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Abstract

Medium energy hadron beams are desirable in various applications such as accelerator driven subcritical systems (ADSR), high
intensity neutron sources and carbon therapy. Compactnessand easy operation characters are important for this energyregion,
especially in the case of medical use purposes. This paper introduces a novel superferric scheme with scaling fixed-fieldalternating
gradient (FFAG) accelerators, which can provide 400MeV/u carbon ions for cancer therapy. By employing a maximum fieldof 5T
with a high field index, 8.5m diameter with 85cm radius excursion is achieved in a single FFAG ring. The lattice configuration and
design of superferric magnet sectors with high permeability materials were described in detail. This scheme can also beextended
to other hadron applications.
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1. Introduction

Medium energy hadron beams (kinetic energy above 1.0GeV
proton or 375MeV/u carbon ion), have important applications
in accelerator-driven systems for nuclear energy, proton drivers
for intense neutrons and muons, and carbon therapy. Exist-
ing candidate machines are synchrotrons, superconductingcy-
clotrons, linacs and FFAG accelerators. Superconducting mag-
nets are widely employed since a high magnetic field can be
achieved with very low power consumption using supercon-
ducting coils, that reduces the accelerator size and power con-
sumption.

Since the first proof-of-principle proton FFAG synchrotron
was developed at KEK in 2000[1], FFAG accelerators have un-
dergone ten years of intense development, including both scal-
ing and non-scaling categories [2, 3]. The world first ADSR
prototype experiment was performed using a 150MeV FFAG
complex, at KURRI in 2009 [4], and other plan to boost the en-
ergy to around 1GeV has been initiated. Some other designs for
high energy, high power proton drivers using FFAGs have also
been proposed [5, 6]. The characteristics of strong focusing
and zero chromaticity in scaling FFAGs make them attractive
in various applications. Furthermore, a small magnet aperture
size with high field index and fast acceleration with fixed field
renders this type of accelerator competitive versus synchrotrons
and cyclotrons in the area of medium energy hadron beam ap-
plications, especially for carbon cancer therapy.

In recent years, clinical studies have shown that carbon ions
have a larger biological effect on tissue than protons and X-
rays, as well as being more effective on hypoxic radio-resistant
tumors. In the meantime, carbon therapy has been transformed
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from being research oriented to clinically oriented. Four car-
bon therapy centers have been established, three in Japan and
one in German. In 2009, among 16 proposals for hadron ther-
apy facilities, 7 planned to employ carbon ions with energy of
400MeV/u [7].

Fundamental requirements of accelerators for carbon ther-
apy are: (1)easy and reliable operation; (2) compactness and
small size; (3) precise control of beam parameters such as dose
rate, beam energy and intensity [8]. The same penetration depth,
e.g. 25cm in water, requires 200MeV protons or 375MeV/u car-
bon ions, with a ratio of magnetic rigidity about 2.85. Therefore
compactness becomes more important for carbon machines. Present
medical centers for carbon therapy all employs synchrotrons
with diameters larger than 20m. Some designs for hadron ther-
apy accelerators using FFAGs have been proposed [9–13], with
two representative projects: RACCAM [12], using a spiral sec-
tor scaling FFAG for proton therapy, and PAMELA [13] aiming
at design and engineering of a non-scaling FFAG scheme for
hadron therapy.

The main problem for applying scaling FFAGs to carbon
therapy is controlling the radius excursion. High magneticfields
using a superconducting technique is a solution, and a cosθ

combined-function superconducting scheme has been applied
to radial type FFAG magnets [14]. Compared with the ring
consisting of radial triplet sectors (DFD or FDF), spiral ring is
more compact due to a much lower circumference factor and
hence are the ideal type for carbon therapy applications. How-
ever, it is difficult to apply combined-function superconducting
coils to this type of sector.

To solve this problem, a superferric superconductingscheme
for the spiral FFAG magnet is proposed. The layout contains
one spiral FFAG ring, with momentum factor 4.9, correspond-
ing to C6+ beam injection and extraction energy of 20MeV/u
and 400MeV/u respectively, connected to a superconducting
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cyclotron or linac as the injector. A special hybrid-material
magnet which combines low-carbon iron with high permeabil-
ity material is adopted to achieve a maximum magnetic field of
5T with a moderate field index. The diameter of the FFAG ring
can be limited around 8.5m, with 85cm orbit excursion. This
paper is based on [15], with expansion and detailed considera-
tions of lattice and magnet design.

