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GALOIS-THEORETIC CHARACTERIZATION OF 
ISOMORPHISM CLASSES OF MONODROMICALLY 

FULL HYPERBOLIC CURVES OF GENUS ZERO 

YUICHIRO HOSHI 

Abstract. Let l be a prime number. In this paper, we prove that the isomor­
phism class of an l-monodromically full hyperbolic curve of genus zero over a 
finitely generated extension of the field of rational numbers is completely deter­
mined by the kernel of the natural pro-l outer Galois representation associated 
to the hyperbolic curve. This result can be regarded as a genus zero analogue 
of a result due to Mochizuki which asserts that the isomorphism class of an 
elliptic curve which does not admit complex multiplication over a number field 
is completely determined by the kernels of the natural Galois representations 
on the various finite quotients of its Tate module. 
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Introduction 

Throughout this article, let k be a field of characteristic zero, let k be an 

algebraic closure of k, and let Gk ~f Gal(k/k). We prove that if lis a prime 
number, then the isomorphism class of an l-monodromically full hyperbolic 
curve of genus zero over a finitely generated extension of the field of rational 
numbers is completely determined by the kernel of the associated pro-Z outer 
Galois representation. 

Mochizuki proved the following theorem (see [14, Theorem 1.1]). 

Let ( E1, 01 E E1 ( k)), ( E2, 02 E E2 ( k)) be elliptic curves over k which do not 
admit complex multiplication over k. Suppose that k is a number field, that 
is, a finite extension of the field of rational numbers. Then the following con­
ditions are equivalent: 

(i) (E1, ol) is isomorphic to (E2, o2) over k; 
(ii) fori= 1, 2, write T(Ei, oi) for the full Tate module of (Ei, Oi) and write 

P~";).,oi)/k: Gk---+ Aut(T(Ei,oi) ®z (7Ljn7L)) 

for the natural Galois representation on T(Ei, oi) ®z (7Ljn7L); then 

Ker(p~~1 ,ol)/k) = Ker(p~~2 , 02 )/k) for any positive integer n. 

In this paper, we prove a genus zero analogue of the above result of 
Mochizuki. The main theorem presented here is the following (see Theo­
rem 6.1). 

THEOREM A (Galois-theoretic characterization of isomorphism classes 
of monodromically full hyperbolic curves of genus zero). Let l be a prime 

number, let k be a finitely generated field of characteristic zero (i.e., a finitely 

generated extension of the field of rational numbers), and let X 1 = ( C1, 
D1 ~ C1), X2 = (C2,D2 ~ C2) be hyperbolic curves (see Definition 1.1(ii)) 
of genus zero over k which are l-monodromically full (see Definition 2.2(i)). 

Suppose that the following condition ( t )prime is satisfied. 

(t)prime: There exists a finite Galois extension k' ~ k of k of degree prime to 
l such that X1 ®k k' and X2 ®k k' are split {see Definition 1.5{i)). 

(For example, if one of the following conditions is satisfied, then the above 
condition ( t )prime is satisfied: 

• xl and x2 are split; 

• if we write ri for the number of cusps of Xi, that is, if Xi is of type (0, ri), 
then l is prime to r1! and r2! or, equivalently, r1, r2 < l.) 

Then the following conditions are equivalent: 
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(i) xl is isomorphic to x2 over k; 
(ii) fori= 1, 2, write 

49 

for the natural pro-l outer Galois representation associated to Xi, then 

Ker(p~~/k) = Ker(p~;/k). 
Roughly speaking, Theorem A asserts that the isomorphism class of an 

l-monodromically full hyperbolic curve of genus zero over a finitely gen­
erated field of characteristic zero which satisfies the condition ( t )prime is 
completely determined by the kernel of the associated pro-l outer Galois 
representation. Note that the fact that the isomorphism class of a hyper­
bolic curve over a generalized sub-l-adic field (see the discussion on numbers 
in Section 0) is completely determined by the associated pro-l outer Galois 
representation was proved in [14, Theorem 4.12]. 

Although we introduce the term l-monodromically full in this paper, the 
corresponding notion was studied by Matsumoto and Tamagawa in [11]. 
It is known (see [11, Theorem 1.2], as well as Corollary 2.6 below) that 
many hyperbolic curves are l-monodromically full. This property of being 
l-monodromically full may be regarded as an analogue for hyperbolic curves 
of the property of not admitting complex multiplication for elliptic curves. 
In fact, if a hyperbolic curve X of type (g, r) over a finitely generated 
extension k of the field of rational numbers is l-monodromically full, then 
the following hold: 

• X has no special symmetry (i.e., roughly speaking, the automorphism 
group of X over k is isomorphic to the automorphism group of a general 
hyperbolic curve of type (g,r) over k; see Definition 3.3, Proposition 3.4); 
in particular, if 2g - 2 + r ~ 3, then there is no nontrivial automorphism 
of X over k; 

• X is of {l}-AIJ-type, where AIJ stands for absolutely irreducibe Jacobian 
(i.e., roughly speaking, the l-adic Tate module of the Jacobian variety of 
the compactification of X is, as a Galois module, absolutely irreducible; 
see Definition 3.5, Proposition 3.6); 

• X does not have a JCM-component, where JCM stands for Jacobian com­
plex multiplication (i.e., roughly speaking, there is no subabelian variety 
with complex multiplication over k of the Jacobian variety of the com­
pactification of X; see Definition 3.7, Proposition 3.8). 
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In this paper, we consider as an example the monodromic fullness of 
hyperbolic curves of type (0, 4), and we obtain results concerning sufficient 
conditions for such a hyperbolic curve to be monodromically full (see The­
orem 7.9 and Corollaries 7.11, 7.12, and 8.2). These results, together with 
Theorem A, imply the following result (see Corollaries 7.13 and 8.3). 

THEOREM B (Galois-theoretic characterization of isomorphism classes 
of certain hyperbolic curves of type (0, 4)). Let k be a finitely generated 
field of characteristic zero, that is, a finitely generated extension of the field 
of rational numbers, and let X1 = (C1,D1 ~ C1), X2 = (C2,D2 ~ C2) be 
hyperbolic curves (see Definition 1.1(ii)) of type (0,4) over k. Suppose that 
one of the following conditions is satisfied. 

• The field k is a number field, that is, a finite extension of the field of 
rational numbers, and moreover, if we write oi; for the group of units of 

the ring of integers ok of k, then mx1 n oi; = mx2 n oi; = 0 (see Defini­
tion 7.10). 

• The hyperbolic curves X1 and X2 are not NF-isotrivial, where NF stands 
for number field (see Definition 8.1). 

Then the following conditions are equivalent: 

(i) xl is isomorphic to x2 over k; 
(ii) there exists an infinite set :E of prime numbers such that, for any l E :E, 

if we write 

for the natural pro-l outer Galois representation associated to Xi, then 

Ker(p~~/k) = Ker(p~~/k). 
On the other hand, one may also take the point of view that Theorems A 

and B serve to highlight the difference between the profinite and pro-l outer 
Galois representations associated to a hyperbolic curve. In [11], Matsumoto 
and Tamagawa compared the profinite and pro-l outer Galois representa­
tions associated to hyperbolic curves. One result obtained in [11] which 
shows the difference between the profinite and pro-l outer Galois represen­
tations is found in my following summary. 

Summary: The image of the pro finite outer Galois representation associated to 
any hyperbolic curve of type (g, r) over a number field k has trivial intersection 
with the image of the outer profinite geometric universal monodromy repre­
sentation of 1r1 (Mg,r ®k k) (see [11, Theorem 1.1] and [8, Corollary 6.4]). On 
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the other hand, there exist many hyperbolic curves of type (g, r) over number 
fields k for which the image of the associated pro-l outer Galois representa­
tion contains the image of the outer pro-l geometric universal monodromy 
representation of 1r1(M9 ,r ®k k) (see [11, Theorem 1.2]). 
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By Theorems A and B (and Theorem C below), one obtains another result 
which highlights the difference between the profinite and pro-l outer Galois 
representations, as I show in this summary. 

Summary: The kernel of the profinite outer Galois representation associated 
to any hyperbolic curve over a number field is always trivial; namely, the 
kernel does not depend on the given hyperbolic curve (see [8, Theorem C]). 
On the other hand, the kernel of the pro-l outer Galois representation associ­
ated to a hyperbolic curve over a number field depends strongly on the given 
hyperbolic curve (see Theorems A and B; see also Theorem C below). 

Finally, in the appendix, we prove the following finiteness result, which 
is related to the main result of this paper (see Corollary A.4). 

THEOREM C (finiteness of the set of isomorphism classes of certain hyper­
bolic curves). Let l be a prime number, let k be a number field, that is, a 
finite extension of the field of rational numbers, let (g, r) be a pair of non­
negative integers such that 2g- 2 + r > 0, and let N ~ Gk be a normal closed 
subgroup of Gk. Then there are only finitely many isomorphism classes over 
k of hyperbolic curves X of type (g, r) over k for which the kernel of the 
natural pro-l outer Galois representation associated to X coincides with N. 

This result follows immediately from various well-known finiteness theo­
rems in number theory and arithmetic geometry, together with Oda-Tama­
gawa's criterion for good reduction of hyperbolic curves. It seems to the 
author that this result is likely to be well known. However, since this result 
could not be found in the literature, the author has decided to give a proof 
of it in the appendix of this paper. 

This article is organized as follows. In Section 1, we review some gen­
eralities concerning outer monodromy representations arising from hyper­
bolic curves. In Section 2, we define the notion of a ~-monodromically full 
hyperbolic curve, as well as the related notion of a ~-monodromically full 
point. In Section 3, we consider the relationship between monodromic full­
ness and certain properties of hyperbolic curves. In Section 4, we consider 
the moduli stacks of hyperbolic curves of genus zero. In Section 5, we prove 
a Grothendieck conjecture-type lemma for certain images of the universal 
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monodromy. In Section 6, we derive Theorem A from the results obtained in 
Sections 4 and 5. In Sections 7 and 8, we consider the monodromic fullness 
of hyperbolic curves of type (0, 4). In particular, we obtain results concern­
ing sufficient conditions for such a hyperbolic curve to be monodromically 
full, and we prove Theorem B. In the appendix, we derive Theorem C as 
a consequence of various well-known finiteness theorems in number theory 
and arithmetic geometry, together with Oda-Tamagawa's criterion for good 
reduction of hyperbolic curves. 

§0. Notation and conventions 

Numbers: A finite extension (resp., finitely generated extension) of the 
field of rational numbers will be referred to as a number field (resp., finitely 
generated field of characteristic zero). If p is a prime number, then a field 
which may be embedded as a subfield of a finitely generated extension of the 
field of fractions of the ring of Witt vectors with coefficients in an algebraic 
closure of the finite field of p elements will be referred to as a generalized 
sub-p-adic field (see [14, Definition 4.11]). 

Topological groups: Let G be a topological group, and let P be a property 
for a topological group (e.g., abelian or pro-l for some prime number l). Then 
we say that G is almost P if there exists an open subgroup of G that is P. 

If G is a topological group, then we write cab for the abelianization of G, 
that is, the quotient of G by the closure of the commutator subgroup of G. 

If G is a topological group and if H ~ G is a closed subgroup of G, then 
we write Zc (H) for the centralizer of H in G, that is, 

Zc(H) ~f {g E G I ghg- 1 = h for any hE H} ~ G, 

we write zl_]c(H) for the local centralizer of H in G, that is, 

zl_]c(H) ~f ~ Zc(H') ~ G, 
H'r;;_H 

where H' ~ H ranges over the open subgroups of H, we write Z (G) ~f 
Zc(G) for the center of G, and we write zloc(G) ~f zl_]c(G) for the local 

center of G. It is immediate from the various definitions involved that 
Zc(H) ~ zl_]c(H) and that if H1, H2 ~ G are closed subgroups of G such 
that H1 ~ H2 (resp., H1 ~ H2; H1 n H2 is open in H1 and H2), then 
Zc(H2) ~ Zc(Hl) (resp., zl_]c(H2) ~ zl_]c(Hl); zl_]c(Hl) = zl_]c(H2)). 
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We say that a topological group G is center-free (resp., slim) if Z(G) = 

{1} (resp., zloc( G)= {1} ). Note that it follows from [15, Remark 0.1.3] that 
a profinite group G is slim if and only if every open subgroup of G has trivial 
center. 

If G is a topological group, then we denote the group of (continuous) 
automorphisms of G by Aut( G), and we denote the group of inner auto­
morphisms of G by Inn(G) ~ Aut(G). The conjugation by elements of 
G determines a surjection G ----* Inn( G). Thus, we have a homomorphism 
G ----tAut( G) whose image is Inn( G)~ Aut( G). We denote by Out( G) the 
quotient of Aut( G) by the normal subgroup Inn(G) ~ Aut(G). In particu­
lar, if G is center-free, then the natural homomorphism G ----t Inn( G) is an 
isomorphism; thus, we have an exact sequence of groups 

1 ---+ G---+ Aut( G) ---+Out( G) ---+ 1. 

Moreover, if G is profinite and topologically finitely generated, then one 
easily verifies that the topology of G admits a basis of characteristic open 
subgroups, which thus induces a profinite topology on Aut( G), hence also on 
Out( G), with respect to which the above exact sequence determines an exact 
sequence of profinite groups. If J is a profinite group and if p: J ----tOut( G) is 

out 
a continuous homomorphism, then we denote by G XI J the profinite group 
obtained by pulling back the above exact sequence of profinite groups via p. 
Thus, we have a natural exact sequence of profinite groups 

out 
1 ---+ G ---+ G XI J ---+ J ---+ 1. 

§ 1. Outer monodromy representations 

Throughout this article, let k be a field of characteristic zero, and let 
k be an algebraic closure of k. If k' ~ k is an algebraic (possibly infinite) 

extension of k, then we write Gk' ~f Gal(k/k'). 
In this section, we review some generalities concerning outer monodromy 

representations arising from hyperbolic curves. Here, let (g, r) be a pair of 
nonnegative integers such that 2g- 2 + r > 0, and let ~be a nonempty set 
of prime numbers. 

DEFINITION 1.1. Let S be a scheme. We have the following. 

( i) Let C be a scheme over S, and let Si : S ----t C be a section of the structure 
morphism of C, where i = 1, ... ,r. Then we say that (C, (s1, ... ,sr)) 
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is an r-pointed smooth curve of genus g over S whose marked points 

are equipped with an ordering if C is smooth and proper over S, if any 

geometric fiber of C ~Sis a (necessarily smooth and proper) connected 

curve of genus g, and if the image of Si does not intersect the image of 

Sj if i ::j: j. 
(ii) Let C be a scheme overS, and let D ~ C be a closed subscheme of C. 

