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Abstract

We define a product of algebraic probability spaces equipped with two states. This product
is called a conditionally monotone product. This product is a new example of independence
in non-commutative probability theory and unifies the monotone and Boolean products, and
moreover, the orthogonal product. Then we define the associated cumulants and calculate the
limit distributions in central limit theorem and Poisson’s law of small numbers. We also prove
a combinatorial moment-cumulant formula using monotone partitions. We investigate some
other topics such as infinite divisibility for the additive convolution and deformations of the
monotone convolution. We define cumulants for a general convolution to analyze the deformed
convolutions.
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1 Introduction

Non-commutative probability theory lays the foundation of quantum mechanics and has many math-
ematical branches. The basic framework consists of a (unital) ∗-algebra A and a state ϕ on it. The
pair (A, ϕ) is called an algebraic probability space or a non-commutative probability space. When
A has structure of a C∗-algebra (resp. von Neumann algebra), we call the pair a C∗- (resp. von
Neumann) algebraic probability space.

Many kinds of independence have been studied as an aspect of non-commutative probability
theory. The usual independence in probability theory is called tensor independence from the non-
commutative probabilistic viewpoint. Other famous ones are free independence defined by Voiculescu
[43], Boolean independence by Speicher and Woroudi [42] and monotone independence by Muraki
[31]. These kinds of independence can canonically be realized by using products of states on the free
product of algebras (with or without the identification of units): there are two “universal products”
(tensor and free) defined on the free product of algebras with the identification of units [3, 41]; there
are three universal products (tensor, free and Boolean) defined on the free product of algebras without
the identification of units; there are five “natural products” (tensor, free, Boolean, monotone and
anti-monotone) defined on the free product of algebras without the identification of units [32, 33].
These results can also be understood in terms of tensor structures with inclusions [14]. In particular,
monotone and Boolean products are important in this paper. Moreover, the conditionally (c- for
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short) free product of states was introduced by Bożejko, Leinert and Speicher [8, 9]. This product
can be seen as a universal product of pairs of states which can be defined similarly to the single
state case. As such a concept has not been defined in the literature, we shall systematically study it
elsewhere.

In [8] it was proved that the c-free product and cumulants unify the free and Boolean products and
their cumulants introduced in [40, 42, 44]. In addition, the c-free product also unifies the monotone
product as proved in [15]. While the latter is quite nontrivial, some complication appears in its
application: it is difficult to repeat the calculation of monotone products in terms of c-free products;
it is difficult to identify monotone cumulants [21] in terms of c-free cumulants. The latter difficulty
is essentially the same as the former. The solution of these difficulties is a purpose of this paper.

To this end, in Section 3 we introduce a c-monotone product analogously to the c-free product.
Once it is introduced, the monotone and Boolean products can be formulated in terms of it. The
concept of c-monotone independence can also be extracted from the c-monotone product since the
product is associative. In terms of probability measures, we can also define (additive) c-monotone
convolutions. We prove that c-monotone independence and c-free one include orthogonal indepen-
dence [26] as special cases. Therefore, the additive c-monotone convolution unifies the additive
monotone, Boolean and orthogonal convolutions. As a result, c-monotone convolutions can give the
characterization of orthogonal convolutions (Theorem 6.2 of [26]).

In Section 4 we introduce c-monotone cumulants rn(µ, ν) to linearize powers of probability mea-
sures. A moment-cumulant formula is proved by using combinatorics of monotone partitions; this
formula is naturally expected from the monotone case [21]. An important point is that c-monotone
cumulants generalize monotone and Boolean cumulants. Here we achieve a purpose of this paper.

The remaining sections are roughly divided into two parts; one is devoted to infinitely divisible
distributions, and the other is to deformations of the monotone convolution.

In Sections 6–8, we investigate convolution semigroups and infinitely divisible distributions. Ad-
ditive monotone and Boolean infinitely divisible distributions were first studied in [31] and [42],
respectively. The results in this paper generalize these studies: we prove the Lévy-Khintchine for-
mula, and the correspondence among a convolution semigroup, an infinitely divisible distribution, a
pair of vector fields and a positive definite sequence of cumulants.

Moreover, we construct convolution semigroups from monotone and Boolean ones. As a result,
c-monotone cumulants rn(·, ν), for a fixed ν, turn out to linearize the Boolean convolution. We
note that infinite divisibility was introduced and studied in [22] for c-free independence. Results on
c-monotone infinite divisibility however do not follow from the c-free case.

In Sections 10–15 we work on deformations of the monotone convolution. This topic may impress
the reader as specialized at first sight; however this clarifies how the structure of c-monotone indepen-
dence behaves analogously to that of c-free independence. A deformation of the free convolution can
be defined in a graph of probability measures [10, 11, 23, 24, 35, 36]. More precisely, if T is a map from
the set of probability measures to itself, we can define the graph {(µ, Tµ); µ is a probability measure}.
If this graph is closed under the c-free convolution, we can define an associative convolution. For
the details, the reader is referred to Section 10. Analogously, a deformed convolution arises from the
c-monotone convolution of a graph of probability measures. These kinds of convolutions include the
monotone and Boolean convolutions. We show many examples of such deformed convolutions. A
remarkable point is that such maps T , found in the context of c-free convolutions, give associative
convolutions also in the c-monotone case.

The Boolean and monotone convolutions preserve the sets {µ; supp µ ⊂ [0,∞)} and {µ; µ is symmetric}.
The former property can be proved easily in terms of the operator-theoretic approach in [17]; the
latter can be proved by using the complex-analytic characterizations of the convolutions. As an
extension of these properties, we give necessary and sufficient conditions under which the deformed
convolution explained above preserves the two sets.

We introduce the cumulants for the convolution deformed by a map T and then limit distributions
are calculated for some class of such convolutions. When we introduce the cumulants of the deformed
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convolutions, the axiom of homogeneity for cumulants does not hold in general (see (13.5)). For this
reason we consider the uniqueness and the existence of cumulants of a general convolution in Section
13.

Let us mention a few topics which are not covered in this paper. Multiplicative convolutions and
the infinite divisibility were studied in [5, 6, 15, 16, 27] in the Boolean, monotone and orthogonal
cases. Multiplicative c-monotone convolutions can be similarly defined to generalize the monotone,
Boolean and orthogonal convolutions. We do not treat these in this paper; these aspects will be
studied in [20].

2 Preliminaries

2.1 Reciprocal Cauchy transform

We use the notation C+ := {z ∈ C; Imz > 0}. The Cauchy transform of a probability measure µ is
defined by

Gµ(z) =

∫

R

1

z − x
dµ(x), z ∈ C\R. (2.1)

The reciprocal Cauchy transform of a probability measure µ is defined by

Hµ(z) =
1

Gµ(z)
, z ∈ C\R. (2.2)

This is an analytic map from C+ to C+. Since limy→∞ iyGµ(iy) = 1, Hµ has the following form:

Hµ(z) = b + z +

∫

R

1 + xz

x− z
dη(x), (2.3)

where b ∈ R and η is a positive finite measure. Conversely, any function of the form of the right
hand side of (2.3) is a reciprocal Cauchy transform of a probability measure (see [2, 30] for details).

2.2 Monotone independence

Muraki defined the concept of monotone independence in [31]. A definition is as follows. Let (A, ϕ)
be an algebraic probability space and let I be a linearly ordered set. A family of subalgebras {Ai}i∈I

is said to be monotone independent if the equality

ϕ(a1a2 · · · an) = ϕ(aj)ϕ(a1a2 · · · aj−1aj+1 · · · an) (2.4)

holds for ak ∈ Aik with i1, i2, · · · , in ∈ I, ij−1 < ij > ij+1 and 1 ≤ j ≤ n. When j = 1 (resp.
j = n), the condition ij−1 < ij > ij+1 is understood to be i1 > i2 (resp. in−1 < in). The monotone
convolution µ B ν is defined for two probability measures µ, ν and is characterized by the formula

HµBν = Hµ ◦Hν . (2.5)

The monotone convolution is non-commutative and associative.
Let NC(n) be the set of all non-crossing partitions [34]. Let M(n) be the set of all monotone

partitions defined by

M(n) := {(π, λ) : π ∈ NC(n), if V, W ∈ π and V is in the inner side of W , then V >λ W}, (2.6)

where λ denotes a linear ordering of the blocks of π. V >λ W means that V is larger than W under
the linear ordering λ (see [32, 33], and also [28, 29]).
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In the paper [21] the concept of monotone cumulants has been defined. Monotone cumulants
do not satisfy the additivity for general probability measures, but satisfy the power additivity:
rn(µBN) = Nrn(µ). The moment-cumulant formula is described as

mn(µ) =
∑

(π,λ)∈M(n)

1

|π|!
∏
V ∈π

r|V |(µ). (2.7)

Example 2.1. We exhibit the moment-cumulant formula until the forth order.

m1(µ) = r1(µ),

m2(µ) = r2(µ) + r1(µ)2,

m3(µ) = r3(µ) +
5

2
r1(µ)r2(µ) + r1(µ)3,

m4(µ) = r4(µ) + 3r1(µ)r3(µ) +
3

2
r2(µ)2 +

13

3
r1(µ)2r2(µ) + r1(µ)4.

2.3 Conditionally free independence

Let I be an index set. Let Ai be a unital ∗-algebra and let ϕi, ψi be states on Ai for i ∈ I.
The c-free product of triples (Ai, ϕi, ψi)i∈I was defined by Bożejko and Speicher in [9]. We define
(A, ϕ, ψ) = ∗i∈I(Ai, ϕi, ψi) by setting A := ∗i∈IAi (the free product with the identification of units)
and ψ := ∗i∈Iψi (the free product of states). ϕ is defined by the following condition: the equality

ϕ(a1 · · · an) =
n∏

k=1

ϕik(ak) (2.8)

holds if ak ∈ Aik with i1 6= · · · 6= in and ψik(ak) = 0 for all 1 ≤ k ≤ n. If the index set I consists of
two elements, that is, |I| = 2, ϕ is denoted by ϕ1ψ1∗ψ2ϕ2.