2. Lattice design of the FFAG ring for carbon therapy

2.1. General consideration

The proposed overall accelerator layout is composed of one
main spiral FFAG ring and an injector which delivers 20MeV/u
C6+ beam. A superconducting cyclotron or IH linac could be
the candidate injector. The schematic view is shown in Fig. 1.
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Figure 1: Schematic plan of the spiral FFAG ring for carbon therapy

The primary challenge is the high momentum ratio 4.9 for
the single spiral FFAG ring which accelerates the carbon beam
from 20MeV/u to 400MeV/u. From the scaling field lawB =
B0 · (r/r0)k andp = e · Bρ = e · B · r · p f , the radius excursion
can be expressed by:

∆r = ((pext/pin j)
1

1+k − 1) · r0 (1)

whereB0 is the magnetic field corresponding to the reference
radiusr0, andk is the field index. The packing factorp f is
defined byp f = θm/θcell = θm/(2π/N), whereθm is the open
angle (angular width regarding to the ring center) of the spiral
sector magnet, andN is the number of cells. A reasonable ex-
cursion should be less than 1m, since at present this value is
the maximum aperture size of the rf cavity using metallic alloy
(see section 2.3). To achieve this, a high field index and small
r0 (which means higher magnetic field as well) are necessary.

A linear matrix method was used for lattice parameters search-
ing. The criteria are: (1) the field indexk should be high enough
to keep the magnet compact. (2) Spiral angle should be less
than 60 degrees to provide enough drift space for installation of
rf cavity . (3) The operational betatron tunes should be far away
from low-order normal structural resonances. (4) The cell num-
berN should be minimized to increase the drift space length at
the same packing factor level. Cell number from 8 to 16 were
scanned andN = 10 was determined to be optimum. Fig. 2
shows the corresponding working diagram in parameter space
(k, ζ), whereζ is the spiral angle.
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Figure 2: Cell tunes plot by lattice parameter searching with cell numberN =
10, k range 3.0-8.0,ζ up to 60◦. Normal structure resonances up to 3rd order
are plotted

2.2. Lattice details

For a detailed lattice study including a transverse accep-
tance survey, four operating points aroudk = 5 in the tune dia-
gram with reasonableζ were chosen. The Zgoubi code with a
FFAG-SPI procedure [16] was employed for full energy range
simulation. For this case, the field distribution is expressed by:

Bz(r, θ) = B0 · (r/r0)k · F (r, θ − ln r/r0) (2)

whereF (r, θ− ln r/r0) is the spiral azimuthal dependence of the
field simulated by the Enge functionF (d) = 1/(1 + exp(c0 +

c1(d/g(r)) + ... + c5(d/g(r))5)). d is the relative distance to the
effective field boundary determined byr andθ, g(r) is the gap
size determined by:

g(r) = g0 · (r0/r)κ (3)

andc0 ∼ c5 are Enge coefficients.
With the fringe field distribution from Enge function, ray-

tracing result can show the tune shift during acceleration.Esti-
mation of acceptance is a purpose as well. Since the acceptance
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is mainly decided by the working point, onlyc0 andc1 are set
for simplification. They can approximately determine the fringe
extent, which is the main source to affect the vertical tune.

The footprints at full energy of four chosen operating points
are shown in Fig. 3, with corresponding lattice parameters listed
in Table 1. In this full energy tracking,κ = 0.6 is assumed, the
coefficientsc0 = −0.005, c1 = 0.95, c2∼5 = 0 are obtained from
fitting of azimuthal field distribution calculated by TOSCA[17].

Figure 3: Footprint of 4 selected operating points at full energy range(20MeV/u
to 400MeV/u), using the Zgoubi FFAG-SPI procedure, cell numberN = 10.
Solid lines are normal structural resonances up to 3rd order. Integer and half
integer resonances of the ring tune are plotted as gray lines.

Transverse acceptances of four operating points are com-
pared in Table 1. Results shows that vertical acceptances are
comparable close. But the horizontal acceptance is affected by
the position relative to the sextupole resonance and the horizon-
tal phase advance. Lattice d is selected due to its much higher
horizontal acceptance, as well as the spiral angle is moderate.
The detail lattice parameters are shown in Table 2.