Then we say that ( C, D ~ C) is a hyperbolic curve of type (g, r) over S 

if C is smooth and proper over S, if any geometric fiber of C ~ S is a 

(necessarily smooth and proper) connected curve of genus g, and if the 

composite D ~ C ~Sis a finite etale covering overS of degree r. 

DEFINITION 1.2. We have the following. 

(i) We denote by Mg,r ~Speck the moduli stack (see [5], [10]) of r­

pointed smooth curves of genus g over k-schemes whose marked points 

are equipped with orderings (see Definition 1.1(i)), and we denote by 

(Cg,r ~ Mg,r, (sf!, ... , s;t)) the universal curve over Mg,r· 
(ii) We denote by Mg,[r] ~ Speck the moduli stack of hyperbolic curves 

of type (g, r) over k-schemes (see Definition 1.1 ( ii)), and we denote by 

( Cg,[r] ~ Mg,[r], D:Jr] ~ Cg,[r]) the universal curve over Mg,[r]· 

It follows from the various definitions involved that we have a commuta-

tive diagram 

C9 ,r \ U~=l Im(sf1) 
c 

Cg,r Mg,r --=--+ -------* 

1 1 1 
Cg,[r] \ D:JrJ 

c 
Cg,[r] Mg,[r] --=--+ -------* 

such that the two squares in this diagram are Cartesian. Moreover, it is 

well known that in this commutative diagram, the right-hand vertical arrow 

M 9 ,r ~ Mg,[rJ is a finite etale Galois covering whose Galois group is iso­

morphic to the symmetric group on r letters 6r. In particular, we obtain a 

commutative diagram 
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1 1 1 

l l l 
1----+ Ng,r ----+ 1q ( C9 ,r \ U~=l Im( stt)) ----+ 1r1(Mg,r) ----+ 1 

II l l 
1----+ Ng,r ----+ 7rl ( Cg,[r] \ D:Jr]) ----+ 7rl (Mg,[r]) ----+ 1 

l l l 
1----+ 1 ----+ 6r 6r ----+ 1 

l l l 
1 1 1 

where Ng,r is the kernel of the surjection 1r1 ( C9 ,r \ U~=l Im( stt)) ---* 1r1 ( M g,r) 
and where the vertical and horizontal sequences are exact. (See [20] for the 
fundamental groups of stacks.) 

DEFINITION 1.3. We have the following. 

(i) We write 

~~,r 
for the maximal pro-~ quotient of the kernel Ng,r of the surjection 

1r1(Cg,r \U~=1 Im(stt)) -*1rl(Mg,r) (see Remark 1.3.1 below). 
(ii) We write 

P~r (resp., P~[r]) 
for the natural homomorphism determined by the above commutative 
diagram 

1r1(Mg,r)-----+ Out(~~r) 

(resp., 7rl(Mg,[rJ)-----+ Out(~~,r)). 

Moreover, we write 

P:E-geom (resp. p:E-geom) 
g,r ' g,[r] 

for the homomorphism 

- :E 
1r1(Mg,r ®k k)-----+ Out(~g,r) 

(resp., 1r1 (Mg,[r] ®k k)-----+ Out(~~r)) 
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obtained as the restriction of p9~ r (resp., P~[ ]) to 1r1(M9 r ®k k) ~ 
' g, r ' 

1r1 (Mg,r) (resp., 1r1 (Mg,[r] ®k k) ~ 1r1 (Mg,[r])). 
(iii) Let S be a scheme that is connected and of finite type over k, and let 

X= ( C, D ~ C) be a hyperbolic curve of type (g, r) over S. Then the 

classifying morphism S---+ Mg,[r] of X determines-up to 1r1 (Mg,[r] ®k 

k)-inner automorphism-a section sx;s of the natural exact sequence 

Thus, by considering the composite of sx;s and P~[r]' we obtain a 
homomorphism 

which is determined up to Im(p~-[g]eom)-inner automorphism. g,r 

REMARK 1.3.1. It follows immediately from [11, Lemma 2.1], for exam­
ple, that ~~r is naturally isomorphic to the maximal pro-:E quotient of 
the fundamental group of the geometric fiber of the universal curve Cg,r \ 
U~=l Im(stt)---+ M 9 ,r at a geometric point of Mg,r· In particular, it follows 
immediately from [17, Corollary 1.3.4], for example, that ~~r is slim (see 
the discussion on topological groups in Section 0); moreover, there exists a 
natural bijection between the following two sets: 

• the set of cusps of the geometric fiber of the universal curve Cg,r \ 
U~=l Im(stt)---+ M 9 ,r at a geometric point of M 9 ,r; 

• the set of conjugacy classes of cuspidal inertia subgroups of ~~r associ­
ated to cusps of the geometric fiber of the universal curve Cg,r \ 
U~=l Im(stt)---+ M 9 ,r at a geometric point of Mg,r· 

LEMMA 1.4 (kernels of the universal outer monodromy representations). 
We have the following. 

(i) The action of 1r1 (Mg,[rJ) on the set of conjugacy classes of cuspidal 

inertia subgroups of ~~r induced by P~[r] factors through the quotient 

7rl(Mg,[rj) --7t 7rl(Mg,[rj)/7rl(M9,r) ~ 6r, and the resulting action of6r 
on the set of conjugacy classes of cuspidal inertia subgroups of ~~r is 
faithful. 

(ii) The kernel of p~[r] is contained in 1r1 (Mg,r) and coincides with the 

kernel of P~r. 
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Proof. Assertion (i) follows immediately from the various definitions 

involved, together with Remark 1.3.1. Assertion (ii) follows immediately 

from assertion (i), together with Remark 1.3.1. D 

DEFINITION 1.5. LetS be a scheme, and let X= (C, D ~C) be a hyper­
bolic curve of type (g, r) over S. We have the following. 

(i) We say that the hyperbolic curve X is split if the finite etale covering 
obtained as the composite D ~ C-----+ S (see Definition l.l(ii)) is trivial, 

that is, D is isomorphic to the disjoint union of r copies of S over S. 
(ii) Let Xo =(Co, Do~ Co) be a hyperbolic curve overS. Then we say that 

Xo is a hyperbolic partial compactification of X if there exists an open 

immersion C \ D ~ Co \ Do over S. 
(iii) Suppose that g 2:: 2. Then it is immediate that the pair ( C, 0 ~ C) is 

a hyperbolic partial compactification of the hyperbolic curve X. We 

write xcpt = ( C, D ~ C)cpt ~f ( C, 0 ~ C), and we refer to this as the 

compactification of X. 

REMARK 1.5.1. Let S be a scheme that is connected and of finite type 

over k, and let X be a hyperbolic curve of type (g, r) over S. We have the 

following. 

(i) It follows immediately from Lemma 1.4(i) that the hyperbolic curve 

X is split if and only if the image Im(p~;s) is contained in the image 

Im(p~r)· 
(ii) Let X 0 be a hyperbolic partial compactification of X. Then it follows 

immediately from the various definitions involved that the homomor­

phism p~o/S factors through the homomorphism P~;si thus, we obtain 
natural surjections 

In particular, if g 2:: 2, then we obtain natural surjections 

LEMMA 1.6 (universal pro-l outer monodromy representations). Suppose 
that ~ is of cardinality 1. Then the following hold. 
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(i) The natural surjection 1r1 (Mg,r) --* Gk = 1r1 (Mo,3) induces a surjection 
Ker(p~r) --* Ker(pt,3 ). In particular, we obtain a commutative diagram 

1 -----+ 1r1 (Mg,r ®k k) -----+ 1r1(Mg,r) -----+ Gk -----+ 1 

~-geom 1 Pg,r P~,r 1 1Pfi,3 
1 -----+ I ( ~>geom) m Pg,r -----+ Im(p~r) -----+ Im(pt,3) -----+ 1 

where the horizontal sequences are exact. 
(ii) The natural surjection 1r1 (Mg,[r]) --* Gk = 1r1 (Mo,3) induces a surjec­

tion Ker(p~[r]) --* Ker(p~3 ). In particular, we obtain a commutative 
diagram 

1 

1 

(iii) 

-----+ 1r1 (Mg,[r] ®k k) -----+ 1r1 (Mg,[r]) -----+ Gk -----+ 1 

~-geom 1 Pg,[r] P~,[r]1 1P~3 
-----+ Im( ~-geom) 

Pg,[r] -----+ Im(p~[r]) -----+ Im(p~3 ) -----+ 1 

where the horizontal sequences are exact. 
The commutative diagram 

Mg,r ®k k -----+ Mg,[r] ®k k 

1 1 
Mg,r -----+ Mg,[r] 

induces a commutative diagram 

1 -----+ I ( ~-geom) m Pg,r -----+ Im( ~-geom) 
Pg,[r] -----+ 6r -----+ 1 

1 1 II 
1 -----+ Im(p~r) -----+ Im(p~[r]) -----+ 6r -----+ 1 

where the horizontal sequences are exact and where the vertical arrows 
are injective. 

Proof. Assertion (i) is a consequence of a result concerning Oda's prob­
lem: If r -=f. 0, then the desired surjectivity was proved in [9, Corollary 4.2.2]; 
on the other hand, if r = 0, then the desired surjectivity follows from [9, 
Theorem 3B], together with [8], Theorem C, or a result obtained in [24]. 

Assertion (ii) follows immediately from assertion (i), together with 
Lemma 1.4(ii). Assertion (iii) follows immediately from Lemma 1.4(ii). D 
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For the remainder of Section 1, we consider the almost slimness (see 
the discussion on topological groups in Section 0) of the images of outer 
monodromy representations. Note that we do not use almost slimness later 

in this paper; only the slimness of the image of the homomorphism p~z~ (see 
Lemma 4.3(ii) below) appears in the arguments of the proofs of the' main 
results. 

PROPOSITION 1. 7 (almost slimness of the images of outer monodromy 
representations). Let H ~ Im(p~[r]) be a closed subgroup of the image 

Im(p~,[r]). Then the following hold. 

(i) If~ consists of exactly one prime number l, then H is almost pro-l (see 
the discussion on topological groups in Section 0 ). 

(ii) S'uppose that k is a generalized sub-l-adic field (see the discussion on 
numbers in Section 0) for some l E ~, and suppose that there exists a 
hyperbolic curve X of type (g, r) over a finite extension k' ~ k of k such 
that H contains the image Im(p~/k'). Then H is almost slim (see the 

discussion on topological groups in Section 0). In particular, the images 

Im(p~r), Im(p~[r]), and Im(p~/k')-where X is a hyperbolic curve of 

type (g, r) over a finite extension k' ~ k of k-are almost slim. 

Proof. First, we consider assertion (i). It follows from [1, Corollary 7], 
together with the fact that ~~r is topologically finitely generated (see 

Remark 1.3.1) and pro-l, that the image Im(p~,[r]) is almost pro-l. Thus, 

His almost pro-l, as desired. This completes the proof of assertion (i). 
Next, we consider assertion (ii). Suppose that there exists a hyperbolic 

curve X of type (g, r) over a finite extension k' ~ k of k such that H contains 

the image Im(p~/k' ). Then, since ~~r is center-free (see Remark 1.3.1), it 

follows from [14, Theorem 4.12] and [17, Corollary 1.5.7] that there exists a 
natural bijection 

(see the discussion on topological groups in Section 0); in particular, 

Z~~t(.6.~,r) (Im(p~/k')) is finite. On the other hand, since Im(p~/k') ~ H, 

it follows that Z~~t(.6.~,r)(H) ~ Z~~t(.6.~,r)(Im(p~/k')) (see the discussion 

on topological groups in Section 0) is finite. Therefore, it follows from 
Lemma 1.8 below that His almost slim. This completes the proof of asser­

tion (ii). D 
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LEMMA 1.8 (almost slimness and the finiteness of local center). Let G be 

a profinite group. Then the following conditions are equivalent: 

(i) G is almost slim {see the discussion on topological groups in Section 0}; 
(ii) the local center zloc( G) {see the discussion on topological groups in 

Section 0) is finite. 

Proof. First, to prove the implication 

(i) ==} (ii), 

suppose that condition (i) is satisfied, that is, that there exists an open 
subgroup H ~ G of G that is slim. By replacing H with a suitable open 
subgroup of H, we may assume without loss of generality that H is normal 
in G. Now, since His slim, it follows that zloc(G) n H = zloc(H) = {1}. 

Thus, the composite zloc (G) C-......7 G --* G I H is injective; in particular' zloc (G) 
is finite. This completes the proof of the above implication. Finally, to prove 
the implication 

( ii) ==} ( i) ' 

suppose that condition (ii) is satisfied. Since zloc( G) ~ G is finite, there 
exists an open subgroup H ~ G of G such that zloc (G) n H = { 1}. On the 
other hand, since zloc (H) = zloc (G) n H, it follows that zloc (H) = { 1}, that 

is, H is slim. This completes the proof of the above implication. 0 

§2. Monodromically full points and curves 

In this section, we define the notion of a L--monodromically full hyper­

bolic curve (see Definition 2.2 below), as well as the related notion of a 
L--monodromically full point (see Definition 2.1 below). Here, let (g, r) be 
a pair of nonnegative integers such that 2g- 2 + r > 0, and let L- be a 
nonempty set of prime numbers. 

First, we define the notions of a L--monodromically full, strictly L--mono­
dromically full, and quasi-L--monodromically full point. 

DEFINITION 2.1. Let S be a scheme that is connected and of finite type 

over k, let X= (C, D ~C) be a hyperbolic curve of type (g, r) overS, and 
let s E S be a closed point of S. Write X 8 for the hyperbolic curve over the 
residue field k(s) of Sat s obtained as the fiber of X----+ Sat s E S, that is, 

X 8 = (C Xs Speck(s),D Xs Speck(s)). We have the following. 
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(i) We say that s E S is a ~-monodromically full point with respect to 

X/ S if, for any l E ~' the closed subgroup Im(p~:/k(s)) of Im(p~~3)-
here, Im(p~:/k(s)) and Im(p~~s) are determined up to Im(p~~f~geom)­
conjugation-contains Im(p~~s) n Im(p~~?). 