Let µ, ν be probability measures on R with compact supports. Define the R-transform of ν and
the c-free R-transform of (µ, ν) by

1

Gν(z)
= z −Rν(Gν(z)), (2.9)

1

Gµ(z)
= z −R(µ,ν)(Gν(z)). (2.10)

We expand R(µ,ν)(z) =
∑∞

n=1 Rn(µ, ν)zn−1 as a formal power series. Rn(µ, ν) are called c-free cu-
mulants. Similarly, we expand Rν(z) =

∑∞
n=1 Rn(ν)zn−1 and Rn(ν) are called free cumulants. In

this paper, Hµ(z) is more useful than Gµ(z), and correspondingly, we use φ(µ,ν)(z) := R(µ,ν)(
1
z
) and

φν(z) := Rν(
1
z
). Then (7.4) and (7.7) can be written as

Hν(z) = z − φν(Hν(z)), (2.11)

Hµ(z) = z − φ(µ,ν)(Hν(z)). (2.12)

A moment-cumulant formula for c-free independence is

mn(µ) =
∑

π∈NC(n)

( ∏
V ∈π,

V : outer

R|V |(µ, ν)
)( ∏

V ∈π,
V : inner

R|V |(ν)
)
, (2.13)

which generalizes the free and Boolean moment-cumulant formulae.
The c-free convolution of (µ1, ν1) and (µ2, ν2) is the pair (µ, ν) = (µ1, ν1) ¢ (µ2, ν2), where µ and

ν are characterized by

φν(z) = φν1(z) + φν2(z), (2.14)

φ(µ,ν)(z) = φ(µ1,ν1)(z) + φ(µ2,ν2)(z). (2.15)

Let (µ1ν1 ¢ν2 µ2, ν1 ¢ ν2) denote the c-free convolution of (µ1, ν1) and (µ2, ν2).
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2.4 Technical facts

We summarize the notation and several lemmata which will be used in Sections 10, 11 and 12. Let
P , P2, Pm, Pc, P+ and Psym be the set of probability measures, the set of probability measures with
finite variance, the set of probability measures with finite moments of all orders, the set of probability
measures with compact supports, the set of probability measures on [0,∞) and the set of symmetric
probability measures, respectively. The following lemma was proved in [30].

Lemma 2.2. A probability measure µ belongs to P2 if and only if Hµ has the representation

Hµ(z) = a + z +

∫

R

1

x− z
dρ(x), (2.16)

where a ∈ R, ρ a positive finite measure. a and ρ are determined uniquely. Furthermore, we have
ρ(R) = σ2(µ) and a = −m(µ), where m(µ) is the mean of µ and σ2(µ) is the variance of µ.

We define a(µ) := inf{x ∈ supp µ} and b(µ) := sup{x ∈ supp µ}. We note that −∞ ≤ a(µ) < ∞
and −∞ < b(µ) ≤ ∞. The following lemmata 2.3-2.6 were proved in [18].

Lemma 2.3. Let ν and µ be probability measures. Then the following inequalities hold:
(1) If supp ν ∩ (−∞, 0] 6= ∅ and supp ν ∩ [0,∞) 6= ∅, then a(µ) ≥ a(ν B µ) and b(µ) ≤ b(ν B µ).
(2) If supp ν ⊂ (−∞, 0], then a(µ) ≥ a(ν B µ) and b(ν) + b(µ) ≤ b(ν B µ).
(3) If supp ν ⊂ [0,∞), then a(ν) + a(µ) ≥ a(ν B µ) and b(µ) ≤ b(ν B µ).

Lemma 2.4. We use the notation in (2.3). For µ ∈ P, the condition µ ∈ P+ is equivalent to
supp η ⊂ [0,∞) and Hµ(−0) ≤ 0. Moreover, if supp η ⊂ [0,∞), the condition Hµ(−0) ≤ 0 is
equivalent to

η({0}) = 0,

∫ ∞

0

1

x
dη(x) < ∞, b +

∫ ∞

0

1

x
dη(x) ≤ 0.

Lemma 2.5. Let {µt}t≥0 be a weakly continuous B-convolution semigroup with µ0 = δ0. Then the
following statements are equivalent:

(1) there exists t0 > 0 such that suppµt0 ⊂ [0,∞);

(2) suppµt ⊂ [0,∞) for all 0 ≤ t < ∞;

Lemma 2.6. We assume that the support of each µt is compact (or equivalently, the support of µt

is compact for some t > 0). Then the following statements are equivalent.

(1) There exists t0 > 0 such that µt0 is symmetric.

(2) µt is symmetric for all t > 0.

Lemma 2.7. P+ and Psym are closed subsets of P under the weak topology.

Proof. Let {µn} ⊂ P+ be a sequence converging to µ ∈ P . The weak convergence implies that
µ((−∞, 0)) ≤ lim inf µn((−∞, 0)) = 0; therefore, µ ∈ P+.

For a probability measure ν, ν ∈ Psym is equivalent to the condition

∫

R
g(x)dν(x) = 0 for all g ∈ Cb(R), g(−x) = −g(x), (2.17)

where Cb(R) is the set of bounded continuous functions on R. This equivalence can be proved with
a simple approximation argument. Then the conclusion is not difficult.
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3 Conditionally monotone independence

It is known that the free, Boolean and monotone products of states (denoted by ∗, ¦ and B, respec-
tively) can be expressed in terms of the c-free product [8, 15], as follows. We consider triples of
algebras and states (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2). We assume that Ai has a decomposition

Ai = C1⊕A0
i (3.1)

with a subalgebra A0
i (i = 1, 2). Then the delta state δi (i = 1, 2) is defined by δi(λ1 + a0) = λ for

λ ∈ C and a0 ∈ A0
i . δi is a homomorphism from Ai to C. Conversely, if there exists a homomorphism

from Ai to C, then A0
i can be defined to be its kernel.

We have the following relations.

(ϕ, ϕ) ∗ (ψ, ψ) = (ϕ ∗ ψ, ϕ ∗ ψ) on A1 ∗ A2, (3.2)

(ϕ, δ1) ∗ (ψ, δ2) = (ϕ ¦ ψ, δ1 ∗ δ2) on A0
1 ∗ A0

2, (3.3)

(ϕ, δ1) ∗ (ψ, ψ) = (ϕ B ψ, ψ) on A0
1 ∗ A2. (3.4)

In terms of additive convolutions of (compactly supported) probability measures, the equalities (3.2)-
(3.4) can be written as

(µ, µ) ¢ (ν, ν) = (µ ¢ ν, µ ¢ ν), (3.5)

(µ, δ0) ¢ (ν, δ0) = (µ ] ν, δ0), (3.6)

(µ, δ0) ¢ (ν, ν) = (µ B ν, ν). (3.7)

We can understand the associative laws of the Boolean and free convolutions from (3.5) and (3.6) since
the c-free convolution is associative. The associative law of the monotone convolution is, however,
not easy to understand from (3.7) since we cannot repeat (3.7) more than twice. We note here that
the associative law of the monotone convolution was proved rigorously first in [13].

We show that the monotone convolution for the second component solves this problem. We follow
the setting of [14] on unitization.

Definition 3.1. (1) Let (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2) be triples consisting of algebras and two linear
functionals and let A1 ∗nu A2 be the free product without the identification of units. We define a
c-monotone product

(A1, ϕ1, ψ1) B (A2, ϕ2, ψ2) := (A1 ∗nu A2, ϕ1 Bψ2 ϕ2, ψ1 B ψ2), (3.8)

by setting ϕ1Bψ2 ϕ2 as follows. Denote the unitization of each Ai by Ãi := C1fAi
⊕Ai. Then the linear

functionals ϕi and ψi are naturally extended to ϕ̃i and ψ̃i on Ãi by ϕ̃i(1fAi
) = 1 and ψ̃i(1fAi

) = 1.

There is a natural isomorphism ˜A1 ∗nu A2
∼= Ã1 ∗ Ã2. We let δ̃1 be the delta state associated to the

decomposition Ã1 = C1⊕A1. We define ϕ1 Bψ2 ϕ2 to be the restriction of ϕ̃1 eδ1∗fψ2
ϕ̃2 on A1 ∗nu A2.

(2) For pairs of probability measures (µ1, ν1) and (µ2, ν2), we define an additive c-monotone convo-
lution (µ1, ν1) B (µ2, ν2) := (µ1δ0¢ν2 µ2, ν1 B ν2). We write µ1 Bν2 µ2 for µ1δ0 ¢ν2 µ2.

Remark 3.2. We defined the c-monotone product on the free product without the identification
of units. Considering the context of category theory [14], it is natural to treat products of linear
functionals. This is why we considered linear functionals instead of states. The c-monotone product,
however, preserves the positivity of linear functionals since it is defined to be the restriction of the
c-free product.

Proposition 3.3. µ1 Bν2 µ2 is characterized by

Hµ1Bν2µ2 = Hµ1 ◦Hν2 + Hµ2 −Hν2 . (3.9)
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Proof. We immediately obtain the equality Hµ1◦Hν2(z) = Hν2(z)−φ(µ1,δ0)(Hν2(z)) from (2.12). Since
a c-free convolution is characterized by the sum of φ(,), we have Hµ1 ◦ Hν2(z) − Hν2(z) + Hµ2(z) =
z − φ(µ1Bν2µ2,ν2) ◦Hν2(z).

Remark 3.4. For any probability measures µi, νi (i = 1, 2), we can prove that

(1) Hµ1 ◦Hν2 + Hµ2 −Hν2 is an analytic map from C+ to C+,

(2) infz∈C+

Im(Hµ1◦Hν2 (z)+Hµ2 (z)−Hν2 (z))

Im z
= 1.

Therefore, the definition of the c-monotone convolution of compactly supported probability measures
can be extended to arbitrary probability measures [30].

We can easily check with Proposition 3.3 that the c-monotone convolution of probability measures
is associative, i.e.,

(
(µ1, ν1) B (µ2, ν2)

)
B (µ3, ν3) = (µ1, ν1) B

(
(µ2, ν2) B (µ3, ν3)

)
. Therefore, the c-

monotone product of pairs of linear functionals is also expected to be associative. To prove this, we
need to know how to compute mixed moments under the c-monotone product of linear functionals.
We use the following notation: for a linearly ordered index set I = {i1, i2, · · · , in} with i1 < i2 <
· · · < in, we set −→∏

i∈I

ai := ai1ai2 · · · ain .