2.3. RF parameters for rapid acceleration

Spot scanning irradiation using narrow pencil beams is es-
sential for cancer therapy, which requires a high repetition rate
of the beam (100Hz-200Hz).

The sweep frequency of the RF system can be determined
by the time of flightτ during acceleration withτ

τ0
= ( p

p0
)
−k

k+1 · E
E0

,

sinceτ = C
βc =

E·C
p·c2 and C

C0
= r

r0
= ( p

p0
)

1
k+1 according to the

scaling law, whereC is the circumference, andτ0, p0 are the
time of flight and the momentum corresponds to the injection
energyE0.

In case of 5ms acceleration period with 200Hz repetition
rate, the energy gain per turneV sinφs = 10keV and total turns
is N = 38000 are obtained from integrals of time of flight
T =

∫

τEn · dN which fulfills T = 4.9ms. For synchronous

Table 2: Lattice of the carbon FFAG ring

Parameter Value

Particle species 12C6+

Injector
superconducting cyclotron,
or IH linac

Lattice type spiral sector, scaling FFAG
Cell number 10
Injection/extraction energy 20 MeV/u, 400MeV/u
Injection/extraction rigidith 1.3T ·m, 6.36T ·m
Momentum ratio 4.9
Field index 4.6
Spiral angle 53.0◦

Packing factor 0.37
Average orbit radius 2.55-3.4 m
Bmax @ extraction 5.06T
νx/νz (cell tunes) 0.26/ 0.18
βx min/max 1 0.56/ 1.95 m
βy min/max 1 1.2 / 2.9 m
D min/max 1 0.33/ 0.56 m

1 Twiss parameters corresponds to the injection momentum

Table 3: Basic rf parameters

Parameter Value

Repetition rate 200Hz
RF frequency 3.78MHz - 10.0MHz
Number of cavities 4
Harmonic number 1
RF peak voltage 5kV
γt 2.37
Field gradient 25kV/m
Radial aperture 90cm
Q 1.1

phaseφs = 30◦ and 4 cavities installed, the peak voltage is
about 5kV, corresponding to 25kV/m gradient for 20cm cavity
length. The cyclic frequency varies from 3.78MHz to 10.0MHz
during acceleration. The horizontal aperture of the cavityis
90cm, which is determined by radius excursion.

To achieve this high field gradient and very broad band-
width, a high permeability magnetic alloy (MA) core [18] is
required. This type of cavity has been proved to be efficient in
the 150MeV FFAG ring developed at KEK [19], with a 35kV/m
field gradient, low quality factorQ ∼ 1 and large aperture of
1m. The basic RF parameters are listed in Table. 3, which are
modest for an MA-loaded core technique.

3. Superferric magnet design

3.1. Superferric scheme using high permeability material

To fulfill magnet parameters in the proposed lattice, super-
conducting magnets has to be employed. Considering difficul-
ties including design and fabrication for applying combined-
function superconducting scheme to spiral sector magnets,we
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Table 1: Parameters comparison of 4 selected working points(a-d)

Lattice
k ζ p f Horizontal Acceptance Vertical Acceptance

(πmm ·mrad) (πmm ·mrad)

a 5.4 55.0 0.37 1300@inj./ 1800@extr. 240@inj./ 200@extr.
b 5.4 52.0 0.375 750@inj./ 360@extr. 260@inj./ 200@extr.
c 5.0 50.0 0.39 2900@inj./ 1400@extr. 370@inj./ 290@extr.
d 4.6 53.0 0.37 3500@inj./ 2400@extr. 450@inj./ 270@extr.

proposed the superferric scheme, which only employs super-
conducting coil to put high current on ferric magnet poles and
simplifies coil design. This scheme has been applied to most
superconducting cyclotrons. For reference, in cyclotrons, the
field indexk ≈ γ − 1 , is 0.5 even for 400MeV/u carbon ions
and can be implemented by pole shaping. However, the field
index for the proposed FFAG ring is much higher. Simulation
results with the TOSCA code shows that by using iron poles,
only k < 2.0 is feasible without trim coils, because the relative
permeabilityµr of saturated iron at high field is almost equal to
that of the air.