(ii) We say that s E Sis a strictly ~-monodromically full point with respect 

to X/ S if, for any l E ~'the closed subgroup Im(p~:/k(s)) ofim(p~~3)-
h ( {l} ) d I ( {l} ) d . d I ( {l}-geom) ere, Im Pxs/k(s) an m Px;s are eterm1ne up to m Pg,[r] -

conjugation-coincides with Im(p~~3). 
(iii) We say that s E Sis a quasi-~-monodromically full point with respect to 

X/ S if, for any l E ~' the closed subgroup Im(p~:/k(s)) of Im(p~~3)-
h ( {l} ) d I ( {l} ) d . d I ( {l}-geom) ere, Im Pxsfk(s) an m Px;s are eterm1ne up to m Pg,[r] -

conjugation-is an open subgroup of Im(p~~3). 
If l is a prime number, then, for simplicity, we write l-monodromically full 
(resp., strictly l-monodromically full, quasi-l-monodromically full) instead 
of {l}-monodromically full (resp., strictly {l}-monodromically full, quasi­
{ l }-monodromically full). 

REMARK 2.1.1. Let S be a scheme that is connected and of finite type 
over k, let X be a hyperbolic curve overS, and let s E S be a closed point 
of S. Consider the following conditions: 

(i) s E Sis strictly ~-monodromically full with respect to X/ S; 
(ii) s E Sis ~-monodromically full with respect to X/ S; 

(iii) s E Sis quasi-~-monodromically full with respect to X/ S. 

Then, as the terminologies suggest, it follows immediately from the various 
definitions involved that the implications 

(i) ===? (ii) ===? (iii) 

hold. 

Next, we define the notions of a ~-monodromically full, strictly ~-mono­
dromically full, and quasi-~-monodromically full hyperbolic curve. Roughly 
speaking, a ~-monodromically full (resp., strictly ~-monodromically full, 
quasi-~-monodromically full) hyperbolic curve is one corresponding to a~­
monodromically full ( resp., strictly ~-monodromically full, quasi-~-mono­
dromically full) point of the moduli stack with respect to the universal 
curve. 
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DEFINITION 2.2. Let X be a hyperbolic curve of type (g, r) over k. We 
have the following. 

(i) We say that X is L.-monodromically full if, for any l E L., the closed 

subgroup Im(p~)k)-which is determined up to Im(p~~f~georn)-conjuga-
tion-of Im(p{l}[ ]) contains Im(p9{l?). 

g, r ' 
(ii) We say that X is strictly L.-monodromically full if, for any l E L., the 

closed subgroup Im(p~)k)-which is determined up to Im(p~~f~georn)-
conjugation-of Im(p{l}[ ]) contains Im(p{l}[-]georn) or, equivalently, the g,r g,r 

closed subgroup Im(p~)k) of Im(p~~frJ) coincides with Im(p~~frl). 
(iii) We say that X is quasi-L.-monodromically full if, for any l E L., the 

closed subgroup Im(p~)k)-which is determined up to Im(p~~f~georn)-
conjugation-of Im(p{l}[ ]) is an open subgroup of Im(p{l}[ ]). g,r g, r 

If l is a prime number, then, for simplicity, we write l-monodromically full 
(resp., strictly l-monodromically full, quasi-l-monodromically full) instead of 
{l}-monodromically full (resp., strictly {l}-monodromically full, quasi-{l}­
monodromically full). 

REMARK 2.2.1. Let X be a hyperbolic curve over k. Consider the follow­
ing conditions: 

(i) X is strictly L.-monodromically full; 
(ii) X is L.-monodromically full; 

(iii) X is quasi-L.-monodromically full. 

Then, as the terminologies suggest, it follows immediately from the various 
definitions involved that the implications 

(i) ===? (ii) ===? (iii) 

hold. 

REMARK 2.2.2. Let X be a hyperbolic curve over k, and let L.1, L.2 
be nonempty sets of prime numbers. Suppose that L.2 ~ L.1. Consider the 
following conditions: 

(i) X is L.1-monodromically full (resp., strictly L.1-monodromically full, 
quasi-L.1-monodromically full), 

(ii) X is L.2-monodromically full (resp., strictly L.2-monodromically full, 
quasi-L.2-monodromically full). 
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Then it follows immediately from the various definitions involved that the 
implication 

(i) ==? (ii) 

holds. 

REMARK 2.2.3. Let X be a hyperbolic curve of type (g, r) over k. Suppose 
that r ::; 1. Consider the following conditions: 

(i) X is ~-monodromically full, 
(ii) X is strictly ~-monodromically full. 

Then it follows immediately from the various definitions involved that the 
equivalence 

(i) ~ (ii) 

holds. 

REMARK 2.2.4. Let X be a hyperbolic curve of type (g, r) over k. Suppose 
that r 2 2. Consider the following conditions: 

(i) X is strictly ~-monodromically full, 
(ii) X is not split (see Definition 1.5(i)). 

Then it follows immediately from Remark 1.5.1(i) that the implication 

(i) ==? (ii) 

holds. 

REMARK 2.2.5. Let X1 be a hyperbolic curve over k, and let X2 be a 
hyperbolic partial compactification of X1 (see Definition 1.5(ii)). Consider 
the following conditions: 

(i) xl is ~-monodromically full (resp., strictly ~-monodromically full, 
quasi-~-monodromically full), 

(ii) x2 is ~-monodromically full (resp., strictly ~-monodromically full, 
quasi-~-monodromically full). 

Then it follows immediately from Remark 1.5.1(ii) that the implication 

(i) ==? (ii) 

holds. 

REMARK 2.2.6. Let X be a hyperbolic curve over k, and let k' ~ k be a 
finite extension of k. Consider the following conditions: 
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(i) X is a quasi-I:-monodromically full hyperbolic curve over k, 
(ii) X ®k k' is a quasi-I:-monodromically full hyperbolic curve over k'. 

Then it follows immediately from the various definitions involved that the 
equivalence 

(i) ~ (ii) 

holds. 

REMARK 2.2.7. Let X be a hyperbolic curve of type (g, r) over k. Con­
sider the following conditions: 

(i) X is split and I:-monodromically full, 

(ii) for any lEI:, the closed subgroup Im(p~~k)-which is determined up 

to Im(p~~f~geom)-conjugation-of Im(p~~frl) coincides with Im(p~~?). 
Then it follows immediately from Remark 1.5.1(i), together with the various 
definition involved, that the equivalence 

(i) ~ (ii) 

holds. 

REMARK 2.2.8. Let S be a scheme that is connected and of finite type 
over k, let X be a hyperbolic curve over S, and let s E S be a closed point 
of S. Write k(s) for the residue field of Sat s, and write X 8 for the hyperbolic 
curve over k(s) obtained as the fiber of X--+ Sat s E S (see Definition 2.1). 
Consider the following conditions: 

(i) Xs is a I:-monodromically full (resp., strictly I:-monodromically full, 
quasi-I:-monodromically full) hyperbolic curve over k( s), 

(ii) s E S is a I:-monodromically full (resp., strictly I:-monodromically full, 
quasi-I:-monodromically full) point with respect to X/ S. 

Then it follows immediately from the various pertinent definitions that the 
implication 

(i) ==? (ii) 

holds. 

The following result is essentially obtained in [11, Theorem 1.2]. Note 
that in [11], the following theorem in the case where I: is of cardinality 1 
and where k is a number field was proved. However, by an argument similar 
to that used in the proof of [11, Theorem 1.2], one may prove the following. 
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THEOREM 2.3 (existence of many monodromically full points). Let k be a 
finitely generated field of characteristic zero (see the discussion on numbers 
in Section 0), let S be a scheme that is connected, regular, of finite type, 
and separated over k, let sci be the set of the closed points of S, let X be a 
hyperbolic curve overS (see Definition 1.1 (ii) ), let ~ be a nonempty finite 
set of prime numbers, and let SMF ~ Sci be the subset of Sci consisting of 
closed points of S which are strictly ~-monodromically full with respect to 
X Is (see Definition 2.1 (ii)). Then if we naturally regard sci' hence also 
sMF, as a subset of S(C), then sMF ~ S(C) is dense with respect to the 
complex topology of S(C). Moreover, if S is rational (i.e., there exists an 
open subscheme of S which is isomorphic to an open subscheme of JP>k for 
some positive integer n), then the complement S(k) \ (S(k) n sMF) in S(k) 
of S(k) nsMF forms a thin set in S(k) in the sense of Hilbert's irreducibility 
theorem. 

Proof. This follows from the fact that a finitely generated field of charac­
teristic zero is Hilbertian, together with an argument similar to that used 
in the proof of [11, Theorem 1.2], by replacing [11, Lemma 3.1], (resp., [11, 
Lemma 3.3]) with Lemma 2.4 (resp., Lemma 2.5) below. D 

LEMMA 2.4 (existence of a certain open subgroup). Let G be a pro finite 
group, let~ be a nonempty finite set of prime numbers, and, for each l E ~' 

let G ----* Qz be a quotient of G which is topologically finitely generated and 
almost pro-l (see the discussion on topological groups in Section 0). Then 
there exists a normal open subgroup N ~ G of G satisfying the following 
condition: if H is a profinite group and if H ~ G is a continuous homo­
morphism such that the composite H ~ G ----* GIN is surjective, then the 
composite H ~ G ----* Qz is surjective for each l E ~. 

Proof. If ~ is of cardinality 1, then Lemma 2.4 follows from [11, 
Lemma 3.1]. In particular, for each l E ~' there exists a normal open sub­
group Nz ~ G satisfying the following condition: if H is a profinite group 
and if H ~ G is a continuous homomorphism such that the composite 
H ~ G ~ G I Nz is surjective, then the composite H ~ G ~ Qz is surjec-

tive. Now write N ~f nzE~ Nz ~ G. Then it is immediate that this normal 
open subgroup N of G satisfies the condition in the statement of Lemma 2.4. 
This completes the proof of Lemma 2.4. D 

LEMMA 2.5 (finite generation of the images of outer monodromy repre­
sentations). Let k be a finitely generated field of characteristic zero (see the 
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discussion on numbers in Section 0), let S be a scheme that is connected 

and of finite type over k, let X be a hyperbolic curve over S, and let l be 
a prime number. Suppose that S is regular and separated over k. Then the 

quotient Im(pf~8 ) of 1r1(S) is topologically finitely generated. 

Proof. To verify Lemma 2.5, it is immediate that by replacing k with a 
finite extension of k, we may assume without loss of generality that S is 
geometrically connected over k and that S has a k-rational point s E S(k). 
Then we have an exact sequence 

Since 1r1 (S ®k k) is topologically finitely generated (see [7, expose II, theo­
reme 2.3.1]), to verify Lemma 2.5 it suffices to show that the image of the 
composite 

where the first arrow is the outer homomorphism (which is determined up to 
1r1(S®kk)-inner automorphism) induced by s E S(k) and where (g,r) is the 
type of the hyperbolic curve X over S, is topologically finitely generated. In 
particular, since the above composite coincides with the pro-l outer mon­

odromy representation pf~/k associated to the hyperbolic curve Xs over k 

obtained as the fiber of X---+ Sat s E S(k), to verify Lemma 2.5-by replac­
ing X with X 8-we may assume without loss of generality that S =Speck. 

Since k is a finitely generated field of characteristic zero, there exist a 
finite extension k' ~ k of k, a subfield ko ~ k' of k', and a scheme Vo over 
ko satisfying the following conditions: 

(i) ko is a number field (see the discussion on numbers in Section 0); 
(ii) Vo is regular, separated, geometrically connected, and of finite type 

over ko; 

(iii) Vo has a ko-rational point v E Vo(ko); 
(iv) the function field of Vo is isomorphic to k'; 
(v) the hyperbolic curve X ®k k' over k' extends to a hyperbolic curve X 0 

over Vo. 
Now, since the natural outer homomorphism 1r1 (Speck') ---+ 1r1 (Vo) (see (iv)) 
is surjective (see (ii)) and since the pro-l outer monodromy representation 

pf~kk' /k' factors through p~~/Vo (see (v)), to verify Lemma 2.5 it suffices to 
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show that the image Im(p ~~/Vo) is topologically finitely generated. More­

over, by the existence of the exact sequence (see (ii)) 

1 -----+ 1r1 (Vo ®ko ko) -----+ 1r1 (Vo) -----+ Gal(ko/ ko) -----+ 1, 

where ko is the algebraic closure of ko determined by k, together with the 
fact that 1r1 (Vo ®ko ko) is topologically finitely generated (see [7, expose II, 
theoreme 2.3.1]), to verify Lemma 2.5 it suffices to show that the image of 
the composite 

{Z} 

Gal(ko/ko)-----+ 1r1(Vo) P~o Out(~~~?), 
where the first arrow is the outer homomorphism (which is determined up 
to 1r1 (Vo ®ko ko)-inner automorphism) induced by v E Vo(ko) (see (iii)), is 
topologically finitely generated. On the other hand, since ko is a number 
field (see (i)), it follows from [11, Lemma 3.1] that the image of the above 
composite is topologically finitely generated, as desired. This completes the 
proof of Lemma 2.5. D 

By Theorem 2.3, we obtain the following result. 

COROLLARY 2.6 (existence of many monodromically full hyperbolic 
curves). Let k be a finitely generated field of characteristic zero (see the 
discussion on numbers in Section 0), let k be an algebraic closure of k, let 
(g, r) be a pair of nonnegative integers such that 2g- 2 + r > 0, let Mg,[r] be 
the moduli stack of hyperbolic curves of type (g, r) over k-schemes (see Defi­

nition 1.2(ii)), let Mg,[r] be the coarse moduli space associated to Mg,[r]' and 

let :E be a nonempty finite set of prime numbers. Fix an inclusion k <:.......t CC. 
Then the subset of Mg,[r] (CC) of CC-valued points s E Mg,[r] (CC) satisfying the 

following condition ( * )MF is dense with respect to the complex topology of 

Mg,[r] (CC). 
(*)MF: There exist a subfield k' ~ k (~C) containing k and a morphism 
sk' : Speck'-----+ Mg,[r] over k such that the hyperbolic curve corresponding to 
sk' is a ~-monodromically full hyperbolic curve over k' {see Definition 2.2{i)) 
and, moreover, such that s: SpecC-----+ Mg,[r] factors through the composite 

I Skt 
Speck -----+ Mg,[r]-----+ Mg,[r]· 

§3. Relationship between monodromic fullness and certain prop­
erties of hyperbolic curves 

In this section, we consider the relationship between monodromic fullness 
and certain properties of hyperbolic curves (see Propositions 3.4, 3.6, and 
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3.8 below). Note that the facts proved here are not used in the proofs of the 
main results; however, Proposition 3.4 below appears in some arguments in 
Sections 7 and 8. In Section 3, let (g, r) be a pair of nonnegative integers 
such that 2g-2+r>O. 