Lemma 3.5. Let xj and yk be (possibly non-commutative) elements in an algebra over C with unit
1 and let pj ∈ C. Then the following identity holds:

x1y1x2 · · · yn−1xn =
∑

S⊂{1,··· ,n−1}

( ∏

j /∈S

pj

)(
xS1(yk1−pk11)xS2(yk2−pk21) · · · (ykm−pkm1)xSm+1

)
, (3.10)

where xSj
:=

−→∏
k∈Sj

xk. {Sj} is a partition of {1, · · · , n} determined by S as follows: if S =
{k1, · · · , km} with 1 ≤ k1 < · · · < km ≤ n−1, then Sj := {kj−1 +1, · · · , kj} for 1 ≤ j ≤ m+1, where
k0 := 0 and km+1 := n. If S = ∅, then S1 = {1, · · · , n}. A product over the empty set is defined to
be 1.

Proof. (3.10) can be proved easily by induction on the number n.

Theorem 3.6. Let (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2) be triples consisting of algebras and two linear func-
tionals. The calculation rule for mixed moments under ϕ1 Bψ2 ϕ2 is what follows.

(1) ϕ1 Bψ2 ϕ2(bax) = ϕ2(b)ϕ1 Bψ2 ϕ2(ax) for a ∈ A1, b ∈ A2 and bax ∈ A1 ∗nu A2. This is also
true if x is absent.

(2) ϕ1 Bψ2 ϕ2(xab) = ϕ1 Bψ2 ϕ2(xa)ϕ2(b) for a ∈ A1, b ∈ A2 and xab ∈ A1 ∗nu A2. This is also
true if x is absent.

(3) ϕ1Bψ2ϕ2(a1b1 · · · bn−1an) = (ϕ2(bj)−ψ2(bj))ϕ1Bψ2ϕ2(a1b1a2 · · · bj−1aj)ϕ1Bψ2ϕ2(aj+1bj+1 · · · bn−1an)
+ ψ2(bj)ϕ1 Bψ2 ϕ2(a1b1a2 · · · bj−1ajaj+1bj+1 · · · bn−1an) for ak ∈ A1, bk ∈ A2, 1 ≤ j ≤ n − 1,
n ≥ 2.

Proof. Since (1) and (2) can be proved similarly, we only prove (3). Moreover, we assume that j = 1
since the proof for general j is essentially the same. We denote by 1 the unit 1 ^A1∗nuA2

for simplicity.
First we obtain

ϕ̃1eδ1∗fψ2
ϕ̃2(a1b1a2 · · · bn−1an) = ϕ̃1eδ1∗fψ2

ϕ̃2(a1(b1 − ψ2(b1)1)a2 · · · bn−1an)

+ ψ2(b1)ϕ̃1eδ1∗fψ2
ϕ̃2(a1a2 · · · bn−1an).

(3.11)
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Using the identity (3.10) and the definition of c-free products, we have

ϕ̃1eδ1∗fψ2
ϕ̃2(a1(b1 − ψ2(b1)1)a2 · · · bn−1an)

= ϕ̃1eδ1∗fψ2
ϕ̃2

(
a1(b1 − ψ2(b1)1)

∑

S⊂{2,··· ,n−1}

( ∏

j /∈S

ψ2(bj)
)(

aS1(bk1 − ψ2(bk1)1) · · · aSm+1

))

= (ϕ2(b1)− ψ2(b1))
∑

S⊂{2,··· ,n−1}

( ∏

j /∈S

ψ2(bj)
)( ∏

j∈S

(ϕ2(bj)− ψ2(bj))
)
ϕ1(a1)

|S|+1∏
j=1

ϕ1(aSj
)

= ϕ1(a1)(ϕ2(b1)− ψ2(b1))ϕ̃1eδ1∗fψ2
ϕ̃2(a2b2 · · · bn−1an).

Theorem 3.7. The c-monotone product is associative.

Proof. Let (Ai, ϕi, ψi) (1 ≤ i ≤ 3) be triples consisting of algebras and two linear functionals.
We can naturally identify (A1 ∗nu A2) ∗nu A3 with A1 ∗nu (A2 ∗nu A3) and denote them simply by
A1 ∗nuA2 ∗nuA3. What should be proved is the equality ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3) = (ϕ1 Bψ2 ϕ2) Bψ3 ϕ3

on A1 ∗nu A2 ∗nu A3. We call x ∈ A1 ∗nu A2 ∗nu A3 an elementary word if x is of such a form as
x = x1x2 · · ·xn, xj ∈ Aij , i1 6= · · · 6= in. Each si is simply called an element of x. We give a proof by
induction on the number of elements of A3 contained in an elementary word. In this proof we use
the notation a, a′ and aj for elements of A1, b, b′ and bj for elements of A2 and c and cj for elements
of A3.

For x ∈ A2 ∗nu A3 ⊂ A1 ∗nu A2 ∗nu A3, we can easily prove that ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(x) =
(ϕ1 Bψ2 ϕ2)Bψ3 ϕ3(x). We assume that the statement is the case for all elementary words containing
not more than n elements of A3. Let x be an elementary word containing n + 1 elements of A3. Let
c be the (n + 1)-th element of A3 contained in x and let a, if exists, be the last element of A1 which
appears before c. Except for some cases, x can be written as x = uavcw, where each component
satisfies the following property:
(i) u is an elementary word in A1 ∗nu A2 ∗nu A3 containing not more than n elements of A3;
(ii) v is an elementary word in A2∗nuA3 containing not more than n elements of A3. The last element
of v belongs to A2, i.e., v = v′b1;
(iii) w is an elementary word in A1 ∗nu A2.
Here we note some remarks on the exceptional cases. For x of such a form as x = uacw, the following
proof is applicable by understanding that v plays the role of a unit. For x of such a form as x = uavc,
the proof follows easily from the property (1) in Theorem 3.6. If a does not appear, again from the
property (1) in Theorem 3.6 the proof is easy. Therefore, we only prove the claim for x of the form
uavcw. We consider the following two cases:

(1) The first element in w belongs to A1, i.e., w = a′w′;

(2) The first element in w belongs to A2, i.e., w = b2w
′.

Case (1): We obtain

(ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(uavcw)

= (ϕ3(c)− ψ3(c))(ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(uav)(ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(w)

+ ψ3(c)(ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(uavw)

= (ϕ3(c)− ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uav)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uavw)

= (ϕ3(c)− ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uav)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)(ϕ2 Bψ3 ϕ3(v)− ψ2 B ψ3(v))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ψ2 B ψ3(v)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw),

(3.12)
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where we have used the assumption of induction and the property (2) in Theorem 3.6. On the other
hand, we obtain

ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uavcw)

= (ϕ2 Bψ3 ϕ3(vc)− ψ2 B ψ3(vc))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(w)

+ ψ2 B ψ3(vc)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw)

= ϕ2 Bψ3 ϕ3(v)ϕ3(c)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(w)

− ψ2 B ψ3(v)ψ3(c)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(w)

+ ψ3(c)ψ2 B ψ3(v)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw)

= (ϕ3(c)− ψ3(c) + ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uav)ϕ1 Bψ2 ϕ2(w)

− ψ2 B ψ3(v)ψ3(c)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ψ2 B ψ3(v)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw)

= (ϕ3(c)− ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uav)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)
(
ϕ2 Bψ3 ϕ3(v)− ψ2 B ψ3(v)

)
ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ψ2 B ψ3(v)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw).

(3.13)

Therefore, they coincide with each other.
Case (2): Carrying out a similar calculation, we have

(ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(uavcw)

= (ϕ3(c)− ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uav)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uavw)

= (ϕ3(c)− ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ2 Bψ3 ϕ3(v)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)(ϕ2 Bψ3 ϕ3(vb2)− ψ2 B ψ3(vb2))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

+ ψ3(c)ψ2 B ψ3(vb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw′).

(3.14)

On the other hand we have

ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uavcw)

= (ϕ2 Bψ3 ϕ3(vcb2)− ψ2 B ψ3(vcb2))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

+ ψ2 B ψ3(vcb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw′)

= ϕ2 Bψ3 ϕ3(v)(ϕ3(c)− ψ3(c))ϕ2(b2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

+ ψ3(c)ϕ2 Bψ3 ϕ3(vb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

− ψ2 B ψ3(vcb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

+ ψ2 B ψ3(vcb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw′)

= ϕ2 Bψ3 ϕ3(v)(ϕ3(c)− ψ3(c))ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w)

+ ψ3(c)ϕ2 Bψ3 ϕ3(vb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

− ψ3(c)ψ2 B ψ3(vb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(ua)ϕ1 Bψ2 ϕ2(w
′)

+ ψ3(c)ψ2 B ψ3(vb2)ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(uaw′).

(3.15)

Then ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(x) = (ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(x) for any x containing n + 1 elements of A3.
By induction, ϕ1 Bψ2Bψ3 (ϕ2 Bψ3 ϕ3)(x) = (ϕ1 Bψ2 ϕ2) Bψ3 ϕ3(x) holds for all elementary words x in
A1 ∗nu A2 ∗nu A3.

Using the associativity of the c-monotone product, we can define the product Bi∈I(Ai, ϕi, ψi) for
a linearly ordered set I. Now we come to define the concept of c-monotone independence.
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Definition 3.8. Let (A, ϕ, ψ) be an algebraic probability space equipped with two states. We
assume that A is unital. Let I be a linearly ordered set. A family of subalgebras {Ai}i∈I is said to
be c-monotone independent if the following properties are satisfied:

(1) ϕ(a1a2 · · · an) = ϕ(a1)ϕ(a2 · · · an) for ak ∈ Aik with i1, i2, · · · , in ∈ I and i1 > i2;

(2) ϕ(a1a2 · · · an) = ϕ(an)ϕ(a1 · · · an−1) for ak ∈ Aik with i1, i2, · · · , in ∈ I and in > in−1;

(3) ϕ(a1a2 · · · an) = (ϕ(aj)− ψ(aj))ϕ(a1 · · · aj−1)ϕ(aj+1 · · · an) + ψ(aj)ϕ(a1a2 · · · aj−1aj+1 · · · an)
for ak ∈ Aik with i1, i2, · · · , in ∈ I and ij−1 < ij > ij+1 with 2 ≤ j ≤ n− 1;

(4) Ai are monotone independent with respect to ψ.

Remark 3.9. (1) This definition includes monotone (resp. Boolean) independence in the special
case ϕ = ψ (resp. ψ = 0) on Ai for all i ∈ I.
(2) One can define the independence for random variables by considering the subalgebra generated
by each random variable without the unit.
(3) Let a1 and a2 be c-monotone independent and self-adjoint. If ai has a pair of probability distri-
butions (µi, νi) under a pair of states, then the distribution of a1 + a2 is (µ1, ν1) B (µ2, ν2). This fact
follows from the definition of the c-monotone convolution.

