other elemental
ridge triangle (n = 1), which is related to the complementary
area on the Poincaré sphere 4π − �.

Figure 4 shows variations of the ridge triangles when a local
phase shift is introduced by inserting a thin (0.15-mm-thick)
glass plate in front of each pinhole. Figure 4(a) shows the
ridge lines without a phase shift as reference. When a phase
shift is introduced at pinhole 1, as shown in Fig. 4(b), the two
interference fringes P12(x, y) and P31(x, y) in Eq. (5) suffer the

same phase shift and they are simultaneously displaced toward
pinhole 1. Thus, the ridge triangle is only parallel displaced
along the ridge line of fringe P23(x, y), but it is not deformed.
Similarly, a phase shift applied to pinhole 2 and pinhole 3
has no influence on the size of the ridge triangle, as shown in
Figs. 4(c) and 4(d), respectively. The fact that the ridge triangle
is not deformed shows the gauge invariance of the geometric
phase in our experiment.

VI. CONCLUSION

We have shown a procedure for measuring the geo-
metric phase without state evolution using a three-pinhole
interferometer. From the interferogram, we can extract the
primitive building block of the geometric phase �3 (phase of
the three-vertex Bargmann invariant) as the area of the
ridge triangle. Our experiment requires no procedures for
phase calibration and elimination of the dynamical phase.
The gauge invariance of the geometric phase corresponds to
the fact that the ridge triangle is not deformed by the local
phase shift. Moreover, by using a CCD video camera followed
by image processing to extract the ridge lines, we can see the
geometric phase in real time.
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