DEFINITION 3.1. We write 

G ~ g,r-

{1} 

Z/2Z 

Z/2Z x Z/2Z 

63 

(if 2g- 2 + r 2:: 3) 

(if (g,r) = (1,1),(1,2),or (2,0)) 

(if (g, r) = ( 0, 4)) 

(if (g, r) = ( 0, 3)). 

It seems to the author that the following proposition is likely to be well 
known. 

PROPOSITION 3.2 ( automorphisms of general hyperbolic curves). Suppose 
that k is algebraically closed. Then the following hold. 

(i) If X= ( C, D ~C) is a hyperbolic curve of type (g, r) over k, then Gg,r 
is isomorphic to a subgroup of the group Autk(X) of automorphisms of 
X over k. 

(ii) There exists a hyperbolic curve X = ( C, D ~ C) of type (g, r) over k 
such that the group Autk(X) of automorphisms of X over k is isomor­

phic to Gg,r· 

Proof. First, we verify assertion (i). If 2g- 2 + r 2:: 3, then assertion (i) 
is immediate. If (g,r) = (0,3) or (0,4), then assertion (i) may be verified by 
the fact that Autk( C) (note that C is isomorphic to I£Dk over k) is isomor­
phic to PGL2(k), together with a straightforward calculation. Note that if 
(g,r) = (0,4), that is, X= (C,D ~C) is isomorphic to (I£Dk,{0,1,oo,x} ~ 
I£Dk) for some x E k \ {0, 1 }, then the following two automorphisms generate 
a subgroup of Autk(X) which is isomorphic to Go,4 = Z/2Z x Z/2Z: 

c ~ I£Dk ~ I£Dk ~ c. 
tj s f---* sxjt ' 

c ~ I£Dk ~ I£Dk ~ c 
tjs f---* x(t- s)/(t- sx) 

Next, suppose that (g,r) = (1,1) or (1,2). If (g,r) = (1,1) (resp., (1,2)), 
then write {o} (resp., {o,x}) ~ C(k) for the marked divisor D of the hyper­
bolic curve X= (C, D ~C). Then, since g = 1, by regarding the marked 
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k-rational point o of C as an origin, one may regard C as an abelian 
group scheme over k whose identity section is the section determined by 
the k-rational point o. Thus, we have an automorphism 

{ 
C 3 t f-7 - t E C (if r = 1) 

C 3 t f-7 X- t E C (if r = 2) 

over k of order 2 that preserves D = { o} (resp., = { o, x}) ~ C; in particular, 
Gg,r = Z/2Z is isomorphic to a subgroup of Autk(X). Next, suppose that 
(g,r) = (2,0). Then, since the proper curve Cis hyperelliptic, we have an 
automorphism of C of order 2; in particular, G2,o = Z/2Z is isomorphic to a 
subgroup of Autk(X) = Autk(C). This completes the proof of assertion (i). 

Finally, we verify assertion (ii). If 2g- 2 + r ~ 3, then assertion (ii) follows 
immediately, for example, from [12, Theorem C]. If (g,r) = (0,3) or (0,4), 
then assertion (ii) may be verified by the fact that Autk(C) (note that 
C is isomorphic to J!D~ over k) is isomorphic to PGL2 (k), together with a 
straightforward calculation. Next, suppose that (g, r) = (1, 1) or (1, 2). Then, 
since g = 1, one may regard C as an abelian group scheme over k. Moreover, 
it is well known that there exists a hyperbolic curve X = ( C, D ~ C) of type 
(1,1) (resp., (1,2)) over k such that Autk(C) is isomorphic to C(k) ><1 {±1}, 
where the action of { ±1} on C(k) is the natural action of { ±1} on an abelian 
group C(k). Now assertion (ii), in the case where (g, r) = (1, 1) or (1, 2), 
follows from the fact that Autk(C) is isomorphic to C(k) ><l {±1}, together 
with a straightforward calculation. Next, suppose that (g, r) = (2, 0). Then 
the assertion follows, for example, from [21, Theorem 1]. This completes the 
proof of assertion ( ii). D 

DEFINITION 3.3. Let X be a hyperbolic curve of type (g, r) over k. Then 
we say that X has no special symmetry if the group Aut-k(X ®k k) of auto­
morphisms of X ®k k over k is isomorphic to Gg,r· 

PROPOSITION 3.4 ( quasi-monodromic fullness and automorphisms of 
hyperbolic curves). Let X be a hyperbolic curve of type (g,r) over k. Sup­
pose that X is quasi-~-monodromically full for a nonempty set of prime 
numbers ~ and that k is a generalized sub-l-adic field (see the discussion 
on numbers in Section 0) for some l E ~. Then X has no special symmetry 
(see Definition 3.3). 

Proof. Let Xo be a hyperbolic curve of type (g, r) over a finite extension 
ko ~ k of k such that Autk(Xo®ko k) ~ Gg,r (see Lemma 3.2(ii)). Then, since 
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~~r is center-free (see Remark 1.3.1), it follows from [14, Theorem 4.12] and 
[17, Corollary 1.5. 7] that there exist natural bijections 

Aut"k(X ®k k) ~ Z~~t(~~,r) (Im(p~/k)), 

G 9 ,r ~ Aut"k(Xo ®k k) ~ Z~~t(~~,r) (lm(p~o/ko)). 
On the other hand, since X is quasi-~-monodromically full, it follows imme­
diately from the definition of the term "quasi-~-monodromically full" that 

Z~~t(~~,r) (Im(p~/k)) = Z~~t(~~,r) (Im(p~,[r])) 

(see the discussion on topological groups in Section 0). Thus, s1nce 

lm(p~o/ko) ~ Im(p;,[r]), we obtain 

Autk(X ®k k) ~ Z~~t(~~,r) (lm(p~/k)) = Z~~t(~~,r) (Im(p;,[r])) 

~ Z~~t(~~,r) (Im(p~o/ko)) ~ Gg,r 

(see the discussion on topological groups in Section 0). In particular, it 
follows immediately from Lemma 3.2(i) that X has no special symmetry. 
This completes the proof of Proposition 3.4. D 

DEFINITION 3.5. Let X be a hyperbolic curve of type (g, r) over k, and 
let ~ be a nonempty set of prime numbers. Suppose that g =f. 0. Then we 
say that X is of ~-AIJ-type if the following condition is satisfied. For any 
prime number l E ~ and finite extension k' ~ k of k such that X(k') =f. 0, 
the l-adic Tate module of the Jacobian variety of the compactification of 
the hyperbolic curve X ®k k' over k' is irreducible as a Gk'-module. 

REMARK 3.5.1. It follows immediately from the definition of the term 
of AIJ-type that if a hyperbolic curve X over k is of ~-AIJ-type for some 
nonempty set of prime numbers ~' then the Jacobian variety of the com­
pactification of the hyperbolic curve X ®k k over k is simple. 

PROPOSITION 3.6 ( quasi-monodromic fullness and the absolute irreduci­
bility of Jacobian variety). Let X be a hyperbolic curve of type (g, r) over 
k, and let ~ be a nonempty set of prime numbers. Suppose that k is a 
finitely generated field of characteristic zero (see the discussion on numbers 
in Section 0), that g =f. 0, and that X is quasi-~-monodromically full. Then 
X is of ~-AIJ-type (see Definition 3.5). In particular, the Jacobian variety 
of the compactification of the hyperbolic curve X ®k k over k is simple (see 
Remark 3.5.1). 
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Proof. To prove Proposition 3.6, it follows from the definition of the term 
of AIJ-type that we may assume without loss of generality that :E is of cardi­
nality 1, that is, :E = {l} for some prime number l. Write HJ},r for the abelian 

quotient of ~~r by the normal closed subgroup generated by the cuspidal 

inertia subgroups of ~~r and the closure of the commutator subgroup of 

~~r· (Thus, if g 2:2, then HJ},r is naturally isomorphic to (~~0)ab.) It now 
follows from an argument similar to that used in Remark 1.5.1(ii) that the 

pro-:E outer representation P;,[r]: 1r1 (Mg,[rJ)---+ Out(~~r) induces a pro-:E 

representation p: 7ri(Mg,[rJ)---+ Aut(HJ},r)· Moreover, it is well known that 
my following summary holds (see also Remark 1.3.1). 

Summary: Let k' .~ k be a finite extension of k such that X(k') i= 0. Then there 
exists an isomorphism of HJ/:r with the l-adic Tate module of the Jacobian 
variety of the compactification of X 0k k' such that, under this isomorphism, 
the action of Gk' on HJ/:r determined by p, sx;k (see Definition 1.3(iii)) and 
the natural action of Gk' on the l-adic Tate module coincide. 

Therefore, Proposition 3.6 follows from the definition of the term quasi­
monodromically full, together with the existence of a hyperbolic curve of 
:E-AIJ-type over a number field (see, e.g., [4, proof of Proposition 4]; see 
also [4, Remark 5(iv),(v)]). 0 

DEFINITION 3.7. Let X be a hyperbolic curve of type (g, r) over k. Sup­
pose that g #- 0. Then we say that X has a JCM-component if there exist a 
nontrivial simple abelian variety A over k such that Endk( A) ®z Q is isomor­
phic to a number field of degree 2dim(A) and a nontrivial morphism over 
k from A to the Jacobian variety of the compactification of the hyperbolic 
curve X ®k k. 

REMARK 3.7.1. Let X be a hyperbolic curve of type (1, 1) over k. Then it 
follows from the various definitions involved that X has a JCM-component if 
and only if the elliptic curve determined by X admits complex multiplication 
over k; that is, the ring of endomorphisms of the elliptic curve determined 
by X over k is isomorphic to an order of an imaginary quadratic field. 

PROPOSITION 3.8 ( quasi-monodromic fullness and complex multiplica­
tion). Let X be a hyperbolic curve of type (g, r) over k. Suppose that k is a 
finitely generated field of characteristic zero (see the discussion on numbers 
in Section 0), that g #- 0, and that X is quasi-:E-monodromically full for a 
nonempty set of prime numbers :E. Then X does not have a JCM-component 
(see Definition 3. 7). 
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Proof. This follows immediately from Proposition 3.6, together with [23, 
Corollary 2 on p. 502 to Theorem 5]. 0 

§4. Moduli stacks of hyperbolic curves of genus zero 

In this section, we consider the moduli stacks of hyperbolic curves of 
genus zero. Here, let r 2:: 3 be an integer, and let l be a prime number. 

LEMMA 4.1 (moduli stacks of hyperbolic curves of genus zero). We have 
the following. 

(i) The moduli stack Mo,r is isomorphic to the (r- 3)-rd configuration 
space of JIDk \ {0, 1, oo} over k, that is, the open subscheme of the fiber 
product over k of r- 3 copies of JIDk \ {0, 1, oo} obtained as the comple­
ment of the various diagonal divisors. 

(ii) The natural homomorphism 6r---* Autk(Mo,r) determined by the 6r­
covering Mo,r ---* Mo,[r] is surjective. In particular, any automorphism 
¢ of Mo,r over k is an automorphism over Mo,[r]; that is, there exists 
a commutative diagram 

Mo,r <P 
------t Mo,r 

1 1 
Mo,[r] = Mo,[r] 

where the vertical arrows are natural morphisms and where the lower 
horizontal arrow is the identity automorphism of Mo,[r]· 

Proof. Assertions (i) and (ii) are well known. (Concerning assertion (ii), 
see also [17, Section 0] and the discussion following Theorem A.) 0 

LEMMA 4.2 (universal geometric monodromy outer representations of 
genus zero). We have the following. 

(i) The quotient 1r1 (Mo,r ®k k) ---* Im(p~~~-geom) of 1r1 (Mo,r ®k k) coincides 

with the maximal pro-l quotient of 1r1 (Mo,r ®k k). In particular, there 
exists a natural homomorphism 

Autck ( 1r1 (Mo,r)) ------* Autim(p~~~) (Im(p~~~)) 

(see Lemma 1.6(i)). 

(ii) The abelianization of Im(p~~~-geom) is a free Zz-module of rank 
r(r- 3)/2. 



MONODROMICALLY FULL HYPERBOLIC CURVES OF GENUS ZERO 73 

Proof. Assertion (i) follows from [3, remark following the proof of Theo­
rem 1], together with Lemma 4.1(i). Assertion (ii) follows immediately from 
[18, Corollary 2.5], together with Lemma 4.1(i). (Indeed, it follows from [18, 

Corollary 2.5], together with Lemma 4.1(i), that rankzz (Im(p~z~-geom)ab) = 

I:~::j rankzz((~~~J)ab) = I:~::j(i- 1) = r(r- 3)/2.) ' D 

LEMMA 4.3 (universal monodromy outer representations of genus zero). 
Suppose that k is a finitely generated field of characteristic zero (see the 
discussion on numbers in Section 0). Then the following hold. 

(i) The image Im(p~l~-geom) is pro-l and slim. 

(ii) The image Im(p~l~) is slim. Moreover, if k contains a primitive lth 

root of unity, the~ the image Im(p~~~) is pro-l. 
(iii) The composite of natural homomorphisms 

Autk(Mo,r) -----+ Autck ( 1r1 (Mo,r)) /Inn( 1r1 (Mo,r ®k k)) 

-----+ Autlm(p~~~) (Im(p~~~)) /Inn(Im(p~~~-geom)) 

(see Lemma 4.2(i)) is bijective (see Remark 4.3.1). 
(iv) The composite of natural maps 

Mo,r(k)-----+ Homck (Gk,7rl(Mo,r))/Inn(7rl(Mo,r ®k k)) 

-----+ Homlm(p~~~) ( Gk, Im(p~~~)) /Inn(Im(p~~~-geom)) 

(see Lemma 4.2(i)) is injective. 
( v) The composite of natural maps 

Mo,[rj(k)-----+ Homck (Gb7rl(Mo,[rJ))/Inn(7rl(Mo,[r] ®k k)) 

-----+ Homlm(p~~~) ( Gk, Im(p~~frJ)) /Inn(Im(p~~frlgeom)) 

(see Lemma 4.2(i)) is injective. 

Proof. Assertion (i) follows from [16, Proposition 2.2(ii)], together with 
Lemmas 4.1(i) and 4.2(i). 