We can prove that Ai (i ∈ I) are c-monotone independent in (A, ϕ, ψ) = Bi∈I(Ai, ϕi, ψi).
Here we mention a relation between c-monotone/free independence and orthogonal independence.

The reader is referred to [26] for the definition and properties of orthogonal independence and the
orthogonal (additive) convolution.

Proposition 3.10. With the notation in Definition 3.1, A1 is orthogonal to A2 with respect to the
linear functional (ϕ1 Bψ2 02, ψ1 B ψ2) in the algebra A := A1 ∗nu A2 for arbitrary linear functionals
ϕ1, ψ1, ψ2. 02 denotes the 0 linear functional on A2.

Remark 3.11. Orthogonal independence has been defined in a unital algebra [26]. To state this
proposition strictly along the line of the original definition, we only need to unitize A and extend
the linear functionals to Ã.

Proof. This fact follows from Theorem 3.6 immediately.

In terms of convolutions of probability measures, we obtain the following relations.

(µ, δ0) ¢ (δ0, ν) = (µ ` ν, ν), (3.16)

(µ, λ) B (δ0, ν) = (µ ` ν, λ B ν). (3.17)

The orthogonal convolution is characterized by Hµ`ν(z) = Hµ(Hν(z))−Hν(z) + z (see Theorem 6.2
of [26]). If we use the relation in Proposition 3.3, this characterization follows immediately.

We give another application: the equality µ B ν = (µ ` ν) ] ν (see Corollary 6.6 in [26])
can be understood in terms of the associativity of the c-monotone convolution. We first note that
(δ0, ν)B(ν, δ0) = (δ0δ0¢δ0 ν, ν) = (ν, ν) and (µ, µ)B(δ0, ν) = (µ ` ν, µ). Using the associativity we can
calculate (µ, µ)B(δ0, ν)B(ν, δ0) in different two ways and we obtain ((µ ` ν)]ν, µBν) = (µBν, µBν).

4 Conditionally monotone cumulants

4.1 Power additivity of cumulants

In the paper [21], monotone cumulants were introduced. The crucial concept is the dot operation
N.X which is defined as the sum of independent random variables with the same distributions as
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X. If X is a self-adjoint element with the distribution µ, the random variable N.X has the proba-
bility distribution µ?N , where ? is the additive convolution associated to a concept of independence.
Moreover, the uniqueness of cumulants holds also in the setting of two states (we explain this briefly
at the end of this subsection).

While the dot operation is fundamental for cumulants, we use a method based on the character-
ization in Proposition 3.3 to define cumulants. This method is useful to obtain relations between
generating functions.

The c-monotone convolution consists of two components. While the first component comes from
a c-free convolution, c-free cumulants are not useful to find c-monotone cumulants. For the second
component, we use the monotone cumulants.

We define c-monotone cumulants for the first component. Let Dλ be the dilation operator defined
so that

∫
R f(x)(Dλµ)(dx) =

∫
R f(λx)µ(dx) for all bounded continuous functions f .

Lemma 4.1. Let µ ∈ Pm. We define bn = bn(µ) by Hµ(z) = z
(
1 +

∑∞
n=1

bn

zn

)
in the sense of

asymptotic expansion. Then bn is of the form

bn = −mn + Wn(m1, · · · ,mn−1), (4.1)

where Wn is a polynomial. Moreover, bn(Dλµ) = λnbn(µ) for λ > 0. In particular, Wn does not
contain a constant term or linear terms.

Proof. We have

Hµ(z) = z
1

1 +
∑∞

k=1
mk

zk

= z
(
1−

∞∑

k=1

mk

zk
+ (

∞∑

k=1

mk

zk
)2 − · · ·

)
,

(4.2)

so that the polynomials Wn exist. The last statement follows from the relation HDλµ(z) = λHµ(λ−1z).

Lemma 4.2. For any n ≥ 3, there exists a polynomial Yn of 2n−3 variables such that bn(µ1Bν2 µ2) =
bn(µ1) + bn(µ2) + Yn(b1(µ1), · · · , bn−1(µ1), b1(ν2), · · · , bn−2(ν2)). In addition, Yn does not contain a
constant term or linear terms. For n = 1 and 2, we have b1(µ1 Bν2 µ2) = b1(µ1) + b1(µ2) and
b2(µ1 Bν2 µ2) = b2(µ1) + b2(µ2).

Proof. We have the equality

Hµ1Bν2µ2(z) = Hµ1(Hν2(z)) + Hµ2(z)−Hν2(z)

= b1(µ1) +
∞∑

n=1

bn+1(µ1)Gν2(z)n + z + b1(µ2) +
∞∑

n=1

bn+1(µ2)

zn

= b1(µ1) +
∞∑

n=1

bn+1(µ1)

zn

(
1 +

∞∑

k=1

mk(ν2)

zk

)n

+ z + b1(µ2) +
∞∑

n=1

bn+1(µ2)

zn
.

(4.3)

We can express mk as a polynomial of rn (1 ≤ p ≤ k) from Lemma 4.1: mk(ν2) = −bk(ν2) +
Xk(b1(ν2), · · · , bk−1(ν2)), where Xk is a polynomial without a constant term or linear terms. There-
fore, we have the conclusion.

Let rn(ν) be the monotone cumulants of µ and Aν(z) = −∑∞
n=1

rn(ν)
zn−1 be their generating function.

Let {(µt, νt)}t≥0 be a c-monotone convolution semigroup with (µ0, ν0) = (δ0, δ0). Then {νt}t≥0 is a
monotone convolution semigroup with ν0 = δ0. We define µ := µ1 and ν = ν1. Proposition 3.3
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implies that Hµs+t = Hµs ◦Hνt + Hµt −Hνt . We assume that mn(µt) is a differentiable function of t.
Differentiating the equality with s formally and putting s = 0, we obtain

d

dt
Hµt(z) = A(µ,ν)(Hνt(z)), (4.4)

where A(µ,ν)(z) = d
dt

Hµt(z)|t=0. We expand A(µ,ν)(z) as a formal power series:

A(µ,ν)(z) = −
∞∑

n=1

rn(µ, ν)

zn−1
. (4.5)

(4.4) is equivalent to

d

dt
Gµt(z) =

∞∑
n=1

rn(µ, ν)Gµt(z)2Gνt(z)n−1 (4.6)

as a formal power series. Thus there exists a polynomial Mn for any n ≥ 3 such that

d

dt
mn(µt) = rn(µ, ν) + Mn(r1(µ, ν), · · · , rn−1(µ, ν),m1(µt), · · · ,mn−1(µt),

m1(νt), · · · ,mn−2(νt)).
(4.7)

For n = 1 and 2, we can understand that M1 = 0 and that M2 only depends on r1(µ, ν) and m1(µt).
Since mk(νt) is a polynomial of r1(ν), · · · , rk(ν), we can prove inductively that mn(µt) is of the form

mn(µt) = rn(µ, ν)t + t2Cn(t, r1(µ, ν), · · · , rn−1(µ, ν), r1(ν), · · · , rn−2(ν)), (4.8)

where Cn is a polynomial for any n ≥ 3 and rk(µ) is the k-th monotone cumulant of µ. From the
construction, Cn is a universal polynomial in the sense that Cn does not depend on µ or ν; Cn is
determined only by the definition of c-monotone independence. It is easy to show that m1(µt) =
r1(µ, ν)t and m2(µt) = r2(µ, ν)t + r1(µ, ν)2t2. If we set t = 1, rn(µ, ν) turns out to be expressed as
a polynomial of mk(µ) and mk(ν) (1 ≤ k ≤ n). This relation can be generalized to any probability
measures µ, ν ∈ Pm since Cn is universal.

Definition 4.3. For probability measures µ, ν ∈ Pm, we define the c-monotone cumulants rn(µ, ν)
(n ≥ 1) by the equations

mn(µ) = rn(µ, ν) + Cn(1, r1(µ, ν), · · · , rn−1(µ, ν), r1(ν), · · · , rn−2(ν))

for n ≥ 3. For n = 1, 2, we define r1(µ, ν) := m1(µ) and r2(µ, ν) := m2(µ)−m1(µ)2.

Now we prove the power additivity of cumulants. The proof is based on the relation of generating
functions in Proposition 3.3. We note, however, that we can give a proof without the use of generating
functions as shown in [21].

Theorem 4.4. rn((µ, ν)BN) = Nrn(µ, ν) holds for µ, ν ∈ Pm and N ∈ N.

Proof. We define µN by (µN , νBN) = (µ, ν)BN . We define

mn(ν, t) :=
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

tk

k!

k∏

l=1

il−1ril−il−1
(ν) (4.9)

and
mn(µ, ν, t) := rn(µ, ν)t + t2Cn(t, r1(µ, ν), · · · , rn−1(µ, ν), r1(ν), · · · , rn−2(ν)), (4.10)

which may not be moments of a probability measure for general t. It is noted that mn(µ, ν, 1) =
mn(µ) and mn(µ, µ, t) = mn(µ, t). The latter equality comes from the relation (µ, µ) B (ν, ν) =
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(µ B ν, µ B ν). We shall show that mn(µ, ν, N) = mn(µN , νBN , 1)(= mn(µN)) for any n, N ≥ 1. We

define formal power series A(µ,ν)(z) using (4.5), H(µ,ν)(t, z) :=
( ∑∞

n=0
mn(µ,ν,t)

zn+1

)−1

and Hν(t, z) :=
( ∑∞

n=0
mn(ν,t)
zn+1

)−1

. Now we prove the equalities

H(µ,ν)(t + s, z) = H(µ,ν)(t,Hν(s, z))−Hν(s, z) + H(µ,ν)(s, z), (4.11)

Hν(t + s, z) = Hν(t,Hν(s, z)), (4.12)

as formal power series. To do so, we define K1
s (t, z) := H(µ,ν)(t,Hν(s, z))−Hν(s, z)+H(µ,ν)(s, z) and

K2
s (t, z) := Hν(t,Hν(s, z)). With the arguments just before Definition 4.3, we have

d

dt
H(µ,ν)(t, z) = A(µ,ν)(Hν(t, z)),

d

dt
Hν(t, z) = Aν(Hν(t, z)).