To achieve a high field index, some rare-earth metal such
as holmium (Ho) or gadolinium(Gd), which have a higher per-
meability than air even in high field are preferred. The general
feature of this type of material is its almost linear B-H curves
with constantµr at different induction fields, below the Curie
temperature. These materials have been applied in superfer-
ric quadrupoles and cyclotrons [20, 21], and measurement re-
sults show that at an induction magnetic fieldB = 5T , for Gd
µr ≈ 18.0 and for Hoµr ≈ 7.0.

The proposed superferric magnet employs this type of high
permeability material as the pole layer, but still uses ironas the
return yoke, because a much higherµr in a non-saturated field
reduces the yoke size. The illustration of this scheme is shown
in Fig. 4. The cross section of the magnet can be separated into
3 layers: (1) the pole layer with high permeability Gd; (2) the
non-saturated iron yoke; (3) the saturated iron area between (1)
and (2).

Gd

Saturated iron

Non-saturated iron

path a path b

ga gb

LGda

LSIa

LYoke
a

LSIb

LYoke
b

LGdb

Figure 4: Superferric magnet scheme which combines iron yoke and high per-
meability pole material

Even using a high permeability layer, a constant field index
can not be achieved by relying on the pole gap shape, and a des-
ignated layer geometry is required. A simulation study showed
that for a simple layer configuration illustrated in Fig. 4 with the
gap size defined by Eq. 3 (κ = k), the local field indexk was far

from the design value and the field at the extraction radius was
much lower than the expected value. The reason was owing
to the complex flux condition in multi-layer material configu-
ration including saturated iron. For analysis, magnetic circuits
were used. As shown in Fig. 4, two integral pathsa andb were
chosen at the injection and extraction radii. To establish the
baseline situation of multi-layer material, magnetic circuits in a
normal conducting ferric magnet can be expressed by Ampere’s
law:

NI =
∮

path−a

H · dl ≈
Ba · ga

µ0
+

Byoke
a

µiron
r µ0

· Lyoke
a

=

∮

path−b

H · dl ≈
Bb · gb

µ0
+

Byoke
b

µiron
r µ0

· Lyoke
b (4)

whereBa, Bb are mid-plane magnetic fields at integral pathsa
andb, ga andgb are corresponding gap sizes. Since for non-
saturated iron,µiron

r ≫ 1, which eliminates the second term, the
gap geometry forms a field gradient in Eq. 5:

ga/gb = (rb/ra)k =⇒ Bb/Ba = (rb/ra)k (5)

In the superferric scheme with multi-layer materials, the
magnetic circuit at patha is given by:

∮

path−a

H · dl ≈
Ba · ga

µ0
+

BGd
a · L

Gd
a

µGd
r · µ0

+
BS I

a · L
S I
a

µS I
r · µ0

+Hyoke · Lyoke (6)

where the superscripts Gd and SI correspond to gadolinium
and saturated-iron layers. A similar equation applies to path
b. Only the termHyoke · Lyoke can be neglected. To fulfill
Eq. 5, the sum of reluctance in Gd and saturated-iron should
be balanced for different integral paths. SinceµGd

r ∼ 20 and
µS I

r ∼ 2, BS ILS I/µS I
r µ0 is the dominant term.LS I

b < LS I
a can

be derived fromBS I
b > BS I

a . With a reasonable assumption,
LGd

a + LS I
a ≈ LGd

b + LS I
b , we have the general requirement that

LGd
b > LGd

a , and the thickness of the Gd layer should be modu-
lated along the radius. However, an analytical relation cannot
be established due to the nonlinearity of magnetic materials.
We used a geometry length function given by:

LGd(r) = d0 + d1/g(r)m (7)

whered0, d1 and m are empirical coefficients by parameters
search using TOSCA.
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3.2. Procedures of magnet modeling and optimization

For spiral sector scaling FFAG magnet using variable pole
gap, the purpose of magnet modeling and optimization is to
control the chromaticity during beam acceleration, especially
for the vertical tune which will be enlarged due to the decreased
fringe extent caused by the smaller gap size at higher beam en-
ergy. Experience from the design of the RACCAM prototype
magnet [22] has demonstrated the compensation of the tune
shift by optimizations on the pole shape.