Next, we verify assertion (ii). Since we have an exact sequence 

1-----+ Im(p{l}-geom) -----+ Im(p{l}) -----+ Im(p{l}) -----+ 1 
O,r O,r 0,3 
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(see Lemma 1.6(i)), it follows from assertion (i) that to verify the fact that 

Im(p~z;) is slim (resp., pro-l), it suffices to show that Im(p~l~) is slim (resp., 

pro-l)~ Now we prove the fact that Im(p~ll) is slim. It follo~s from an argu­
ment similar to that used in the proof of Proposition 1.7(ii), together with 
Lemma 4.1(i), that we obtain a natural bijection 

Autk(Pk \ {0, 1, oo}) ~ zloc ( {l}) (Im(p~zl)). 
Out ~0 , 3 ' 

Therefore, by comparing the natural actions of Autk(Pk \ {0, 1, oo}) and 

Im(p~l~) on the set of conjugacy classes of cuspidal inertia subgroups of 

.6.~~l (see Remark 1.3.1), it follows that the intersection 

zloc l (Im(p{l})) n Im(p{l}) 
Out(~ { }) 0,3 0,3 

0,3 . 

is trivial. In particular, the local center zloc(Im(p~zl)) of Im(p~zl) is trivial. 

This completes the proof of the fact that Im(p~lb is slim. On the other 
hand, it follows immediately from [2, Theorems A, B] that if k contains a 

primitive lth root of unity, then Im(p~z~) is pro-l. This completes the proof 
of assertion (ii). ' 

Next, we prove assertion (iii). By considering the action of Autk(Mo,r) on 

the set of conjugacy classes of cuspidal inertia subgroups of Im(p~~;-geom), 
the injectivity of the composite in question follows immediately from Lem­
mas 4.1(i),(ii) and 4.2(i), together with Remark 1.3.1. Now we verify the 
surjectivity of the composite in question by induction on r. If r = 3, 4, then 
the surjectivity of the composite in question follows from [14, Theorem 4.12], 
together with Lemmas 4.1(i) and 4.2(i). Suppose that r ~ 5 and that the 
composite of natural homomorphisms 

A ( ( {l} )) / ( ( {l}-geom)) ----+ ut1 ( {l}) Im Po r-1 Inn Im Po r-1 
m Po,3 ' ' 

is bijective. Let a be an automorphism of Im(p~z;) over Im(p~l~). Then it fol­
lows immediately from [17, Theorem 3.1.13] (n~te that one m~y easily verify 
that [17, Theorem 3.1.13] is valid for a finitely generated field of character­
istic zero, even though in [17] this result for a number field is only stated) 

that-by compositing a suitable automorphism of Im(p~~;) over Im(p~3) 
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arising from an element of Autk(Mo,r )-we may assume without loss of 

generality that a preserves the kernel fl~z;_ 1 ~ Im(p~z;-geom) of the natural 

surjection Im(p~z;)--» Im(p~z;_ 1 ) (see Le~mas 4.1(i) ~nd 4.2(i)). Moreover, 
' ' it follows immediately from the induction hypothesis that-again by com-

positing a suitable automorphism of Im(p~z;) over Im(p~l~) arising from an 
element of Autk(Mo,r )-we may assume without loss of generality that the 

automorphism of Im(p~z;_ 1 ) induced by a is the identity automorphism of 

Im(p~~;_ 1 ); that is, we ~btain a commutative diagram 

1 ------+ 
fl {l} Im(p{l}) {l} 

------+ 1 ------+ ------+ Im(Po,r-1) O,r-1 O,r 

1 al II 
1 ------+ 

fl {l} Im(p{l}) {l} 
------+ 1 ------+ ------+ Im(Po,r-1) O,r-1 O,r 

where the horizontal sequences are exact and where the right-hand vertical 
arrow is the identity automorphism. Therefore, it follows immediately from 
[14, Theorem 4.12], together with Lemma 4.4(ii), below, that a arises from 
an automorphism of Mo,r over k. This completes the proof of assertion (iii). 

Assertion (iv) follows immediately from [13, Theorem C], together with 
Lemmas 4.1(i) and 4.2(i). Assertion (v) follows from [14, Remark] following 
Theorem 4.12 (see also [13, proof of Theorem C]). D 

REMARK 4.3.1. The bijectivity of the composite of natural homomor­
phisms 

Autk(Mo,r) ----t Autak ( 1r1 (Mo,r)) /Inn( 1r1 (Mo,r ®k k)) 

----t Autlm(p~~~) (Im(p~~;)) /Inn(Im(p~~;-geom)) 

in the case where l is odd was proved in [17, Theorem A]. 

LEMMA 4.4. Let S be a connected normal scheme, and let TJs --7 S be the 
generic point of S. Then the following hold. 

(i) LetT --7 S be a scheme that is finite overS. Then the natural morphism 
Homs(S, T) --7 Homs(TJs, T) is bijective. 

(ii) Let X1, X2 be hyperbolic curves overS. Then the natural morphism 

is bijective. 
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Proof. First, we consider assertion (i). The injectivity of the morphism in 
question follows immediately from the fact that the natural morphism r;s ---+ 

S is scheme-theoretically dense. To verify the surjectivity of the morphism 
in question, let ¢: r;s ---+ T be a morphism over S. Write F ~ T for the 
scheme-theoretic image of¢. Then it follows immediately from the various 
definitions involved that F is integral and that the composite F ~ T ---+ S 
is birational and finite. Thus, since S is normal, it follows from Zariski's 
main theorem (see [6, corollaire 4.4.9]) that the composite F ~ T---+ S is 
an isomorphism. In particular, ¢ extends to a morphism S ---+ T over S. 

Finally, we consider assertion (ii). It follows from [5, Theorem 1.11], for 
example, that the functor 

T -v-7 Isomr(Xl Xs T, x2 Xs T) 

from the category of schemes over S to the category of sets is represented 
by a scheme that is finite and unramified overS. Thus, assertion (ii) follows 
from assertion (i). D 

§5. A Grothendieck conjecture-type lemma for certain images of 
the universal monodromy 

In this section, we prove a Grothendieck conjecture-type lemma for cer­
tain images of the universal monodromy (see Lemma 5.2 below). Here, let 
r ~ 3 be an integer, and let l be a prime number. Moreover, suppose that 
k is a finitely generated field of characteristic zero (see the discussion on 

numbers in Section 0). Let us fix an isomorphism Im(p~?r])/Im(p~~~) ~ 6r 

(see Lemma 1.6(iii) ). 
For i = 1, 2, let 

be an open subgroup of Im(p~~frl) that contains the normal open subgroup 
{l} {l} ) 

Im(Po,r) ~ Im(Po,[r] , let 

be the image of the composite Hi~ Im(p~~frl)--* Im(p~~frl)/Im(p~~~) ~ 6r, 
and let 

H?eom C H· 
'/, - '/, 

be the kernel of the composite Hi~ Im(p~~frl)--* Im(p~~~), that is, Hfeom ~f 
Hi nim(p~?~geom) (see Lemma 1.6(ii)). Thus, Hi fits into the following exact 
sequences: 
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1 ----7 H'?eom ----7 H· ----7 Im(p{l}) ----7 1· 
t t 0,3 ' 

1 ----7 Im(p~~;) ----7 Hi ----7 Qi (~ 6r) ----7 1. 

(Here, the surjectivity of Hi---+ Im(p~z~) follows from Lemma 1.6(i).) By the 

various definitions involved, this ope~ subgroup Hi ~ Im(p~~frl) corresponds 
to the intermediate connected finite etale covering 

[Mo,r/Qi] ----7 Mo,[r] 

of the 6r-covering Mo,r---+ [Mo,r/6r] = Mo,[r]' where [Mo,r/(- )] is the 
quotient of Mo,r by (-) in the sense of stacks. Now we write 

for the set of automorphisms of Mo,r over k which are compatible with the 

respective actions Q1 ~ 6r ---+ Autk(Mo,r) and Q2 ~ 6r ---+ Autk(Mo,r) 
relative to an isomorphism Q1 ~ Q2 of finite groups, that is, the subset of 
Autk(Mo,r) consisting of automorphisms ¢ of Mo,r over k which fit into a 
commutative diagram 

Mo,r Mo,r 

1 1 
where the vertical arrows are natural morphisms and where the horizontal 
arrows are isomorphisms over k. Then we define a map 

<I>: Aut~1 ,Q2 (Mo,r) ----7 Isomrm(po,3 ) (H1, H2)/Inn(H~eom) 

as follows. Let ¢ E Aut~1 'Q2 (Mo,r ). Then it follows from the definition of 

Aut~1 'Q2 (Mo,r) that ¢induces a diagram 

1r1 (Mo,r) 

1 1 
where the top horizontal arrow is the 1r1 (Mo,r ®k k)-conjugacy class of the 
automorphism of 1r1 (Mo,r) induced by ¢, and this diagram commutes up to 



78 Y. HOSHI 

7ri([Mo,r/Q2] ®k k)-inner automorphism. Thus, by considering the H~eom_ 
conjugacy class of the isomorphism 

induced by the lower horizontal arrow in the above diagram (note that 
by Lemma 4.2(i), the top horizontal arrow in the above diagram preserves 

Ker(p~z;) ~ 7ri(Mo,r)), we obtain an element <I>(¢) of Isom
1 

( {Z})(Hr,H2)/ 
' m Po,3 

Inn(H~eom), as desired. 

The purpose of Section 5 is to prove the surjectivity of this map <I> under 
the assumption that 

(*)prime: lis prime to the orders of Q1 and Q2. 

For the remainder of this section, suppose that the above condition (*)prime 
is satisfied. 

LEMMA 5.1 (preserving the Mo,r-parts). Let¢: H1 ~ H2 be an isomor­

phism over lm(p~l~). Then ¢(Im(p~z;-geom)) = Im(p~z;-geom). Moreover, if k 

contains a primit~ve lth root of uni~y, then ¢(Im(p~~~)) = Im(p~~;). 
Proof. It follows immediately from Lemma 4.3(i), together with the 

assumption that the condition (*)prime is satisfied (see the discussion preced­

ing Lemma 5.1), that Im(p~z;-geom) ~ Hfeom is the maximal pro-l closed sub-

group of Hfeom; therefore, ,it follows that ¢(Im(p~~;-geom)) = Im(p~~;-geom). 
Moreover, if k contains a primitive lth root of unity, then it follows from 
Lemma 4.3(ii), together with the assumption that the condition (*)prime is 

satisfied (see the discussion preceding Lemma 5.1), that Im(p~z;) ~Hi is the 

maximal pro-l closed subgroup of Hi; therefore, it follows that ,¢(Im(p~z~)) = 
{Z} , 

lm(Po,r)· D 

Next, we write 

~: Aut~1 ,Q2 (Mo,r) ---+Isom1m(p~~~)(H1,H2)/Inn(Im(p~~~-geom)) 

for the map defined as follows. Let ¢ E Aut~1 'Q2 (Mo,r)· Then ¢ deter­

mines an Im(p~z~-geom)-conjugacy class of an automorphism of Im(p~z~) over 

Im(p~~~). More~ver, by the definition of Aut~1 ,Q2 (Mo,r ), this Im(p~~j-geom)­
conjugacy class is compatible with the respective outer actions of Q1 and Q2 



MONODROMICALLY FULL HYPERBOLIC CURVES OF GENUS ZERO 79 

on Im(p~l~) relative to an isomorphism Q1 ~ Q2. Therefore, since Im(p~l~) is 

center-fr~e (see Lemma 4.3(ii) ), we obtain an Im(p~~~-geom)-conjugacy ~lass 
~ ( ¢) of an isomorphism 

(see the discussion on topological groups in Section 0) over Im(p~~~). 
Note that by the various definitions involved, the diagram 

Aut~1 ,Q2 (Mo,r) -L Isom
1 

( {Z})(H1,H2)IInn(Im(p~l~-geom)) 
m Po,3 ' 

II 1 
Aut~1 ,Q2 (Mo,r) ----+ Isom

1 
( {Z})(H1,H2)IInn(H~eom) 

<P m Po,3 

-where the right-hand vertical arrow is the natural surjection-commutes. 

LEMMA 5.2 (a Grothendieck conjecture-type lemma for certain images of 
the universal monodromy). In the above diagram, the following hold: 

(i) <I> is injective, 
(ii) <I> is surjective, 

(iii) <I> is surjective; moreover, for ¢, ¢' E Aut~1 'Q2 (Mo,r), it holds that 
<I>(¢) =<I>(¢') if and only if¢' o ¢-1 E Autk (Mo,r) is an element of the 
image of the composite Q2 ~ 6r ------* Aut(Mo,r). 

Proof. First, we consider assertion (i). To prove the injectivity of ~-by 
replacing k with a finite extension of k-we may assume without loss of 
generality that k contains a primitive lth root of unity (see Remark 5.2.1 
below). Now we have a commutative diagram 

Isom
1 

( {Z}) (H1, H2) I Inn(Im(p~l~-geom)) 
m Po,3 ' 

1 1 
Autk(Mo,r) A ( ( {l})) I I (I ( {l}-geom)) utlm(p~~l) Im Po,r nn m Po,r 

where the left-hand vertical arrow is the natural inclusion, where the right­
hand vertical arrow is the map obtained by restricting elements of 

Isom
1 

( {Z})(H1,H2)IInn(Im(p~z~-geom)) to Im(p~l~) ~Hi (see Lemma 5.1), 
m Po,3 ' ' 
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and where the lower horizontal arrow is the homomorphism obtained in 
Lemma 4.2(i). Thus, since the lower horizontal arrow is injective (see 
Lemma 4.3(iii)), it follows that a; is injective. This completes the proof 
of assertion (i). 