(4.13)

The latter equality follows from the former by setting µ = ν. Therefore it is clear that (H(µ,ν)(t +
s, z), Hν(t + s, z)) satisfies the two-dimensional complex differential equation

d

dt
H(µ,ν)(t + s, z) = A(µ,ν)(Hν(t + s, z)),

d

dt
Hν(t + s, z) = Aν(Hν(t + s, z))

(4.14)

for a fixed s with the initial value (H(µ,ν)(s, z), Hν(s, z)). On the other hand, (4.13) implies that

d

dt
K1

s (t, z) = A(µ,ν)(K
2
s (t, z)),

d

dt
K2

s (t, z) = Aν(K
2
s (t, z))

(4.15)

with the initial value (K1
s (0, z), K2

s (0, z)) = (H(µ,ν)(s, z), Hν(s, z)). Thus both (H(µ,ν)(t+s, z), Hν(t+
s, z)) and (K1

s (t, z), K2
s (t, z)) satisfy the same differential equation with the same initial value. It is

not difficult to prove the uniqueness of solution of an ordinary differential equation as a formal power
series; therefore (H(µ,ν)(t + s, z), Hν(t + s, z)) = (K1

s (t, z), K2
s (t, z)). Setting t = s = 1, we obtain

mn(µ, ν, 2) = mn(µ2, ν B ν, 1) = mn(µ2). Inductively, we can show that mn(µ, ν, N) = mn(µN).
By using the (power) associativity of the c-monotone convolution, we also obtain mn(µ, ν, MN) =
mn(µN , νBN ,M) for M,N ∈ N. Then we have

MNrn(µ, ν) + M2N2Cn(MN, r1(µ, ν), · · · , rn−1(µ, ν), r1(ν), · · · , rn−2(ν))

= Mrn(µN , νBN) + M2Cn(M, r1(µN , νBN), · · · , rn−1(µN , νBN), r1(ν
BN), · · · , rn−2(ν

BN)).
(4.16)

Since the coefficients of M coincide, it holds that rn(µN , νBN) = Nrn(µ, ν).

Before closing this subsection, we note some remarks. First we summarize the basic relations
between generating functions:

d

dt
H(µ,ν)(t, z) = A(µ,ν)(Hν(t, z)), H(µ,ν)(1, z) = Hµ(z), H(µ,ν)(0, z) = z, (4.17)

d

dt
Hν(t, z) = Aν(Hν(t, z)), Hν(1, z) = Hν(z), Hν(0, z) = z. (4.18)

These relations are analogous to

Hµ(z) = z − φ(µ,ν)(Hν(z)), (4.19)

Hν(z) = z − φν(Hν(z)), (4.20)
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which are basic for c-free convolutions. We note that monotone cumulants and Boolean cumulants
are special cases of c-monotone cumulants: A(µ,µ) is a generating function of monotone cumulants
and A(µ,δ0) is a generating function of Boolean cumulants.

Second, we note that c-monotone cumulants rn(µ, ν) satisfy the following conditions.

(K1’) Power additivity: rn((µ, ν)BN) = Nrn(µ, ν).

(K2) Homogeneity: for any λ > 0 and any n,

rn(Dλµ,Dλν) = λnrn(µ, ν), (4.21)

where Dλ is defined by (Dλµ)(B) = µ(λ−1B) for any Borel set B.

(K3) For any n, there exists a universal polynomial Qn (in the sense that Qn does not depend on µ
or ν) of 2n− 2 variables such that

rn(µ, ν) = mn(µ) + Qn(mp(µ),mq(ν) (1 ≤ p, q ≤ n− 1)). (4.22)

The usual additivity rn((µ1, ν1) B (µ2, ν2)) = rn(µ1, ν1) + rn(µ2, ν2) does not hold due to the non-
commutativity of the convolution. We can easily prove the uniqueness of cumulants satisfying (K1’),
(K2) and (K3) (see [21] and also Section 13 of the present paper).

4.2 Moment-cumulant formula and monotone partitions

Next we show a combinatorial moment-cumulant formula for the c-monotone convolution. Let
LNC(n) be the set of all linearly ordered non-crossing partitions defined by

LNC(n) := {(π, λ) : π ∈ NC(n), λ is a linear ordering of the blocks of π}. (4.23)

We prove that the n-th moment can be described as

mn(µ) =
∑

(π,λ)∈M(n)

1

|π|!
( ∏

V ∈π,
V : outer

r|V |(µ, ν)
)( ∏

V ∈π,
V : inner

r|V |(ν)
)
. (4.24)

This formula is analogous to the c-free formula

mn(µ) =
∑

(π,λ)∈LNC(n)

1

|π|!
( ∏

V ∈π,
V : outer

R|V |(µ, ν)
)( ∏

V ∈π,
V : inner

R|V |(ν)
)

(4.25)

if we impose the linear order structure. Clearly the role of the linear order structure is trivial in
(4.25), but crucial in (4.24).

When we defined c-monotone cumulants, we used the Taylor expansion of the equality d
dt

Hµt(z) =
A(µ,ν)(Hνt(z)) to prove the power additivity rn((µ, ν)BN) = Nrn(µ, ν). By contrast, the following is
of use in proving the moment-cumulant formula.

Proposition 4.5. Let rn(µ) and rn(µ, ν) be the momotone cumulants and c-monotone cumulants re-
spectively, and let mn(µ, ν, t) be the quantity defined in (4.10). Then we have the recursive differential
equations

d

dt
mn(µ, ν, t) =

n−1∑

k=0

(k + 1)rn−k(ν)mk(µ, ν, t)−
n−1∑

k=0

k∑

l=0

rn−k(ν)ml(µ, ν, t)mk−l(µ, ν, t)

+
n−1∑

k=0

k∑

l=0

rn−k(µ, ν)ml(µ, ν, t)mk−l(µ, ν, t).

(4.26)
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Remark 4.6. In the special case µ = ν, the above equation becomes d
dt

mn(µ, t) =
∑n−1

k=0(k +
1)rn−k(µ)mk(µ, t) which has been obtained in the case of monotone convolutions [21]. Moreover, we
have

d

dt
mn(µ, δ0, t) =

n−1∑

k=0

k∑

l=0

rn−k(µ, δ0)ml(µ, δ0, t)mk−l(µ, δ0, t), (4.27)

since rn(δ0) = 0. In this case rn(µ, δ0) is an n-th Boolean cumulant. It might be interesting that this
differential equation describes the structure of interval partitions.

Proof. We use the same notation as used in the subsection 4.1. Differentiating the equality (4.11)
with s and putting s = 0 we obtain

∂H(µ,ν)

∂t
(t, z) = Aν(z)

∂H(µ,ν)

∂z
(t, z)− Aν(z) + A(µ,ν)(z). (4.28)

We define G(µ,ν)(t, z) := 1
H(µ,ν)(t,z)

. Then we get the equality

∂G(µ,ν)

∂t
(t, z) = Aν(z)

∂G(µ,ν)

∂z
(t, z) + G(µ,ν)(t, z)2Aν(z)−G(µ,ν)(t, z)2A(µ,ν)(z). (4.29)

(4.26) follows from the expansion of (4.29) in formal power series.

We say a block V in a partition π ∈ P(n) is of interval type if there exist j and k (1 ≤ j ≤ n,
0 ≤ k ≤ n− j) such that V = {j, j + 1, · · · , j + k}.
Theorem 4.7. The moment-cumulant formula for c-monotone independence is

mn(µ) =
∑

(π,λ)∈M(n)

1

|π|!
( ∏

V ∈π,
V : outer

r|V |(µ, ν)
)( ∏

V ∈π,
V : inner

r|V |(ν)
)
. (4.30)

Proof. This proof gives the combinatorial meaning of the differential equations (4.26). The claim is
proved by induction on n: assume that the formula

mn(µ, ν, t) =
∑

(π,λ)∈M(n)

t|π|

|π|!
( ∏

V ∈π,
V : outer

r|V |(µ, ν)
)( ∏

V ∈π,
V : inner

r|V |(ν)
)

(4.31)

holds for 1 ≤ n ≤ N , where mn(µ, ν, t) is defined in (4.10). Let π = {V1 < · · · < V|π|} denote
a monotone partition (π, λ) ∈ M(N + 1); this notation means that a subscript of a block itself
expresses the linear ordering. Note that V|π| is always a block of interval type. Let k be defined as
|V|π|| = N + 1− k (0 ≤ k ≤ N). Two cases are possible: (1) V|π| is outer; (2) V|π| is inner.

(1) If V|π| is an outer block, π is of such a form as

V|π|σ τ

π

where σ and τ are arbitrary non-crossing partitions with σ ∈ NC(l) and τ ∈ NC(k − l) (0 ≤ l ≤ k).
We understand that σ = ∅ for l = 0 and τ = ∅ for l = k. Next we need to consider the linear
orderings of σ and τ . A linear ordering of the blocks of σ ∪ τ can be described by distributing
natural numbers {1, · · · , |σ| + |τ |} to them such that σ and τ , equipped with the natural numbers,

become monotone partitions. Once σ and τ are fixed, there exist (|σ|+|τ |)!
|σ|!|τ |! ways to divide the set

{1, · · · , |σ| + |τ |} into two subsets C and D with |C| = |σ| and |D| = |τ |. After such a division, we
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can choose linear orderings of σ from C and τ from D independently with each other, and hence, we
can take arbitrary (σ, ρ) ∈M(l) and (τ, µ) ∈M(k − l). The above arguments imply that

∑

(π,λ)∈M(N+1);
V|π|: outer

t|π|

|π|!
( ∏

V ∈π,
V : outer

r|V |(µ, ν)
)( ∏

V ∈π,
V : inner

r|V |(ν)
)

=
N∑

k=0

k∑

l=0

∑

(σ,ρ)∈M(l)
(τ,µ)∈M(k−l)

(|σ|+ |τ |)!
|σ|!|τ |!

t|σ|+|τ |+1rN+1−k(µ, ν)

(|σ|+ |τ |+ 1)!