This section describes a series of procedures for sophisti-
cated 3D magnet modeling and optimization. To clarify them
in logical view, a flow chart is shown in Fig. 5.

Figure 5: Flow chart for procedures of magnet modelling and optimization

The first step is to setup the baseline of the magnet geom-
etry, including the configuration of Gd layer, the pole chamfer
and field clamps. Study shows the field index has a sensitive de-
pendency on the thickness of Gd layer. For parameters search
of Eq. 7, linear element model with TOSCA was used for con-
servation of computation time. The criteria lies on that errors of
the central magnetic field are within±10% compare to the the-
oretical value obeying the scaling law. For the proposed magnet
parameters,d0 = 12.0, d1 = 65.0, m = 2.1 are determined.

By introducing a pole chamfer and field clamps, the fringe
field extent and the change in field flutter along the radius canbe
reduced, Study shows that a variable width pole chamfer with
increased size along the radius will compensate the naturalfield
flutter growth due to a smaller pole gap. Field clamps are very
effective to narrow the fringe field extent, as well as to decrease
the change in flutter. In a high field situation, the thicknessand
material are important factors.

After the setup of a baseline model, a sequence of itera-
tive optimizations need be performed, for the purpose of limit-
ing transverse betatron tune shifts to avoid dangerous resonance
crossing. The following three routines are applied:

1. Correction of the central magnetic field (at the middle
line of the spiral sector) by gap shaping of the magnet

pole. The initial pole gap is constructed using Eq. 3 with
κ = k. Then the calculated central fieldBmodel

cen (r) is com-
pared with the theoretical valueBtheo(r) given by the scal-
ing law, and the new gap sizeg′(r) is calculated from pre-
vious valueg(r) by:

g′(r) = g(r) · Bmodel
cen (r)/Btheo(r) (8)

2. Correction of the effective magnetic field boundary based
on calculation of the field integrals

∫

Bz ·dl. This method
has proved to be efficient for alignment of the local spi-
ral angle and local field index determined by field inte-
grals, thus stabilizing transverse focusing. By using the
method introduced in [22], the effective field boundary
Le f f

entrance | exit can be calculated by field integrals along the
entrance andexit path of reference orbits at each side of
the center of the magnet sector (Eq. 9). Then these ra-
dius dependent results are compared to the fixed theo-
retical field boundaryLtheory = (π/N) · R · p f , and itera-
tive pole geometry modifications are performed to reduce
this difference. Meantime, the local spiral angle, which
is directly determined by the effective field boundary, is
aligned to the design value.

Le f f
entrance | exit = (

∫

Bz · dl)entrance | exit/Bcenter
z (9)

3. Modification of the local spiral angle, to compensate for
the vertical tune shift after optimization using the former
methods. In the case of cell numberN ≫ 1, transverse
tunes can be estimated using first order approximation:

ν2x ≈ 1+ k (10)

ν2z ≈ −k + F · (1+ 2 tan2 ζ) (11)

Stableνx can be obtained by a local field index correc-
tion, but for νz, even after a good alignment with local
ζ, the field flutter remains about 20% difference between
injection and extration radii. Sincek should be constant,
the only free knob is the local spiral angleζ. By using
the derived Eq. 12 and observedδνz, the minute change
of local spiral angleδζ can be estimated from localζ and
averageF.

dνz
dζ
=

2F · tanζ
√

−k + F(1+ 2 tan2 ζ) · cos2 ζ
(12)

As shown in Fig. 5, the first two routines are combined in
one iteration. Normally after 5 iterations, errors of the local
field index and the effective boundary can be controlled within
the tolerance (suggested tolerance±2% for the local field index,
and±0.5% for the effective boundary), then the third routine
on local spiral modification is proceeded. The betatron tunes
calculated from particle tracking on the extracted field mapis
the final reference for the magnet optimization.

