<table>
<thead>
<tr>
<th>Title</th>
<th>Growth of Metal Nanowhiskers on Patterned Substrate by High Temperature Glancing Angle Deposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suzuki, Motofumi; Kita, Ryo; Hara, Hideki; Hamachi, Kenji; Nagai, Koji; Nakajima, Kaoru; Kimura, Kenji</td>
</tr>
<tr>
<td>Citation</td>
<td>JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2010), 157(2): K34-K38</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/148432</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009 The Electrochemical Society</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Growth of Metal Nanowhiskers on Patterned Substrate by High Temperature Glancing Angle Deposition

Motofumi Suzuki,*,‡ Ryo Kita, Hideki Hara, Kenji Hamachi, Koji Nagai, Kaoru Nakajima,* and Kenji Kimura

Department of Micro Engineering, Kyoto University, Kyoto 606-8501, Japan

Unusual Al nanowhiskers grow on the substrate when Al is deposited on a heated substrate at a deposition angle typically larger than 80°, a so-called glancing angle.‡ This process is termed high temperature glancing angle deposition (HT-GLAD). In the past, nanowhiskers of various other metals have also been grown by HT-GLAD. The following conditions must be satisfied for growing nanowhiskers: (i) the deposition temperature must be higher than approximately one-third of the melting point of the metal and (ii) the deposition angle must be typically larger than 80°. Thus, the HT-GLAD growth process is highly sensitive to deposition conditions. Therefore, it would be possible to achieve the selective growth of nanowhiskers on a patterned substrate by this process. There are two approaches to achieve such selective growth, as shown in Fig. 1. One approach is based on the shadowing effect (Fig. 1a), and the other is based on the condition that nanowhiskers are grown only at a large deposition angle (Fig. 1b). If vapor is incident obliquely on the patterned substrate, the convex parts of the substrate surface protect its concave parts from the direct impact of incident vapor; therefore, nanowhiskers are expected to grow only on the convex parts, as shown in Fig. 1a. As shown in Fig. 1b, if vapor is incident on certain parts of the substrate (the surface indicated “A” in Fig. 1b) at a large deposition angle θ ≥ 80° and is incident on the other parts (the surface indicated “B” in Fig. 1b) at a small deposition angle 90°–θ, nanowhiskers grow only on the former parts. However, it is not easy to achieve such geometrically selective growth in conventional nanowhisker growth processes such as chemical vapor deposition based vapor-liquid-solid growth and electrochemical deposition in nanoholes in anodically oxidized aluminum, in which the directivity of the flux of the source materials does not play an important role. Therefore, HT-GLAD is expected to compensate the difficulties to achieve the selective growth by the conventional growth processes and to contribute to the development of novel applications of nanowires.

The research and development of metal nanowires is carried out on a smaller scale than that of the semiconductors and functional oxides. However, metal nanowires have applications in various roads on a smaller scale than that of the semiconductors and functional applications of nanowires.

Geometrically selective growth by HT-GLAD is expected to be useful for growing nanowhiskers on nano- and microstructured substrates.

© 2009 The Electrochemical Society. [DOI: 10.1149/1.3266932] All rights reserved.

Experimental

Aluminum (purity 99.999%) or iron (purity 99.999%) was deposited on a Si substrate with trench patterns in an electron-beam (EB) evaporation apparatus specially designed for carrying out HT-GLAD. After evacuating the preparation chamber to 1 × 10⁻⁴ Pa, the substrate, which was placed on a graphite plate, was irradiated (and thus heated) with a halogen lamp. The relation between the substrate temperature measured using thermocouples and that of the halogen lamp was calibrated by preliminary experiments. In the study, by monitoring the temperature of the halogen lamp, the substrate temperature was maintained constant at 390°C for Al or at 470°C for Fe during the deposition process. To reduce the dispersion of the deposition flux, the EB source was placed at a distance of 480 mm from the center of the substrate. The deposition angle α, which is defined as the angle between the substrate normal and the incident direction of the deposition flux, was set at an angle of α = 85° by using an in-vacuum stepper motor. The thickness d(α) = d₀ cos α and deposition rate d(α) = d₀ cos α of Al or Fe were monitored using a quartz crystal monitor, where d₀ and d₀ are the...
thick and deposition rate, respectively, calibrated for films deposited from the normal direction at room temperature. The pressure during the deposition was less than 4×10^{-4} Pa. The detailed deposition geometry, together with the corresponding experimental results, is described in the next section. The samples were characterized using a transmission electron microscope, equipped with an energy-dispersive X-ray detector, and a scanning electron microscope (SEM).

Results and Discussion

Selective growth of nanowhiskers by shadowing effect.— During HT-GLAD, vapor flux is incident on the substrate at a large deposition angle; therefore, only the convex parts and not the concave parts of the surface are exposed to the vapor flux. Thus, if we use a prepatterned substrate, as is often the case in the selective growth of the columns using low temperature glancing angle deposition,14,15 we can achieve a patterned growth of nanowhiskers.