Next, we consider assertion (ii). To prove the surjectivity of a;, it follows 
from assertion (i), together with Galois descent, that by replacing k with 
a finite extension of k, we may assume without loss of generality that k 
contains a primitive lth root of unity (see Remark 5.2.1 below). Let¢: H1 ~ 

H2 be an isomorphism over Im(p~~~). Then it follows from Lemma 5.1 that 
we obtain a commutative diagram 

where the horizontal sequences are exact and where the vertical arrows are 

isomorphisms. It now follows from Lemma 4.3(iii) that the Im(p~~~-geom)­
~onjugacy class of the left-hand vertical arrow arises from an automorphism 
¢of Mo,r over k. Moreover, since the abo~ diagram commutes, it follows 

from assertion (i) that this automorphism cp is compatible with the respec­
tive actions Q1 '-----* Sr---+ Autk(Mo,r) and Q2 '-----* Sr---+ Autk(Mo,r) relative 

to the isomorphism"¢: Q1 ~ Q2, that is,'¢ is an element of Aut~1 'Q2 (Mo,r)· 
This completes the proof of assertion (ii). Assertion (iii) follows immediately 
from assertions (i) and (ii), together with the various definitions involved. D 

REMARK 5.2.1. Let (z E k be a primitive lth root of unity. Then it follows 

from [2, Theorems A, B] that Ker(Gk--» Im(p~3)) ~ Gk((z)· Therefore, if we 
write 

{l} ( ) {l} (Hi)k((z) =Hi n Po,[r] 1r1(Mo,[r] ®k k((z)) ~ Im(Po,[r]) 

and 
(H )geom ~f (H ) Hgeom 

i k((z) - i k((z) n i ' 

then (Hi)f((r;) = Hfeom. In particular, (Hi)k((z) fits into similar exact sequen­
ces 

1 ---+ (Hi)f((r;}( = Hfeom) ---+ (Hi)k((z) ---+ P~~~ ( 7ri (Mo,3 ®k k( (z))) ---+ 1, 

1---+ p~~~ (1r1(Mo,r ®k k((z)))---+ (Hi)k((z)---+ Qi(~ Sr)---+ 1, 
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to the exact sequences 

§6. Proof of the main result 

In this section, we prove that the isomorphism class of an l-monodromi­
cally full hyperbolic curve of genus zero over a finitely generated field of 
characteristic zero is completely determined by the kernel of the associated 
pro-l outer Galois representation (see Theorem 6.1 below). 

THEOREM 6.1 (Galois-theoretic characterization of isomorphism classes 
of monodromically full hyperbolic curves of genus zero). Let l be a prime 
number, let k be a finitely generated field of characteristic zero (see the 
discussion on numbers in Section 0), let k be an algebraic closure of k, 

def -
let Gk = Gal(k/k), and let X1 = (C1,D1 ~ C1), X2 = (C2,D2 ~ C2) be 
hyperbolic curves (see Definition 1.1 (ii)) of genus zero over k which are 
l-monodromically full (see Definition 2.2(i)). Suppose that the following con­
dition ( t )prime is satisfied: 

( t )prime : There exists a finite Galois extension k' ~ k of k of degree prime to 
l such that X1 ®k k' and X2 ®k k' are split {see Definition 1.5{i)). 

(For example, if one of the following conditions is satisfied, then the above 
condition ( t )prime is satisfied: 

• xl and x2 are split; 
• if we write ri for the number of cusps of Xi that is, if Xi is of type (0, ri), 

then l is prime to r1! and r2! or, equivalently, r1, r2 < l.) 

Then the following conditions are equivalent: 

(i) xl is isomorphic to x2 over k; 
(ii) fori= 1, 2, write 

for the pro-l outer Galois representation associated to Xi; then 

Ker(p~~/k) = Ker(p~;/k). 
Proof. The implication 

(i) ===? (ii) 
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is immediate; thus, to verify Theorem 6.1, it suffices to show the implication 

(ii) ==} (i). 

Suppose that condition (ii) is satisfied. We write N ~ Ker(p~~/k) = 

Ker(p~;/k) ~ Gk (see (ii)), and we write ri for the number of cusps of the 

hyperbolic curve Xi; that is, Xi is a hyperbolic curve of type (0, ri)· 
It now follows immediately that the bijection of sets ¢: Im(p~~/k) ~ 

Im(p~;/k) obtained as the composite 

Im(p~~/k) ~ Gk/N ~ Im(p~;/k), 

where the ;:.._ and ~ are natural isomorphisms, is an isomorphism of profinite 
groups. Moreover, it follows from Lemma 1.6(ii) that this isomorphism¢ is 

an isomorphism over Im(p~~~). Thus, since X1 and X2 are l-monodromically 

full and since the condition ( t )Prime is satisfied, it follows from an argument 
similar to that used in the proof of Lemma 5.1 (see condition (*)prime in the 

discussion preceding Lemma 5.1) that ¢ maps Im(p~~;~geom) ~ Im(p~~/k) 
bijectively onto Im(p~~;~geom) ~ Im(p~;/k). In particular, it follows immedi­

ately from Lemma 4.2(ii) that r1 = r2. 

Write r ~f r1 = r2, Qi for the image of the composite Im(p~;/k) <----+ 

Im(p~~frl)--* Im(p~~frl)/Im(p~~;) (~ 6r; see Lemma 1.6(iii)), and write [Mo,r/ 
Qi] ~ Mo,[r] for the intermediate connected finite etale covering of the 6r­

covering Mo,r ~ [Mo,r/6r] = Mo,[r] corresponding to the image 

Im(p~;/k) ~ Im(p~~frl). Then it follows from Lemma 5.2(iii), together with 

the assumption that the condition ( t )prime is satisfied (see condition (*)prime 

in the discussion preceding Lemma 5.1), that the isomorphism obtained as 

the composite 

7rl([Mo,r/Ql])/Ker(p~~;) = Im(p~~/k) 
¢ 

~ Im(p~;/k) = 1r1([Mo,r/Q2])/Ker(p~~;) 
arises from the lower horizontal arrow in a commutative diagram 

Mo,r ----+ Mo,r 

1 1 
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where the vertical arrows are natural morphisms and where the horizontal 
arrows are isomorphisms over k. Therefore, it follows from Lemma 4.1(ii), 
together with the various definitions involved, that if we write sxi E 

Mo,[rJ(k) for the classifying morphism of Xi, then the elements of 

H (G ( {l} )) /I (I ( {l}-geom)) omim(p~~l) k, Im Po,[r] nn m Po,[r] , 

determined by sx1 and sx2 , respectively, coincide. Thus, it follows from 
Lemma 4.3(v) that X 1 is isomorphic to X2 over k, as desired. This completes 
the proof of the above implication. D 

§7. Example 1: Hyperbolic curves of type (0, 4) over number fields 

In this section, we consider the monodromic fullness of hyperbolic curves 
of type (0, 4) over number fields. In particular, we obtain sufficient conditions 
for such a hyperbolic curve to be monodromically full (see Theorem 7.9 
and Corollaries 7.11 and 7.12 below). Moreover, as an application of these 
sufficient conditions, we obtain a Galois-theoretic characterization of the 
isomorphism classes of certain hyperbolic curves of type (0, 4) over number 
fields (see Corollary 7.13 below). Here, suppose that k is a number field (see 
the discussion on numbers in Section 0), let o k ~ k be the ring of integers of 
k, and let ,\ E k \ { 0, 1} be an element of k \ { 0, 1}. Moreover, in this section, 
if k' ~ k is a finite extension of k and if p is a prime number, then write 
5,p(k';p) for the set of nonarchimedean primes p of k' such that the residue 
characteristic of p is p. 

DEFINITION 7.1. Let l be an odd prime number, and let (z E k be a 
primitive lth root of unity. We have the following. 

(i) We write kz ~ k for the Galois extension of k( (z) corresponding to the 
quotient 

Gk((z) ---* P~~~ ( Gk((z)) ---* P~~~ ( Gk((z))ab ®zz lFz. 

(ii) We write 1r1 (IP~((z) \ {0, 1, oo}) ---* Qz for the quotient of 1r1 (IP~((z) \ 

{0, 1, oo}) obtained as the composite 

1r1 (IP~((z) \ {0, 1, oo}) ~ 1r1 (Mo,4 ®k k( (z)) ---* p~~l ( 1r1 (Mo,4 ®k k( (z))) 

---* P~~l ( 1r1 (Mo,4 ®k k( (z))) ab ®z1 lFz, 

where the first arrow is the outer isomorphism obtained by an isomor­
phism IP~ \ {0, 1, oo} ~ Mo,4 over k (see Lemma 4.1(i)). 
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(iii) We write 

Xz ~f Spec k[s±1 , t±1]/(sz + tz- 1) 

~Spec k[u±1
, 1/ ( u- 1)] = JID~ \ {0, 1, oo }, 

where s, t, and u are indeterminates, for the connected finite etale 
covering of JID~ \ {0, 1, oo} determined by the homomorphism of algebras 
over k 

LEMMA 7.2 (properties of certain extensions). Let l be an odd prime 
number, and let (z E k be a primitive lth root of unity. Then kz {see Def­
inition 7.1{i)) is a finite abelian extension of k((z) of degree a power of l. 
Moreover, the extension kz of k is unramified outside s,p(k; l). In particular, 
Qz (see Definition 7.1 {ii)) is a finite group. 

Proof. It follows from Lemma 2.5 (resp., Lemma 4.3(ii)) that the quotient 

Gk((z) --* P~~~ ( Gk((1)) 

is topologically finitely generated (resp., pro-l). Moreover, it follows from 
[2, Theorems A, B] that the algebraic extension of k( (z) corresponding to 
the above quotient is unramified outside s,p(k((z); l). Therefore, Lemma 7.2 
follows immediately from the fact that the extension k( (z) of k is unramified 
outside s,p(k; l). This completes the proof of Lemma 7.2. D 

LEMMA 7.3 (properties of certain coverings). Let l be an odd prime num­
ber, and let (z E k be a primitive l th root of unity. Then 

1r1 (Mo,4){l} ~f 1r1 (Mo,4) / Ker(p~~1-geom) 

{note that since 1r1 (Mo,4 ®k k) is normal in 1r1 (Mo,4) and since 

Ker(p~~1-geom) is characteristic in 1r1 (Mo,4 ®k k) [see Lemma 4.2{i)}, it holds 

that Ker(p~~1-geom) is normal in 7ri(Mo,4)) and that 

P~~l : 1r1 (Mo,4){l} ------+ Out(~~~l) 

for the homomorphism induced by p~~l : 1r1 (Mo,4) ~ Out(~~~l). Fix an iso­
morphism Mo,4 ~ JID~ \ {0, 1, oo} over k {see Lemma 4.1 {i)). Then the fol­
lowing hold. 
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(i) There exists an isomorphism~~~~~ Im(p~~l-geom) such that the homo­
morphism 

Gk ----7 Out(Im(p{l}-geom)) ~Out(~ {l}) 
0,4 0,3 

determined by the natural exact sequence of profinite groups 

1 ----7 Im(p~~l-geom) ----7 1r1 (Mo,4) {l} ----7 Gk ----7 1 

coincides with p~z~. 
(ii) The finite etale ~overing Xz ---t Mo,4 (see Definition 1.1 {iii)) arises 

from an open subgroup of 1r1 (Mo,4){l}; that is, if we write 1r1 (Xz ®k 

k){l} for the maximal pro-l quotient of 1r1 (Xz ®k k) and write 1r1 (Xz){l} 

for the quotient of 1r1 (Xz) by the kernel of the natural surjection 
1r1 (Xz ®k k)--» 1r1 (Xz ®k k){l}, then the finite etale covering Xz ---t Mo,4 
induces a commutative diagram of profinite groups 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

1 ----+ 1r1 (Xz ®k k){l} ----+ 1r1 (Xz){l} ----+ Gk ----+ 1 

1 
1 ----+ I ( {l}-geom) 

m Po,4 

1 II 

where the horizontal sequences are exact and where the vertical arrows 
are open injections. 
The image of the left-hand vertical arrow in the diagram in asser­
tion {ii) coincides with the kernel of the natural surjection 

Im(p~ll-geom)--» Im(p~ll-geom)ab ®z
1 

lFz. In particular, 1r1 (Xz ®k k){l} ~ 
Im(p~ll-geom) is chara~teristic in Im(p~ll-geom). 
Write' Z for the centralizer of Im(p~~l-~eom) in 1r1 (Mo,4){l}. Then the 

image of Z in Gk coincides with the kernel Ker(p~l~) of p~l~. Moreover, 
{l} ' ' 

Z = Ker(p0,4 ). 

Write Zx ~f Z n 1r1 (Xz) {l} ~ 1r1 (Xz) {l}. Then Zx coincides with the 

centralizer of 1r1 (Xz ®k k){l} in 1r1 (Xz){l}. 

The kernel Ker(p~ll) of p~ll is contained in 1r1 (Xz){l}, hence also in 

1r1(Xz)ill xck Gkz·' ' 
The finite etale covering Xz ®k kz ---t Mo,4 ®k k( (z) is the connected 
finite etale covering of Mo,4 ®k k( (z) corresponding to the kernel of 
the natural surjection 1r1(Mo,4 ®k k((z))--» Qz (see Definition 1.1{ii)). 
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Proof. Assertion (i) follows immediately from Lemmas 4.1(i) and 4.2(i), 

together with the definition of p~~~. Assertions (ii) and (iii) follow immedi­
ately from the definition of the finite etale covering Xz ----7 Mo,4, together 
with the well-known structure of the fundamental group of Mo 4 ®k k c:::: 

' 
JP>~ \ {0, 1, oo }. Next, we verify assertion (iv). The fact that the image of Z 

in Gk coincides with the kernel Ker(p~z~) follows immediately from asser­
tion (i). Moreover, it follows immediately from Lemma 1.6(i) that the image 

ofKer(p~~~) ~ 7rl(Mo,4){l} in Gk coincides with the kernel Ker(p~3). There­

fore, since Im(p~z~-geom) n Z = {1} by Lemma 4.3(i), to verify the fact that 
{l} . ' . {l} 

Z = Ker(p04) 1t suffices to venfy that Ker(p04) ~ Z. On the other hand, 

since Im(p~z~-geom) is center-free, again by L~mma 4.3(i), one may easily 

verify that Z ~ 1r1 (Mo,4){l} is the maximal normal closed subgroup N of 

1r1 (Mo,4){l} such that Im(p~~~-geom) n N = {1 }. Therefore, since 

Im(p~~~-geom) nKer(p~~~) = {1} by the definitions of the quotient 1r1 (Mo,4){z} 

and the homomorphism p~z~, it holds that Ker(p~z~) ~ Z. This completes the 
proof of assertion (iv). Nex't, we verify assertion(~). Observe that it is imme­
diate that Zx is contained in the centralizer of 1r1 (Xz ®k k){l} in 1r1 (Xz){l}. 
It now follows from assertion (iii) that we have a natural homomorphism 