( ∏
V ∈σ∪τ,
V : outer

r|V |(µ, ν)
)( ∏

V ∈σ∪τ,
V : inner

r|V |(ν)
)

=
N∑

k=0

k∑

l=0

rN+1−k(µ, ν)

∫ t

0

ml(µ, ν, s)mk−l(µ, ν, s)ds,

(4.32)

where we have used the assumption of induction in the last line.
(2) Next we consider the case where V|π| is inner. Since sums with V|π| inner blocks are difficult

to compute directly, first we sum over all monotone partitions and later we remove the redundant
sums, i.e., the sums over monotone partitions such that V|π| are outer. When |V|π|| = N +1−k, there
are k + 1 ways to choose a position of V|π| as a subset of {1, · · · , N}. After the choice of V|π|, we can
take arbitrary monotone partition of M(k) as if the highest block V|π| were absent. The prototype
of this idea appeared in [38] and was used in [21]. The above arguments then amount to

∑

(π,λ)∈M(N+1);
V|π|: inner

t|π|

|π|!
( ∏

V ∈π,
V : outer

r|V |(µ, ν)
)( ∏

V ∈π,
V : inner

r|V |(ν)
)

=
N∑

k=0

(k + 1)rN+1−k(ν)
∑

(σ,ρ)∈M(k)

t|σ|+1

(|σ|+ 1)!

( ∏
V ∈σ,

V : outer

r|V |(µ, ν)
)( ∏

V ∈σ,
V : inner

r|V |(ν)
)

−
N∑

k=0

k∑

l=0

∑

(σ,ρ)∈M(l)
(τ,λ)∈M(k−l)

(|σ|+ |τ |)!
|σ|!|τ |!

t|σ|+|τ |+1rN+1−k(ν)

(|σ|+ |τ |+ 1)!

( ∏
V ∈σ∪τ,
V : outer

r|V |(µ, ν)
)( ∏

V ∈σ∪τ,
V : inner

r|V |(ν)
)

=
N∑

k=0

(k + 1)rN+1−k(ν)

∫ t

0

mk(µ, ν, s)ds−
N∑

k=0

k∑

l=0

rN+1−k(ν)

∫ t

0

ml(µ, ν, s)mk−l(µ, ν, s)ds.

(4.33)

Combining the results from (1), (2) and Proposition 4.5, we have

mN+1(µ, ν, t) =
∑

(π,λ)∈M(N+1)

t|π|

|π|!
( ∏

V ∈π,
V : outer

r|V |(µ, ν)
)( ∏

V ∈π,
V : inner

r|V |(ν)
)
. (4.34)

Example 4.8. The moment-cumulant formula for n = 1, 2, 3, 4 is calculated as

m1(µ) = r1(µ, ν),

m2(µ) = r2(µ, ν) + r1(µ, ν)2,

m3(µ) = r3(µ, ν) + 2r2(µ, ν)r1(µ, ν) +
1

2
r2(µ, ν)r1(ν) + r1(µ, ν)3,

m4(µ) = r4(µ, ν) + 2r3(µ, ν)r1(µ, ν) + r3(µ, ν)r1(ν) + r2(µ, ν)2 +
1

2
r2(µ, ν)r2(ν)

+ 3r2(µ, ν)r1(µ, ν)2 + r2(µ, ν)r1(µ, ν)r1(ν) +
1

3
r2(µ, ν)r1(ν)2 + r1(µ, ν)4.
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5 Limit theorems

We show the central limit theorem and Poisson’s law of small numbers for c-monotone independence.
The t-transformation Ut [10], defined by

HUt(µ)(z) = (1− t)z + tHµ(z),

appears in the limit distributions.

Theorem 5.1. Let (A, ϕ, ψ) be a C∗-algebraic probability space with two states.
(1) Let {Xi}∞i=1 be identically distributed (with respect to each state), c-monotone independent self-
adjoint random variables in A. If ϕ(Xi) = ψ(Xi) = 0, ϕ(Xi) = α2 and ψ(X2

i ) = β2, then the
distribution of X1+···+Xn√

n
with respect to (ϕ, ψ) converges to (Uα2/β2(νβ2), νβ2) weakly, where νβ2 is the

arcsine law with variance β2. Uα2/β2(νβ2) is a Kesten distribution.

(2) Let X
(n)
N (1 ≤ n ≤ N, 1 ≤ N < ∞) be self-adjoint random variables such that

(a) for each N , X
(n)
N (1 ≤ n ≤ N) are identically distributed with respect to each state, c-monotone

independent self-adjoint random variables;

(b) Nϕ((X
(1)
N )k) → λ > 0 and Nψ((X

(1)
N )k) → ρ > 0 as N →∞ for all k ≥ 1.

Then the distribution of XN := X
(1)
N +· · ·+X

(N)
N with respect to (ϕ, ψ) converges weakly to (Uλ/ρ(pρ), pρ),

where pρ is the monotone Poisson distribution with parameter ρ.

Proof. We discuss the problems in terms of probability measures. Let µ, ν ∈ Pc such that m1(µ) =
m1(ν) = 0, m2(µ) = α2 and m2(ν) = β2 with α2, β2 > 0. We define (µN , νN) := (D 1√

N
µ,D 1√

N
ν)BN .

The convolution for the second component is the usual monotone convolution, so that the limit
distribution νβ2 exists and it is the centered arcsine law with variance β2. A simple calculation shows
that r1(µN , νN) = 0, r2(µN , νN) = α2 and rn(µN , νN) → 0 as N → ∞. Therefore, there exists a
pair of limit distributions (να2,β2 , νβ2) at least in the sense of moments. The limit distributions are
characterized by

d

dt
H(να2,β2 ,νβ2 )(t, z) = − α2

Hνβ2 (t, z)
, H(να2,β2 ,νβ2 )(1, z) = Hνα2,β2 (z), (5.1)

d

dt
Hνβ2 (t, z) = − β2

Hνβ2 (t, z)
, Hνβ2 (1, z) = Hνβ2 (z). (5.2)

We obtain Hνβ2 (t, z) =
√

z2 − 2β2t from (5.2). Setting t = 1, we obtain the limit measure νβ2(dx) =
1

π
√

2β2−x2
dx, x ∈ (−√2β,

√
2β). For the first component, we can easily prove that H(να2,β2 ,νβ2 )(1, z) =

(1− α2

β2 )z + α2

β2

√
z2 − 2β2, and hence

Gνα2,β2 (z) =
α2

√
z2 − 2β2 + (α2 − β2)z

(2α2 − β2)z2 − 2α4
. (5.3)

This is the Stieltjes transform of a Kesten distribution. In terms of the t-transformation Ut, the limit
distribution can be written as Uα2/β2(νβ2). It is compactly supported, so that the convergence is in
the sense of weak convergence (see Theorem 4.5.5 of [12]). We note that νβ2,β2 = νβ2 .

Next we consider Poisson’s law of small numbers. Let µ(N), ν(N) ∈ Pc such that Nmn(µ(N)) →
λ > 0 and Nmn(ν(N)) → ρ > 0 as N → ∞ for any n ≥ 1. We define (µN , νN) := (µ(N), ν(N))BN .
It is not difficult to prove that rn(µN , νN) → λ as N → ∞ for any n ≥ 1. It is known that νN
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converges weakly to the monotone Poisson distribution pρ with parameter ρ, which is characterized
by the differential equation

d

dt
Hpρ(t, z) =

ρHpρ(t, z)

1−Hpρ(t, z)
, Hpρ(1, z) = Hpρ(z), (5.4)

where Hpρ(1, z) = Hpρ(z). We let pλ,ρ denote the limit distribution limN→∞ µN in the sense of
moments. Then pλ,ρ is characterized by the differential equation

d

dt
H(pλ,ρ,pρ)(t, z) =

λHpρ(t, z)

1−Hpρ(t, z)
, H(pλ,ρ,pρ)(1, z) = Hpλ,ρ

(z). (5.5)

From (5.4) and (5.5) we have d
dt

H(pλ,ρ,pρ)(t, z) = λ
ρ

d
dt

Hpρ(t, z), which implies

Hpλ,ρ
(z) =

(
1− λ

ρ

)
z +

λ

ρ
Hpρ(z). (5.6)

It is not difficult to see that pλ,ρ has a compact support. Therefore, µN converges weakly to pλ,ρ.
Also in this case, pλ,ρ can be written as pλ,ρ = Uλ/ρ(pρ).

6 Convolution semigroups

We investigate convolution semigroups and infinite divisibility from this section. First we establish
the equivalence between a pair of vector fields and a weakly continuous c-monotone convolution
semigroup. We follow the method used by Muraki. We use the notation Ht(z) and Ft(z) for the
reciprocal Cauchy transforms of the left component of a semigroup and of the right one, respectively.

Theorem 6.1. Let {Ft(z)}t≥0 be a composition semigroup of reciprocal Cauchy transforms with
F0(z) = z. We assume that Ft(z) is continuous with respect to t ∈ [0,∞) for each fixed z ∈ C\R. Let
{Ht(z)}t≥0 be a family of reciprocal Cauchy transforms with H0(z) = z, satisfying the same continuity
condition as Ft(z) and satisfying the equality Ht+s(z) = Ht(Fs(z))−Fs(z) + Hs(z). Then there exist
analytic vector fields A1 and A2 such that Ht and Ft satisfy the differential equations

d

dt
Ht(z) = A1(Ft(z)), (6.1)

d

dt
Ft(z) = A2(Ft(z)). (6.2)

Moreover, the vector fields A1(z) = d
dt
|0Ht(z) and A2(z) = d

dt
|0Ft(z) have the representations

Aj(z) = −γj +

∫

R

1 + xz

x− z
dτj(x) (6.3)

for j = 1, 2, where τj is a positive finite measure and γj ∈ R (This is the Lévy-Khintchine formula
for the c-monotone convolution).

Conversely, given analytic vector fields A1 and A2 on the upper halfplane of the forms (6.3), by
solving the equations (6.1) and (6.2) we obtain {Ft(z)}t≥0 and {Ht(z)}t≥0 which are Cω functions
with respect to (t, z) and satisfy F0(z) = z, H0(z) = z, Ft+s = Ft ◦ Fs and Ht+s(z) = Ht(Fs(z)) −
Fs(z) + Hs(z).

Proof. We use the representations

Ht(z) = at + z +

∫

R

1 + xz

x− z
dηt(x), (6.4)

Ft(z) = bt + z +

∫

R

1 + xz

x− z
dξt(x). (6.5)
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We follow the method of [31]. The claims for Ft were proved in [31]; we only have to prove the
claims for Ht. However, the proof below actually includes that for Ft when we put Ht = Ft. A direct
calculation leads to the following equality:

Ht+s(z)−Ht(z) = as +

∫

R

1 + xz

x− z
ηs(dx) + (Fs(z)− z)

∫

R

1 + x2

(x− Fs(z))(x− z)
ηt(dx)

= (Hs(z)− z) + (Fs(z)− z)

∫

R

1 + x2

(x− Fs(z))(x− z)
ηt(dx).