In this study, to verify the selective growth of nanowhiskers by the shadowing effect, we carried out the HT-GLAD of Fe on a Si(001) substrate with periodic V-shaped grooves along the $[110]$ direction. Fe vapor was incident at a deposition angle of 82° in such a way that the plane of incidence was perpendicular to the direction of the grooves; therefore, most parts of the grooves were shadowed from the Fe vapor; During deposition, the substrate temperature was maintained constant at 470°C, and the average thickness of deposited Fe was 48 nm.

Figure 2 shows typical SEM images of the resultant samples. As expected, many Fe nanowhiskers with diameters of 50–200 nm and lengths up to 500 nm grew only on the ridges of the pattern. No significant deposition occurred on the shadowed parts of the grooves. This indicates that the diffusion length of the adatoms is considerably shorter than the size of the grooves. For the nucleation of nanowhiskers to occur in HT-GLAD, long-distance diffusion of adatoms is not required. From the SEM images, the diffusion length of adatoms on the surface was estimated to be of the order of 100 nm. Therefore, it would be possible to achieve the selective growth of nanowhiskers by the shadowing effect on nanopatterns with a size down to a few hundred nanometers.

Selective growth of nanowhiskers by control of deposition angle.— Because the growth process of nanowhiskers by HT-GLAD is very sensitive to the deposition angle (reported by us in a previous study1), in this study, the selective growth of Al nanowhiskers was carried out on sidewalls of rectangular trenches. Aluminum was deposited on a micropatterned Si(110) substrate with native oxide. Six groups of trenches with nominal widths of 1, 3, 5, 10, 15, and 20 μm and a depth of 1.7 μm were prepatterned along the $[110]$ direction. During deposition, the substrate temperature was maintained constant at 390°C. By selecting appropriate polar and azimuth angles of the substrate during the deposition process, deposition angles on both the surface and the sidewalls of the trenches were controlled independently. Figure 3a shows schematic representations of the deposition geometry. The polar angle α was defined as the angle between the substrate normal and the incident direction of the deposition flux, and the azimuth angle ϕ was defined as the angle between the trench direction and the plane of incidence of the Al vapor. As shown in Fig. 3b, the deposition angle on the surface was equal to α, whereas that on one of the sidewalls (illuminated sidewall) was $\gamma = \cos^{-1}(\sin \alpha \sin \phi)$. Samples were prepared at dif-
different α values selected between 55 and 85°; however, γ was fixed at 85°. The average thickness d of Al deposited on the illuminated sidewall was 23 or 30 nm.

Figure 4 shows typical SEM images of a cross section of samples prepared on trenches for [(a) and (b)] $\alpha = 55^\circ$ and [(d) and (e)] 85°. Thin and long nanowhiskers grow on both types of the samples. Because nanowhiskers grow only under the condition of deposition at a high temperature and at a deposition angle larger than 80°, in $\alpha = 55^\circ$, they grow only on the sidewall and not on the surface or the bottom of the trenches. For $\alpha = 85^\circ$, many nanowhiskers grow on the surface, bottom, and sidewalls of the sample. Thus, the selective growth of nanowhiskers was successfully carried out by controlling the geometrical deposition conditions.

The growth of nanowhiskers on the sidewalls of the trench is not a simple phenomenon. In Fig. 4a and d, it can be observed that nanowhiskers grow not only on the illuminated sidewalls but also on the shadowed sidewalls that have never been directly exposed to the vapor flux. Surprisingly, the growth of nanowhiskers on the shadowed sidewalls is not exceptional, while the number of nanowhiskers grown on the shadowed part of the bottom is small. Figure 5 shows the SEM images captured from various angles for the same two samples: with $\alpha = 55^\circ$ (Fig. 5a) and $\alpha = 85^\circ$ (Fig. 5b-d). As observed in Fig. 5a and b, the nanowhiskers grow on the shadowed sidewalls of both the samples. Further, many islands or grains as well as nanowhiskers are present on the surface, part of the bottom exposed to the incident vapor, and on illuminated sidewalls. The morphological features observed in Fig. 5c are characteristic of the samples prepared by HT-GLAD, as reported in our previous papers. However, no recognizable islands or grains are present on the shadowed sidewalls, and only thin and long nanowhiskers grow.
on these sidewalls (Fig. 5d). Few nanowhiskers grow on the shadowed part of the bottom (Fig. 5b and d). This suggests that the re-evaporation or reflective scattering of atoms deposited on the sidewalls of the trenches contributes to the growth of nanowhiskers.

Effects of local deposition geometry on growth of nanowhiskers.