¢: Aut(Im(p~~~-geom))------* Aut(1r1(Xz ®k k){l}) 

a 1--7 al1r1 (Xz®kk){l} · 

On the other hand, conjugation by elements of Im(p~~~-geom) determines a 
homomorphism 

which is injective (see Lemma 4.3(i)). Now one may easily verify that the 

above homomorphism ¢ determines an isomorphism of Aut(Im(p~z~-geom)) 
with the normalizer of the image of the injection h in Aut(1r1(Xz @k k){l}). 
In particular, the above homomorphism ¢ is injective. Therefore, it follows 
immediately that the centralizer of 1r1 (Xz ®k k){l} in 1r1 (Xz) {l} is contained in 
Zx. This completes the proof of assertion (v). Next, we verify assertion (vi). 
It follows immediately from assertion (iv) that, to verify assertion (vi), it 
suffices to verify that Z = Z x. On the other hand, it follows immediately 
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from assertions (iv) and ( v), together with the various definitions involved, 
that the image of Z (resp., Zx) in Gk coincides with the kernel of the homo­

morphism p~z~ (resp., p: Gk ----7 Out(1r1(Xz ®k k){l}) determined by the top 
horizontal sequence of the diagram in assertion (ii)). Therefore, it follows 

immediately from the fact that Zxn1r1(Xz®kk){l} ~ Znim(p~zl-geom) = {1} 

(see Lemma 4.3(i)) that, to verify assertion (vi), it suffices to verify that 

Ker(p~l~) = Ker(p). The rest of the proof of assertion (vi) is devoted to prov-

ing th~t Ker(p~l~) = Ker(p) or, equivalently, that Ker(p~l~) ~ Ker(p) (see [8, 

Theorem C(i)]): Write G for the quotient of Im(p~~l-geo~) by 1r1 (Xz ®k k){l} 

(i.e., G = Gal(Xz ®k k/ Mo,4 ®k k); see assertion (iii)), and write 

for the homomorphism determined by the natural exact sequence 

Then it follows immediately from the various definitions involved that 

p(Ker(p~~~)) ~ Im(pa). On the other hand, it follows immediately from the 
definition of the finite etale covering Xz ----7 Mo,4, together with the fact 

that Ker(p~~~) ~ Gk((,z) (see Remark 5.2.1), that the action of Im(pa) (resp., 

p(Ker(p~z~))) on the set of conjugacy classes of cuspidal inertia subgroups of 

1r1(Xz ®~k){l} is faithful (resp., trivial) (see Remark 1.3.1). Thus, it holds 

that p(Ker(p~l~)) = {1}, that is, that Ker(p~l~) ~ Ker(p). This completes 
the proof of a~sertion (vi). Assertion (vii) follows immediately from asser­
tions (iii) and (vi), together with Lemma 1.6(i). This completes the proof 
of Lemma 7.3. D 

LEMMA 7.4 (fibers and monodromic fullness). Let l be an odd prime 
number, and let (z E k be a primitive l th root of unity. Then the following 
four conditions are equivalent. 

(i) The fiber of Xz ®k kz ----7 IP~ \ {0, 1, oo} at the {image of the) k-rational 
point of IP~ \ {0, 1, oo} corresponding to the element A E k \ {0, 1} is 
connected. 

(ii) The composite 
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where the first arrow is the homomorphism (which is determined up to 
1r1 (JP>~ \ { 0, 1, oo}) -inner automorphism) induced by the k( (z) -rational 

point of P1((z) \ {0, 1, oo} corresponding to the element A E k \ {0, 1} ~ 
k( (z) \ {0, 1}, is surjective. 

(iii) The composite 

Gk -----*7r1(JP>~ \ {0,1,oo}) ~7r1(Mo,4) -----*Im(p~~l), 

where the first arrow is the homomorphism (which is determined up 
to 1r1 (JP>~ \ { 0, 1, oo}) -inner automorphism) induced by the k -rational 

point of JP>~ \ {0, 1, oo} corresponding to the element A E k \ {0, 1} and 
where the second arrow is the outer isomorphism over Gk obtained by 
an isomorphism JP>~ \ {0,1,oo} ~Mo,4 over k (see Lemma 4.1(i)), is 
surjective. 

(iv) The hyperbolic curve (JP>~, {0, 1, A, oo} ~ JP>~) of type (0, 4) over k is l­
monodromically full. 

Proof. The equivalence 
(i) ~ (ii) 

follows immediately from Lemma 7.3(vii), together with the various defini­
tions involved. The implication 

(iii) ==? (ii) 

follows immediately from Lemma 1.6(i), together with the fact that 

Ker(p~~~) ~ Gk((z) (see Remark 5.2.1). The equivalence 

(iii)~ (iv) 

follows immediately from the various definitions involved. Finally, we verify 
the implication 

(ii) ==?(iii). 

Suppose that condition (ii) is satisfied. It follows from the fact that 

Ker(p~~~) ~ Gk((z) (see Remark 5.2.1) that, to verify condition (iii)-by 
replacing k with k((z)-we may assume without loss of generality that (z E k. 

Then it follows from Lemma 2.5 (resp., Lemma 4.3(ii)) that Im(p~zl) is 
topologically finitely generated (resp., pro-l). Therefore, it follows fro~ [22, 
Lemma 2.8.7(c)] and [22, Corollary 2.8.5], together with the definition of 
the quotient Qz, that condition (iii) is satisfied. This completes the proof of 
the above implication. D 
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DEFINITION 7.5. We have the following. 

(i) If p is a nonarchimedean prime of k, then we write Vp : k*-+ Z, where 
we write k* for the group of units of k for the p-adic valuation such 
that if pis the residue characteristic of p, then vp(P) coincides with the 
absolute ramification index of the completion of k at p. 

(ii) If a is an element of k*, then we write [a]± (resp., [a]+; [a]_) for the (nec­
essarily finite) set of nonarchimedean primes p of k such that Vp (a) =/= 0 
( resp., Vp (a) > 0; Vp (a) < 0). 

LEMMA 7.6 (zeros and poles of certain divisors). We have the following: 

(i) [A]+ n [A]- = 0; 
(ii) [A]_= [1- A]_; 

(iii) [A]+ n [1- A]+= 0; 
(iv) [A]+=/= 0, [1- A]+=/= 0 if and only if [A]± g [1- A]±, [1- A]± g [A]±; 
( v) suppose that 

{A, 1- A, Aj(A- 1)} n ok = 0, 

where we write ok for the group of units of ok; then there exists an 
element A1 of 

{A, 1/A, 1- A, 1/(1- A), Aj(A -1), (A- 1)/A} 

such that [A']± g [1- A1]± and [1- A1]± g [A']±· 

Proof. Assertion (i) follows from the definitions of[-]+ and [-]_. Asser­
tions (ii) and (iii) follow immediately from a straightforward calculation. 
Assertion (iv) follows immediately from assertions (i), (ii), and (iii). Finally, 

we verify assertion (v). Suppose that any element of m>, ~{A, 1/A, 1-
A,1/(1- A),A/(A -1),(A -1)/A} does not satisfy the desired condition. 
Now, since ffi>. n ok = 0, any element A' E ffi>. satisfies either [A']+=/= 0 or 
[1/ A']+ =/= 0. Thus, it follows from assertion (iv) that, by replacing A with 
an element of m >., we may assume without loss of generality that 

[A]+=0; 

[A/(A- 1)]+ =!= 0; 

[(A -1)/A]+ = 0; 

[1/(1- A)]+= 0; 

Therefore, it follows that 1/ A, A/ (A- 1), 1 - A E o k. In particular, we obtain 
that Aj(A- 1) E ok, in contradiction to the assumption that m>, n ok = 0. 
This completes the proof of assertion ( v). D 
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DEFINITION 7.7. Let l be an odd prime number. Then we say that l 
satisfies the condition (t>.Ek) if there exist two distinct nonarchimedean 
primes Po and qo of k satisfying the following conditions: 

(i) Po¢: s,p(k;l), PoE [.A]±, Po¢: [1- .A]±, and lis prime to Vp0 (.A); 
(ii) qo ¢: s,p(k; l), qo ¢:[.A]±, qo E [1- .A]±, and lis prime to Vq0 (1- .A). 

REMARK 7. 7.1. It is easily verified that if [.A]± ~ [1 - .A]± and [1 -
.A]± ~ [.A]±, then there exists a cofinite set ~ of prime numbers, that is, 
a (necessarily infinite) set of prime numbers obtained as the complement of 
a finite set of prime numbers in the set of all prime numbers such that if 

l E ~' then l satisfies the condition (t>.Ek)· 

LEMMA 7.8 (connectedness of a fiber). Let l be an odd prime number, 

let (z E k be a primitive lth root of unity, and let az E k (resp., f3z E k) be a 
solution oftl- A (resp., tl- (1- .A)), where tis an indeterminate. Suppose 

that the prime number l satisfies the condition (t>.Ek)· Then the following 
hold. 

(i) The finite extension k((z,az) (resp., k((z,f3z)) of k is ramified at Po 
(resp., qo) (see Definition 7. 7) and unramified at qo (resp., Po). 

( ii) The extension kz ( az, f3z) of kz is of degree l2 . 

(iii) The fiber of Xz ®k kz ~II?~\ {0, 1, oo} at the (image of the) k-rational 

point of II?~\ {0, 1, oo} corresponding to the element A E k \ {0, 1} is 
connected. 

Proof. Assertion (i) follows from the definition of condition (t>.Ek) and the 
fact that the degree of the finite extension k ( (z) / k is prime to l, together 
with, for example, [19, Chapter V, Lemma 3.3]. Assertion (ii) follows imme­
diately from Lemma 7.2(i), together with assertion (i). Assertion (iii) 
follows immediately from assertion (ii), together with the fact that 

Im(p~~1-geom)ab 0zz lF'z is of cardinality l2 . D 

THEOREM 7.9 (monodromic fullness of certain split hyperbolic curves 
of type (0,4) over number fields). Let l be an odd prime number, let k be 

a number field (see the discussion on numbers in Section 0), and let A E 

k \ {0, 1}. Suppose that l satisfies the condition (t>.Ek) (see Definition 7. 7). 
Then the hyperbolic curve (IP~, {0, 1, .A, oo} ~ IPk) of type (0, 4) over k is l­

monodromically full (see Definition 2.2(i)). 

Proof. This follows from Lemmas 7.4 and 7.8(iii). D 
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DEFINITION 7.10. Let X be a hyperbolic curve of type (0, 4) over k. Then 
it follows immediately that there exists an element AXE k\ {0, 1} such that 
the hyperbolic curve X 0k k is isomorphic over k to the hyperbolic curve 

of type (0, 4) over k. Now we write 

def { } -mx = Ax,1/Ax,1-Ax,1/(1-Ax),Ax/(Ax-1),(Ax-1)/Ax c;;.k. 

Note that it is well known that mx depends only on (and completely deter­
mines!) the isomorphism class of the hyperbolic curve X @k k over k. 

COROLLARY 7.11 (monodromic fullness of certain hyperbolic curves of 
type (0,4) over number fields). Let k be a number field (see the discussion 
on numbers in Section 0), let k be an algebraic closure of k, let ok be the 
ring of integers ofk, let oX; be the group of units of ok, and let X be a hyper­
bolic curve (see Definition 1.1{ii)) oftype (0,4) overk. IfmxnoX;=0 (see 
Definition 7.10), then there exists a co finite set I: of prime numbers, that is, 
a (necessarily infinite) set of prime numbers obtained as the complement of 
a finite set of prime numbers in the set of all prime numbers, such that the 
hyperbolic curve X over k is L:-monodromically full (see Definition 2.2(i)). 

In particular, if o'k c;;_ k is the group of units of the ring of integers ok of 
k and if A E k \ {0, 1} is an element of k \ {0, 1} such that 

{A, 1- A, A/(A- 1)} n o'k = 0, 

then there exists a cofinite set I: of prime numbers such that the hyperbolic 
curve (P~, {0, 1, A, oo} c;;_ IfD~) of type (0, 4) over k is I:-monodromically full. 

Proof. This follows from Theorem 7.9, together with Lemma 7.6(v) and 
Remark 7.7.1. 0 

COROLLARY 7.12 (monodromic fullness of split hyperbolic curves of type 
(0, 4) over the field of rational numbers or certain imaginary quadratic 
fields). Let d be a square-free positive integer such that d -=/:-1, 3. Write k for 
the field of rational numbers Q or the imaginary quadratic field Q( R). If 
A E k, then the following conditions are equivalent: 

(i) the hyperbolic curve (P~, {0, 1, A, oo} c;;_ Pk) -of type (0, 3) or (0, 4)­
over k is not isomorphic to the hyperbolic curve (P~, {0, 1, -1, oo} c;;_ Pk) 
of type (0, 4) over k; 
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(ii) A. is not equal to -1, 2, 1/2; 
(iii) there exists a cofinite set ~ of prime numbers, that is, a (necessarily 

infinite) set of prime numbers obtained as the complement of a finite 
set of prime numbers in the set of all prime numbers, such that the 
hyperbolic curve (JI:»l, {0, 1, A., oo} ~ 1Pk) -of type (0, 3) or (0, 4) -over 
k is ~-monodromically full (see Definition 2.2(i}}; 

(iv) there exists a prime number l such that the hyperbolic curve (JI:»l, {0, 1, 
A.,oo} ~JI:»k)-oftype (0,3) or (0,4)-over k is l-monodromically full. 

Proof. The implication 

(i) ===? (ii) 

is immediate. The implication 

(ii) ===? (iii) 

follows from Corollary 7.11, together with the fact that the group of units 
of the ring of integers of k is { ± 1}. The implication 

(iii) ===? (iv) 

is immediate. Finally, we verify the implication 

(iv) ===? (i). 

It is easily verified that Jl:»~ \ { 0, 1, -1, oo} has some special symmetry (see 

Definition 3.3), that is, Autij"(JI:»~ \ {0, 1, -1, oo}) is not isomorphic to Go,4 
(see Definition 3.1). Therefore, the above implication follows from Proposi­
tion 3.4. D 

COROLLARY 7.13 (Galois-theoretic characterization of isomorphism clas­
ses of certain hyperbolic curves of type (0, 4) over number fields). Let k 
be a number field (see the discussion on numbers in Section 0), let k be 
an algebraic closure of k, let ok be the ring of integers of k, let oX; be the 

def -
group of units of ok, let Gk = Gal(k/k), and let X1 = (C1,D1 ~ C1), X2 = 
(C2,D2 ~ C2) be hyperbolic curves (see Definition 1.1(ii}} of type (0,4) over 
k. Suppose that mx1 n oX;= mx2 n oX;= 0 (see Definition 7.10}. Then the 
following conditions are equivalent: 

(i) xl is isomorphic to x2 over k; 
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(ii) there exists an infinite set I: of prime numbers such that, for any lEI:, 
if we write 

for the pro-l outer Galois representation associated to Xi, then 

Ker(p~~/k) = Ker(p~!/k). 
Proof. The implication 

(i) ===? (ii) 

is immediate. On the other hand, the implication 

(ii) ===? (i) 

follows immediately from Theorem 6.1, together with Corollary 7.11. D 

§8. Example II: Nonisotrivial hyperbolic curves of type (0, 4) 

In this section, we consider the monodromic fullness of nonisotrivial 
hyperbolic curves of type (0, 4). 