(6.6)

Step (1): the right differentiability of Ht and Ft at 0. Take δ > 0, n ∈ N and k ∈ N (0 ≤ k ≤ n).
We set s = δ

n
and t = k

n
δ. Summing the equality (6.6) over k, we obtain

Hδ(z)− z = n(H δ
n
(z)− z) + (F δ

n
(z)− z)

n−1∑

k=0

∫

R

1 + x2

(x− F δ
n
(z))(x− z)

η k
n

δ(dx). (6.7)

Then

Hδ(z)− z

δ
=

H δ
n
(z)− z

δ/n
+ δ−1 ·

F δ
n
(z)− z

δ/n
· δ

n

n−1∑

k=0

∫

R

1 + x2

(x− F δ
n
(z))(x− z)

η k
n

δ(dx). (6.8)

Since Ht(i) = at+(1+ηt(R))i, at is a continuous function. If Fs(z) = z for some s > 0, then Fs(z) = z
for all s > 0, so that the parameter t of Ht expresses the Boolean time evolution. In this case, the
claims are trivial. Therefore, we assume that Fs(z) 6= z for all s > 0. Then

∫
R

1+x2

(x−Fs(z))(x−z)
ηt(dx) is

a continuous function of t since it can be expressed as (Ht(Fs(z))−Ht(z)− Fs(z) + z)/(Fs(z)− z).
Therefore,

lim
n→∞

δ

n

n−1∑

k=0

∫

R

1 + x2

(x− F δ
n
(z))(x− z)

η k
n

δ(dx) =

∫ δ

0

dt

∫

R

1 + x2

(x− z)2
ηt(dx). (6.9)

We note that limt↘0 ηt(R) = 0, and hence, for small enough δ > 0 the integral 1
δ

∫ δ

0
dt

∫
R

1+x2

(x−z)2
ηt(dx)

is small. If we put Ht equal to Ft, (6.9) implies the existence of

Aδ,2(z) := lim
n→∞

F δ
n
(z)− z

δ/n
=

(Hδ(z)− z)/δ

1 + 1
δ

∫ δ

0
dt

∫
R

1+x2

(x−z)2
ηt(dx)

(6.10)

for small δ, which has been obtained in [31]. The limit does not depend on δ > 0 as shown in [31];
we summarize the proof here. We can prove easily that Arδ,2 = Aδ,2 for any positive rational number
r. The equality (6.10) implies that Aδ,2 depends on δ continuously. Therefore, Arδ,2 = Aδ,2 for every
positive real number r > 0. Then it may be simply denoted by A2(z).

We note again that the equality

A2(z) =
(Fδ(z)− z)/δ

1 + 1
δ

∫ δ

0
dt

∫
R

1+x2

(x−z)2
ηt(dx)

(6.11)

holds. Taking δ → 0 in the above equality we obtain A2(z) = limδ↘0
Fδ(z)−z

δ
. Again for gen-

eral (Ht, Ft), by taking the limit n → ∞ in (6.8) we have the existence of the limit A1,δ(z) =

limn→∞
H δ

n
(z)−z

δ/n
which satisfies

Hδ(z)− z

δ
= A1,δ(z) + A2(z)δ−1

∫ δ

0

dt

∫

R

1 + x2

(x− z)2
ηt(dx). (6.12)

With the same argument as for A2,δ, A1,δ does not depend on δ, so that it may be denoted by A1.

Taking the limit δ ↘ 0 in (6.12), we have the right differentiability limδ↘0
Hδ(z)−z

δ
= A1(z).
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Step (2): the differentiability of Ht and Ft. We do not refer to the claims for Ft, since it is known
in [31], or since the proof below is true for Ft if we put Ht = Ft.

We define the right and left derivatives by setting D+
t Ht(z) = limδ↘0

Ht+δ(z)−Ht(z)

δ
and D−

t Ht(z) =

limδ↘0
Ht−δ(z)−Ht(z)

δ
respectively. Then

D+
t Ht(z) = lim

δ↘0

Hδ(Ft(z))− Ft(z)

δ

= A1(Ft(z)).

(6.13)

Take T > 0, δ > 0, n ∈ N and k ∈ N (0 ≤ k ≤ n). From an argument similar to the derivation of
(6.8), we have

HT (z)−HT−δ(z)

δ
=

H δ
n
(z)− z

δ/n
+ δ−1 ·

F δ
n
(z)− z

δ/n
· δ

n

n∑

k=1

∫

R

1 + x2

(x− F δ
n
(z))(x− z)

ηT− k
n

δ(dx). (6.14)

Taking the limit n →∞, we obtain

HT (z)−HT−δ(z)

δ
= A1(z) + δ−1A2(z)

∫ δ

0

dt

∫

R

1 + x2

(x− z)2
ηT−t(dx).

Moreover, let δ ↘ 0, to know that the limit

D−
t Ht(z) = A1(z) + A2(z)

(∂Ht

∂z
(z)− 1

)
(t > 0)

exists. Finally, the differentiability of Ht at t > 0 follows from the calculations

D+
t Ht(z) = lim

δ↘0

Ht(Fδ(z))−Ht(z)− Fδ(z) + Hδ(z)

δ

= lim
δ↘0

Ht(Fδ(z))−Ht(z)

Fδ(z)− z
· Fδ(z)− z

δ
+ lim

δ↘0

Hδ(z)− z

δ
− lim

δ↘0

Fδ(z)− z

δ

= A2(z)
∂Ht

∂z
(z) + A1(z)− A2(z)

= D−
t Ht(z).

(6.15)

(6.1) follows from (6.13). Then Ht(z) = z+
∫ t

0
A1(Fs(z))ds, which implies that Ht(z) is in Cω([0,∞)).

Step (3): the representation of A1(z). It is sufficient to prove that

(i) A1(z) is a Pick function, i.e., A1(z) is analytic in C+ and maps C+ into C+ ∪R;

(ii) limy→∞
ImA1(iy)

y
= 0.

Now we know the relation

A1(z) =
Hδ(z)− z

δ
− A2(z)δ−1

∫ δ

0

dt

∫

R

1 + x2

(x− z)2
ηt(dx), (6.16)

from which A1 is analytic. Since Hδ(z)−z
δ

is a Pick function, its limit A1 is also. It is easy to prove
the property (ii) by using (6.16).

Step (4): the converse statement. We note that the solution of the differential equation

d

dt
Ft(z) = A2(Ft(z)),

F0(z) = z,
(6.17)
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does not explode in a finite time [4]. Then the equation defines a flow of reciprocal Cauchy transforms
indexed by the non-negative real numbers. We can define Ht by setting

Ht(z) = z +

∫ t

0

A1(Fs(z))ds. (6.18)

We need to prove the equality Ht+s(z) = Ht(Fs(z))− Fs(z) + Hs(z). We fix s ≥ 0, z ∈ C+ and put
Jt(z) := Ht+s(z), Kt(z) := Ht(Fs(z)) − Fs(z) + Hs(z). Then d

dt
Jt(z) = A1(Ft+s(z)) and d

dt
Kt(z) =

A1(Ft ◦ Fs(z)) with J0 = K0 by definition, so that d
dt

Jt = d
dt

Kt. Therefore, Jt = Kt for all t ≥ 0.

7 Constructions of convolution semigroups

Several examples of monotone convolution semigroups are known in [19, 31]. In this section, we
show several ways to construct c-monotone convolution semigroups from monotone and Boolean
convolution semigroups.

(1) Let {µt}t≥0 be a weakly continuous Boolean convolution semigroup with µ0 = δ0. Then
{(µt, δ0)}t≥0 is a c-monotone convolution semigroup. The vector fields A1 and A2 are given by

A1(z) = −z + Hµ1(z), A2(z) = 0.

(2) Let {µt}t≥0 be a weakly continuous monotone convolution semigroup with µ0 = δ0. Then
{(µt, µt)}t≥0 is a c-monotone convolution semigroup. The vector fields A1 and A2 coincide.

(3) Let Ut be the t-transformation [10]. We recall that Ut(µ) is characterized by

HUt(µ)(z) = (1− t)z + tHµ(z).

Let {µt}t≥0 be a weakly continuous monotone convolution semigroup with µ0 = δ0. Then {(Ur(µt), µt)}t≥0

is a c-monotone convolution semigroup for any r ≥ 0 since, under the notation Ht(z) := HUr(µt), we
have

Ht(Fs(z))− Fs(z) + Hs(z) = (1− r)Fs(z) + rFt(Fs(z))− Fs(z) + (1− r)z + rFs(z)

= (1− r)z + rFt+s(z)

= Ht+s(z).

In this case, A1(z) = d
dt
|t=0Ht(z) = rA2(z). We note that this construction includes the example (2)

when r = 1. This property can be understood in terms of cumulants as follows.

Proposition 7.1. The relation
rn(µ]t, µ) = trn(µ) (7.1)

holds for all µ with the finite moments of all orders.

This means formally “rn(µ]t, µ) = rn(µBt)”, which connects the Boolean convolution with the
monotone convolution. We will generalize this relation in Corollary 7.4.

(4) Let {µt}t≥0 be a weakly continuous monotone convolution semigroup with µ0 = δ0 and a ∈ R.
Then {(δat, µt)}t≥0 is a c-monotone convolution semigroup. The vector field A1 is a constant a.

(5) The Cauchy distribution λtb(dx) := tb
π(x2+(tb)2)

dx is infinitely divisible in the tensor, free,
Boolean and monotone cases and becomes a convolution semigroup with the time parameter t ≥ 0.
Moreover, λtb is a strictly 1-stable distribution (see [7, 19, 31, 37, 42]) for any one of the four
kinds of convolutions. λtb plays a special role also in the case of c-monotone independence; for in-
stance, {(λbt, µt)}t≥0 is a c-monotone convolution semigroup for any monotone convolution semigroup
{µt}t≥0. A1(z) is a constant ib.