3.3. Prototype magnet modeling and beam dynamics results

A prototype superferric magnet has been modeled using
TOSCA Preprocessor, which is demonstrated in Fig. 6. The
magnet parameters are listed in Table 4. Compared with the lat-
tice parameters (see Table 2), only the packing factor increased
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Table 4: Parameters of the magnet model

Parameter Value

Field index 4.6
Spiral angle 53 degree
Packing factor 0.38
Open angle 13.68 degree
Radial expand of the magnet pole 2.4m-3.6m
Total weight (one sector) 21 tons
Total current of the coil 182kA· T

to 0.38. A variable length Gd pole layer is combined with an
iron yoke. Field clamps with a constant gap size using the same
Gd material are used to limit the field extent. The thickness
of the clamp influences field flutter and is modulated along the
radius. At the injection radii where significant decrease ofthe
field flutter exists, the clamp has a maximum thickness of 5cm.

Field clamp

Top view

Front view (coils and clamps are hidden)

Figure 6: TOSCA model of multi-layer superferric spiral sector

Iterative procedures on the sector pole geometry described
in section 3.2 are performed. To demonstrate the comparative
results, three models are picked up. model2 is the initial model,
model7 is the model after correction of the central field and the
effective boundary with 5 iterations, and the final model7-v4 is
the model after modification on the local spiral angle. The cor-
rections are performed in good field region (2.5-3.4m) on radial
dimension, which covers the pole radius from injection 2.51m
to extraction 3.37m. As shown in Fig. 7 and Fig. 8, by compar-
ing model7 with model2, errors of effective field boundary are
controlled within±0.5%, and both local field index and central
magnetic fields are well aligned to the design value.

Transverse tunes covering the full energy region are calcu-

Figure 7: Effective boundary error of the magnet models, with the error calcu-
lated byδ = (Le f f

entrance|exit − Ltheory)/Ltheory . (top) model2; (bottom) model7.

Figure 8: (top) local field index calculated from field integrals and central field
of the magnet sector; (bottom) central field distribution along the radius, com-
parison to theoretical value from scaling law

lated by the Zgoubi code on 2D mid-plane TOSCA field maps,
and evolution during the model optimization procedure is shown
in Fig. 9. It can be observed for model7 after effective boundary
correction,νx is stable around 2.6 and the vertical tune shift is
abbreviated to∆νz < 1.0, compared to model2. For model7-v4
which has a more stableνz, a linear modification of the local
spiral angle was adopt according to Eq. 12, withδζ = 0.07◦/cm
from R = 300cm to R = 244cm, andδζ = −0.02◦/cm from
R = 302cm to R = 340cm.

Horizontal and vertical beam acceptances are also estimated,
shown in Fig. 10 and Fig. 11. For horizontal acceptances, the
average value is about 3000πmm ·mrad.; for the vertical situa-
tion, 390πmm ·mrad and 180πmm ·mrad corresponding to the
injection and extraction energy respectively. These acceptances
have a good match to the estimation from the Enge model in
Section 2.2.
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Figure 9: Evolution of the transverse tunes of the ring during model optimiza-
tion procedure, calculated by Zgoubi using 2D TOSCA maps.

4. Conclusion and discussion

This paper shows the feasibility of using a compact super-
ferric scaling FFAG with spiral sectors for carbon therapy appli-
cations. Detailed methods and procedures relating to the design
of lattice and superferric magnet are described. The designcan
also be transferred to other applications that use medium energy
hadron beams. The merit of this scheme is that a small size ring
with an 85cm radius excursion can be achieved when acceler-
ating carbon ions up to 400MeV/u with a single spiral FFAG
ring. It is also possible to use a fast spot scanning mode in
cancer therapy with high repetition rate and rapid acceleration.

At present, there exist some issues which are beyond the
scope of this paper.

1. The detailed experimental results of high permeability
materials, such as the B-H curve dependence on tem-
perature; For Gd which has a high Curie point of about
290K, optional working points exist below this tempera-
ture. Higher permeability is possible and desired, which
renders better field quality and eases the magnet design
and construction.

2. Practical issues related to carbon therapy, such as control
of dose rate and conformity, beam transfer and gantry de-
sign, variable energy scheme etc. These factors are im-
portant for clinically oriented demands and require de-
tailed study.
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Figure 10: Horizontal stability region of beam phase space,along the radius.
Initial vertical deviationz0 = 1mm is assumed. The acceptance is estimated
by ǫ = x2

max/β, whereβ is calculated from small amplitude phase space, and
xmax is the radial deviation to the center of the phase space corresponding to the
maximum stable phase space envelope.
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