DEFINITION 8.1. Let X be a hyperbolic curve over k. Then we say that 
X is NF-isotrivial if there exist a finite extension k' ~ k of k, a number field 
ko ~ k' (see the discussion on numbers in Section 0) contained in k', and a 
hyperbolic curve Xo over ko such that X ®k k' is isomorphic to Xo ®ko k' 
over k' (see [26, Proposition 1.2(i)]). 

COROLLARY 8.2 (monodromic fullness of nonisotrivial hyperbolic curves 
of type (0, 4)). Let k be a finitely generated field of characteristic zero (see 
the discussion on numbers in Section 0), and let X be a hyperbolic curve 
(see Definition 1.1 (ii)) of type (0, 4) over k which is not NF-isotrivial (see 
Definition 8.1). Then there exists a co finite set I: of prime numbers, that is, 
a (necessarily infinite) set of prime numbers obtained as the complement of 
a finite set of prime numbers in the set of all prime numbers, such that the 
hyperbolic curve X over k is L:-monodromically full (see Definition 2.2(i)). 

Proof. It is immediate that to verify Corollary 8.2~by replacing k with 
a suitable finite extension of k~we may assume without loss of generality 
that X is split. Now, since k is a finitely generated field of characteristic 
zero, there exist a subfield ko ~ k of k and a scheme Vo over ko satisfying 
the following conditions: 



94 Y. HOSHI 

(i) ko is a number field (see the discussion on numbers in Section 0); 
(ii) Vo is regular, separated, geometrically connected, and of finite type 

over ko; 
(iii) the function field of Vo is isomorphic to k; 
(iv) the split hyperbolic curve X over k extends to a split hyperbolic curve 

Xo over Vo. 
Now, since the natural outer homomorphism 1r1 (Speck) ---7 1r1 (Vo) (see (iii)) 
is surjective (see (ii)) and since the pro-~ outer monodromy representation 
P"i;k factors through P"io/Vo (see (iv)), it follows from the definition of the 
term monodromically full that, to verify Corollary 8.2, it suffices to show 
that there exists a closed point v E Vo of Vo such that the hyperbolic curve 
(Xo)v over the residue field at v E Vo obtained as the fiber of the hyperbolic 
curve Xo over Vo at v E Vo is ~-monodromically full for some cofinite set ~ 
of prime numbers. 

Write sxo/Vo : Vo ---7 P~0 \ {0, 1, oo} for the classifying morphism of the 
split hyperbolic curve Xo over Vo (see (iv), together with Lemma 4.1(i)). 
Then, since X is not NF-isotrivial and since P~0 \ {0, 1, oo} is of dimension 
one, it follows that the image of the morphism s Xo/Vo is open. In particular, 
there exists a closed point v of P~0 \ {0, 1, oo} contained in the image of 

sxo/Vo such that if A. E ko \ {0, 1} is an element of ko \ {0, 1} naturally 
corresponding to v E P~0 \ {0, 1,oo}, then {A., 1- A.,A./(A.- 1)} n oX;

0 
= 0, 

where ko is an algebraic closure of ko, oko is the ring of integers of ko 
(see (i)) and where oX;

0 
is the group of units of oko. Let v E Vo be a closed 

point of Vo whose image via sx
0
jv

0 
is v. Then it follows immediately from 

Corollary 7.11 that the hyperbolic curve (Xo)v over the residue field at 
v E Vo obtained as the fiber of the hyperbolic curve Xo over Vo at v E Vo 
is ~-monodromically full for some cofinite set ~ of prime numbers. This 
completes the proof of Corollary 8.2. D 

REMARK 8.2.1. It is immediate that Corollary 8.2 implies the following 
assertion. Let k be a finitely generated field of characteristic zero (see the 
discussion on numbers in Section 0), and let X be a hyperbolic curve (see 
Definition 1.1(ii)) of type (0,4) over k. Suppose that there exists an infinite 
set ~ of prime numbers such that if l E ~, then X is not l-monodromically 
full (see Definition 2.2(i)). Then X is NF-isotrivial (see Definition 8.1). 

On the other hand, if in the above assertion one replaces (0, 4) with (0, r) 
for some r 2:: 5, then the conclusion no longer holds in general. A counter-

example is as follows. Let ko be a number field, let S ~f P~0 \ { 0, 1, -1, oo}, 
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and let k be the function field of S. Then the natural open immersion 

S "--<l£Dl
0 

\ {0, 1, 00} 

and the composite 

S---+ Spec ko ~ JP>l
0 

\ {0, 1, oo }, 
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where the first arrow is the structure morphism of Sand where the second 
arrow is the ko-rational point corresponding to -1 E ko \ { 0, 1}, determine a 
morphism over k from S to the second configuration space of JP>l

0 
\ { 0, 1, oo}. 

In particular, it follows immediately from Lemma 4.1(i) that we obtain a 
split hyperbolic curve X over k of type (0, 5). Now, since X may be embed­
ded as an open subscheme of JP>l \ {0, 1, -1, oo }, it follows immediately from 
Proposition 3.4 (see also the argument used in the proof of the implica­
tion (iv) ==} (i) in the proof of Corollary 7.12), together with Remark 2.2.5, 
that, for any prime number l, the hyperbolic curve X over k is not l­
monodromically full. On the other hand, it follows immediately from the 
definition of X that X is not NF-isotrivial. 

COROLLARY 8.3 (Galois-theoretic characterization of isomorphism classes 
of nonisotrivial hyperbolic curves of type (0, 4)). Let k be a finitely generated 
field of characteristic zero (see the discussion on numbers in Section 0), let k 

def -
be an algebraic closure ofk, letGk = Gal(k/k), and letX1 = (C1,D1 ~ C1), 
X2 = (C2,D2 ~ C2) be hyperbolic curves (see Definition 1.1(ii)) of type (0,4) 
over k which are not NF-isotrivial (see Definition 8.1). Then the following 
conditions are equivalent: 

(i) xl is isomorphic to x2 over k; 

(ii) there exists an infinite set~ of prime numbers such that, for any l E ~' 
if we write 

p~:/k: Gk------+ Out(1r1((Ci \ Di) ®k k)Cl)) 

for the pro-l outer Galois representation associated to Xi, then 

Ker(p~~/k) = Ker(p~;/k). 
Proof. The implication 

(i) ====} (ii) 

is immediate. On the other hand, the implication 

(ii) ====} (i) 

follows immediately from Theorem 6.1, together with Corollary 8.2. D 
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Appendix. Ramification of outer Galois representations and iso­
morphism classes of hyperbolic curves 

In this appendix, we prove finiteness results, which are related to the 
main result of this paper (see Theorem A.3 and Corollary A.4 below). It 
seems to the author that the results appearing in this section are likely to be 
well known; however, since the results could not be found in the literature, 
we decided to give proofs of the results in this section. Here, let l be a prime 
number, let k be a number field (see the discussion on numbers in Section 0), 
and let (g, r) be a pair of nonnegative integers such that 2g- 2 + r > 0. 

DEFINITION A.l. Let N ~ Gk be a normal closed subgroup of Gk, and 
let StJ be a set of primes of k. Then we write 

IGal(l, k, g, r, N) (resp., Iunr (l, k, g, r, SlJ)) 

for the set of the isomorphism classes over k of hyperbolic curves X = 
( C, D ~ C) of type (g, r) over k satisfying the following condition. If we 
write 

pf~k: Gk ----t Out(1r1((C \D) 0k k)(z)) 

for the pro-l outer Galois representation associated to X, then the kernel of 

pf~k coincides with N ~ Gk (resp., then pf~k is unramified outside SlJ). 

REMARK A.2. If N ~ Gk is a normal closed subgroup of Gk obtained as 
the kernel of the pro-l outer Galois representation associated to a hyperbolic 
curve over k, then it is easily verified that there exists a finite set StJ of primes 
of k such that IGal(l,k,g,r,N) ~Iunr(l,k,g,r,SlJ). 

The main purpose of this section is to prove the following fact. 

THEOREM A.3. Let l be a prime number, let k be a number field (see the 
discussion on numbers in Section 0), let k be an algebraic closure of k, let 

G k ~f Gal(k / k), let (g, r) be a pair of nonnegative integers such that 2g- 2 + 
r>O, and lets,p be afinite set ofprimes ofk. Then the setiunr(l,k,g,r,SlJ) 
(see Definition A.1) is finite. 

By Theorem A.3, together with Remark A.2, we obtain the following 
corollary. 

COROLLARY A.4. Let l be a prime number, let k be a number field (see 
the discussion on numbers in Section 0), let k be an algebraic closure of 
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k, let G k ~f Gal(k / k), let (g, r) be a pair of nonnegative integers such that 

2g- 2 + r > 0, and let N ~ Gk be a normal closed subgroup of Gk. Then the 
. set IGal(l,k,g,r,N) (see Definition A.l) is finite. 

The rest of the appendix is devoted to proving Theorem A.3. 

LEMMA A.5. Let SlJ be a finite set of primes of k, and let X = ( C, D ~ 
C) be a hyperbolic curve over k whose isomorphism class over k is in 
Iunr(l,k,g,r,s,rJ). Then there exists a finite extension k(l,k,r,s,rJ) ~ k of k 

that depends only on l, k, r, and SlJ such that the hyperbolic curve X ®k 

k(l, k, r, SlJ) over k(l, k, r, SlJ) is split (see Definition 1.5(i)). 

Proof. To prove Lemma A.5-by replacing SlJ with a finite set of primes 
of k containing SlJ and the set of the nonarchimedean primes p of k such 
that the residue characteristic of pis l-we may assume without loss of gen­
erality that every nonarchimedean prime of k whose residue characteristic 
is l is contained in SlJ. Then it follows immediately from Oda-Tamagawa's 
criterion for good reduction of hyperbolic curves (see [25, Theorem 0.8]) 
that any irreducible component of D is isomorphic to the spectrum of a 
finite extension of k which is unramified outside SlJ. On the other hand, it 
follows immediately from a well-known theorem of Hermite and Minkowski 
that there are only finitely many isomorphism classes of finite extensions of 
k of degree at most r which are unramified outside SlJ. Therefore, if we write 
k(l, k, r, SlJ) for the composite field of all extension fields (in k) of degree at 
most r which are unramified outside S,fJ, then k(l, k, r, SlJ) satisfies the desired 
condition. This completes the proof of Lemma A.5. 0 

LEMMA A.6. Let k' be a finite extension of k, and let Y be a hyperbolic 

curve over k'. Then there are only finitely many isomorphism classes over 

k of hyperbolic curves X over k satisfying the following condition: X ®k k' 
is isomorphic to Y over k'. 

Proof. To verify Lemma A.6-by replacing k' with a finite extension 
of k' -we may assume without loss of generality that the extension k' of k is 
Galois. Write V for the set of the isomorphism classes [X,¢: X ®kk' ~ Y] of 
pairs (X,¢: X ®k k' ~ Y) of hyperbolic curves X over k and isomorphisms 
¢:X ®k k' ~ Y over k', where we say that a pair (X1,¢1: X1 ®k k' ~ Y) 
is isomorphic to a pair (X2, ¢2 : X2 ®k k' ~ Y) if there exists an isomor­
phism 'ljJ : X1 ~ X2 over k such that c/J2 o 'ljJ = ¢1. To verify Lemma A.6, it 
is clear that it suffices to show that this set V is finite. Moreover, to verify 
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the finiteness of V, it is clear that we may assume without loss of generality 
that V is nonempty. Let us fix an element [Xo, <Po : Xo ®k k' ~ Y] E V of 
V. Then we obtain a map 

V-----+ Z 1 (Gal(k'/k),Autk'(Y)) 

[X, ¢ : X ® k k' ~ Y] f--7 (g f--7 ¢ o g -l o ¢ -l o ¢0 o g o ¢01), 

where the action of Gal(k' /k) on Autk'(Y) is given by 

Gal(k' /k)-----+ Aut(Autk'(Y)) 

g f--7 (! f--7 <Po o g-1 o <Polo f o <Po o go <Pol). 

Moreover, by Galois descent, this map is injective. Therefore, the finiteness 
of V follows from the finiteness of Gal( k' / k) and Autk' (Y). D 

Proof of Theorem A.3. To prove Theorem A.3-by replacing s,p- with a 
finite set of primes of k containing s,p- and the set of the nonarchimedean 
primes p of k such that the residue characteristic of p is Z-we may assume 
without loss of generality that every nonarchimedean prime of k whose 
residue characteristic is l is contained in s,p-. Moreover, it follows from 
Lemma A.6 that to prove Theorem A.3, it suffices to verify that if we write 
I1 ~ Iunr (l, k, g, r, s,p-) for the subset of Iunr (l, k, g, r, s,p-) consisting of the 
isomorphism classes over k of hyperbolic curves which are split, then I 1 is 
finite. Now if X = ( C, D ~ C) is a hyperbolic curve over k whose isomor­
phism class over k is in I1, then it follows from Oda-Tamagawa's criterion 
for good reduction of hyperbolic curves (see [25, Theorem 0.8]) that the 
proper curve C admits good reduction at all primes outside s,p-. Therefore, if 
g 2:: 1 (resp., if g = 0), then it follows from a well-known theorem of Faltings 
and Shafarevich (resp., the fact that X is split) that the set consisting of the 
isomorphism classes over k of the proper curves C appearing in the elements 
[ C, D ~ C) of I1 is finite. Thus, to prove Theorem A.3, it suffices to verify 
that, for a hyperbolic curve Xo = (Co, Do ~ Co) over k whose isomorphism 
class over k is in I1, if we write I2 ~ I1 for the subset of I1 consisting of 
the isomorphism classes over k of hyperbolic curves X = ( C, D ~ C) over k 
such that the proper curves C are isomorphic to the proper curve C0 over k, 
then I2 is finite. On the other hand, this follows immediately from two well­
known theorems of Mahler and Siegel and Faltings and Mordell, together 
with Oda-Tamagawa's criterion for good reduction of hyperbolic curves (see 
[25, Theorem 0.8]). This completes the proof of Theorem A.3. D 
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