In addition to the growth of nanowhiskers on the shadowed sidewalls, note that the size and number of nanowhiskers growing on the sidewalls depend strongly on \(\alpha \). Figure 6 shows a plan view of samples prepared at \(\alpha = 73 \), 84, and 87°. As schematically indicated under each SEM image, the incident direction of Al vapor under the condition of large \(\alpha \) is more parallel to the trenches than that under the condition of small \(\alpha \). At \(\alpha = 73^\circ \), only a few short nanowhiskers grow on the sidewalls, whereas at large \(\alpha \), many long nanowhiskers grow on the sidewalls of the trenches. Figure 7 shows the relation between \(\alpha \) and the number density of nanowhiskers grown on the sidewalls for the samples with an average Al thickness of 30 nm. Clearly, the number of nanowhiskers drastically increases for \(\alpha \geq 80^\circ \).

Next, we discuss the effect of the deposition geometry on the growth of Al nanowhiskers. Because \(\gamma \) is fixed to 85° and the amount of Al deposited on the sidewall is constant at 30 nm, the number and size of the nanowhiskers should not change if deposition is carried out on a large flat substrate. Ordinary diffusion processes cannot satisfactorily explain this \(\alpha \) dependence of the number of nanowhiskers. In the deposition on the sidewalls of the trenches, the distance from the trench edge to the growth point changes significantly with a change in \(\alpha \). If atoms deposited in front of the growing nanowhiskers contribute to the growth by re-evaporation or scattering, the dependence of the number and size of nanowhiskers on \(\alpha \) may be understood.

In fact, it has been reported that the sticking coefficient of metals on some oxide substrates is extremely small even at a few hundred degrees Celsius. For example, Benck et al. \(^{16} \) reported the sticking of Ag deposited on some oxides as a function of the substrate temperature. The significant amount of Ag was deposited at large deposition angles in their experimental setup. Remarkably, even at 300°C, the sticking coefficient of Ag on SiO\(_2\) is smaller than 0.3. The sticking coefficient of Al on SiO\(_2\) may be similar. If atoms reflected on the surface in front of the growing nanowhiskers also contribute to their growth, the growth rate increases significantly.

We used a conventional growth model \(^{1,11,17} \) to estimate the contribution of reflected atoms to the nanowhisker growth. Figure 8 shows the growth model of nanowhiskers on the sidewall of a trench. In this conventional growth model, adatoms diffuse over the sides of the nanowhiskers and are incorporated at the top of the nanowhiskers. As an extreme case of the fastest growth, we assume that all atoms impinging upon the nanowhiskers are incorporated into the nanowhiskers and that their radius does not change during the growth process. Evaporated atoms are directly incident on the side of a nanowhisker of length \(l \) growing at a distance \(w \) from the edge of the substrate. Here, the vapor flux incident on the surface of the side of the nanowhisker is \(f \tan \gamma \), where \(f \) is the component of the vapor flux perpendicular to the surface. We assume that the atoms reflected on the surface in front of the nanowhisker also contribute to the nanowhisker growth. Here, we also assume that the reflectance of the atoms is \(s \). The length of the nanowhisker depending on the reflectivity of the atoms is written as

![Figure 7. Relation between \(\alpha \) and number density of nanowhiskers growing on sidewalls for samples with average Al thickness of 30 nm.](Image)

Figure 7. Relation between \(\alpha \) and number density of nanowhiskers growing on sidewalls for samples with average Al thickness of 30 nm.

Figure 8. Growth model of nanowhiskers on sidewall of trench.
not all adatoms might be incorporated into the nanowhiskers, and rough surfaces.13 In our previous paper, we reported that there are a result is consistent with the experimental results shown in Fig. 7. contribution of atoms reflected on the surface in front of nanowhiskers to nanowhisker growth, long nanowhiskers can grow on a very rough surface. If we take into account the contribution of atoms reflected on the surface in front of nanowhiskers to nanowhisker growth, long nanowhiskers can easily grow from small nuclei. The growth of nanowhiskers on the shadowed sidewall may be attributed to the contribution of reflected or scattered atoms. Therefore, we can say that atoms reflected or scattered on the surface in front of nanowhiskers significantly contribute to the growth of long nanowhiskers by HT-GLAD.

Conclusion

We carried out the HT-GLAD of Fe and Al on a heated substrate with trench patterns. Nanowhiskers selectively grew on the substrate by the shadowing effect and under controlled geometrical deposition conditions. In the growth of Al nanowhiskers on the sidewalls of the trenches, nanowhiskers grew not only on illuminated sidewalls but also on shadowed sidewalls. In addition, the size and number of nanowhiskers growing on the sidewalls depended strongly on α, although γ was maintained constant. The reflective scattering of atoms on the surface in front of nanowhiskers plays an important role in the growth of nanowhiskers.

Acknowledgments

We are grateful to Sadamu Kinoshita for the SEM observations. We are thankful to Akio Takada of Sony Corporation for providing the patterned substrates.

Kyoto University assisted in meeting the publication costs of this article.

References

Figure 9. Calculated results of nanowhisker length as a function of α for various values of s. In these calculations, we assumed \(l_0 = 0.1 \), \(d = 30 \), \(r = 30 \), \(w_0 = 50 \) nm, and \(γ = 85° \).