(6) We introduce an operation to construct a new c-monotone convolution semigroup for given
c-monotone convolution semigroups.
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Definition 7.2. A convolution κu,v: P × P → P is defined by

κu,v(µ, ν) := µ]u ] ν]v for u, v ≥ 0. (7.2)

In terms of reciprocal Cauchy transforms, we have

Hκu,v(µ,ν)(z) := uHµ(z) + vHν(z) + (1− u− v)z for u, v ≥ 0. (7.3)

Proposition 7.3. (1) Let {(µt, λt)}t≥0 and {(νt, λt)}t≥0 be c-monotone convolution semigroups with
the same right component. We let Aµ,λ

1 and Aν,λ
1 denote the vector fields for the left component of

{(µt, νt)}t≥0 and {(νt, λt)}t≥0, respectively, and also Aλ
2 denote the vector field for the common right

component. Then {(κu,v(µt, νt), λt)}t≥0 is a c-monotone convolution semigroup. A pair of the vector
fields is given by (uAµ,λ

1 + vAν,λ
1 , Aλ

2).
(2) In terms of cumulants, we can understand the convolution κu,v in the form

rn(κu,v(µ, ν), λ) = urn(µ, λ) + vrn(ν, λ)

for all probability measures µ, ν, λ with finite moments of all orders.

Proof. Denote by Hµ
t and Hν

t the reciprocal Cauchy transforms of µt and νt, respectively.

Hκu,v(µt,νt)(Fs)− Fs + Hκu,v(µs,νs) = uHµ
t (Fs) + vHν

t (Fs) + (1− u− v)Fs − Fs + uHµ
s + vHν

t

+ (1− u− v)z

= u(Hµ
t (Fs)− Fs + Hµ

s ) + v(Hν
t (Fs)− Fs + Hν

s ) + (1− u− v)z

= uHµ
t+s + vHν

t+s + (1− u− v)z

= Hκu,v(µt+s,νt+s).

The relation for the vector fields follows immediately. The second statement for cumulants follows
from the definition of c-monotone cumulants.

We obtain a nontrivial property of the c-monotone cumulants.

Corollary 7.4. We have the following relation between the additive Boolean convolution and the
c-monotone cumulants:

rn(µ ] ν, λ) = rn(µ, λ) + rn(ν, λ) (7.4)

for all probability measures µ, ν, λ with finite moments of all orders.

Remark 7.5. (1) Since (µ, δ0)B (ν, δ0) = (µ] ν, δ0) and rn(µ, δ0) is the n-th Boolean cumulant, this
corollary is trivial for λ = δ0.
(2) The uniqueness of Boolean cumulants follows from axioms (C1) and (C2’) (see Section 13). In
the present case, {rn(·, λ)}n≥1 satisfies (C1) and (C2), but do not satisfy (C2’) for any λ 6= δ0.

Example 7.6. With the above methods (1)-(6) and with examples of Boolean or monotone con-
volution semigroups in the literature, we can construct many examples of c-monotone convolution
semigroups. We give an important example among them. Consider the Kesten distribution µσ2,r

characterized by

Gµσ2,r
(z) :=

√
z2 − 2σ2 + (1− r)z

(2− r)z2 − 2σ2r
. (7.5)

µσ2,1(dx) = 1
π
√

2σ2−x2 dx is the centered arcsine law with variance σ2. We note Ur(µσ2,1) = µσ2,r.

Then {(µt,r, µt,1)}t≥0 is a c-monotone convolution semigroup since {µt,1}t≥0 is a monotone convolution
semigroup. This example is connected with the central limit measure for the c-monotone convolution
(see Section 5).
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In this section, we have shown constructions of c-monotone convolution semigroups and properties
of c-monotone cumulants. By the way, we can prove similar results in the conditionally free case.
Among them, the following is interesting. We omit the proof.

Proposition 7.7. Let Rn(µ, ν) be the c-free cumulants of (µ, ν). Then the identity

Rn(µ ] ν, λ) = Rn(µ, λ) + Rn(ν, λ) (7.6)

holds.

Finally we obtain the following relation between rn(µ, ν) and Rn(µ, ν). We note that we need a
result from Section 13.

Theorem 7.8. There exist polynomials Pn,k of n− k variables for 2 ≤ k ≤ n− 1, n ≥ 3 such that

rn(µ, ν) = Rn(µ, ν) +
n−1∑

k=2

Pn,k(m1(ν), · · · ,mn−k(ν))Rk(µ, ν). (7.7)

We note that r1(µ, ν) = R1(µ, ν) = m1(µ) and r2(µ, ν) = R2(µ, ν) = m2(µ) −m1(µ)2 for n = 1, 2.
Roughly, rn(µ, ν) is expressed by a linear combination of Rn(µ, ν) with polynomial coefficients mk(ν).

Proof. The existence of Pn,k follows from Corollary 7.4, Proposition 7.7 and the argument used in
Proposition 13.3 (1). We replace (µ, ν) with (Dλµ,Dλν) and compare the powers of λ, to conclude
that Pn,k only depends on m1(ν), · · · ,mn−k(ν). The reason why R1(µ, ν) does not appear is that
a term of the form Qn(m1(ν), · · · ,mp(ν))m1(µ) never appears in the moment-cumulant formulae in
both c-monotone and c-free cases, except for the first order r1(µ, ν) = R1(µ, ν) = m1(µ).

Example 7.9. The third cumulants for c-monotone and c-free cases are given by

r3(µ, ν) = m3(µ)− 2m2(µ)m1(µ)− 1

2
m1(ν)(m2(µ)−m1(µ)2) + m1(µ)3,

R3(µ, ν) = m3(µ)− 2m2(µ)m1(µ)−m1(ν)(m2(µ)−m1(µ)2) + m1(µ)3.

Therefore,

r3(µ, ν) = R3(µ, ν) +
1

2
m1(ν)R2(µ, ν). (7.8)

8 Infinite divisibility

In this section, we define infinite divisibility for the c-monotone convolution and we characterize the
infinite divisible distributions with compact supports.

Definition 8.1. A pair of probability measures (µ, ν) on R is said to be (additively) c-monotone
infinitely divisible if for any n ≥ 1 there exists a pair of probability measures (µn, νn) such that
(µ, ν) = (µn, νn)Bn.

The above definition might become easy to understand in terms of random variables in a C∗-
algebra:

Definition 8.2. In a C∗-algebraic probability space (A, ϕ, ψ) equipped with two states, we say that
a self-adjoint operator X has a c-monotone infinitely divisible distribution if for any n ≥ 1 there exist
a C∗-algebraic probability space (An, ϕn, ψn) and identically distributed, c-monotone independent
random variables X1, · · · , Xn ∈ An such that X has the same distribution as X1 + · · · + Xn with
respect to the two states.

23



These definitions are the same for compactly supported probability measures, since we know a
canonical realization of c-monotone independence in Section 3 and since µn, νn are compactly sup-
ported whenever µ, ν are (see Lemma 8.3). In this paper, we focus on the convolution of probability
measures, and hence, use the former definition.

Lemma 8.3. Let (µ3, ν3) be the c-monotone convolution of (µ1, ν1) and (µ2, ν2).
(1) Let (ai, ηi) and (bi, ξi) respectively denote the pairs of real numbers and finite measures appearing
in the representations in (2.3) for µi and νi. Then supp η2 ⊂ supp η3 and supp ξ2 ⊂ supp ξ3.
(2) If µi and νi (i = 1, 2) are compactly supported, also µ3 and ν3 are.

Proof. (1) We only prove the claim for the first component since the fact for the second component
is know in [31]. From a simple calculation, we obtain

Hµ3(z) = aµ1 + aµ2 + z +

∫

R

1 + xHν2(z)

x−Hν2(z)
dη1(x) +

∫

R

1 + xz

x− z
dη2(x). (8.1)

Applying the Stieltjes inversion formula, we have limv↘0

∫ b

a
ImHµ3(u + iv)du = 0 whenever [a, b] ∩

supp η3 = ∅, which implies that supp η2 ⊂ supp η3.
(2) If Gµi

and Gνi
(i = 1, 2) are analytic outside a ball, then Gµ1Bν2µ2 and Gν1Bν2 are also analytic

outside a ball.

Corollary 8.4. Let µ, ν be probability measures with compact supports. An n-th root of (µ, ν) for
the c-monotone convolution is unique for any n ≥ 1.

Proof. Let (µn, νn) be an n-th roof of (µ, ν), i.e., (µ, ν) = (µn, νn)Bn. µn and νn are compactly
supported from Lemma 8.3. With the power additivity of the monotone cumulants and the c-
monotone cumulants, we have rk(µn, νn) = 1

n
rk(µ, ν) and rM

k (µn) = 1
n
rM
k (ν) for all k ≥ 1. This

implies the uniqueness.

We prove the c-monotone analogue for Theorem 13.6 of [34].

Theorem 8.5. Let µ, ν be probability measures with compact support. The following statements are
equivalent.

(1) (µ, ν) is c-monotone infinitely divisible.

(2) There exists a compactly supported, weakly continuous c-monotone convolution semigroup {(µt, νt)}t≥0

with (µ0, ν0) = (δ0, δ0) such that (µ1, ν1) = (µ, ν).

(3) Both {rn(µ, ν)}n≥2 and {rn(ν)}n≥2 are positive definite sequences.

(4) There exist compactly supported probability measures µN , νN for each N such that (µN , νN)BN

converges to (µ, ν) weakly.

Proof. The implications (2) ⇒ (1) ⇒ (4) follow from Lemma 8.3. Now we prove (4) ⇒ (3). We note
that

rn(ν) = lim
N→∞

N

∫

R
xnνN(dx), (8.2)

rn(µ, ν) = lim
N→∞

N

∫

R
xnµN(dx). (8.3)

For a1, · · · , an ∈ C, we have
n∑

j,k=1

aj ākrk+j(µ, ν) = lim
N→∞

N

n∑

j,k=1

aj āk

∫

R
xk+jµN(dx)

= lim
N→∞

N
∣∣∣

n∑
j=1

aj

∫

R
xjµN(dx)

∣∣∣
2

≥ 0.

(8.4)
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Next we prove the implication (3) ⇒ (2). We do not know a priori the existence of R > 0 such that
|rn(µ, ν)| ≤ Rn and |rn(ν)| ≤ Rn. At least, however, there exist positive finite measures τ1, τ2 such
that

A1(z) := −r1(µ, ν) +

∫

R

1 + xz

x− z
τ1(dx) = −

∞∑
n=1

rn(µ, ν)

zn−1
, (8.5)

A2(z) := −r1(ν) +

∫

R

1 + xz

x− z
τ2(dx) = −

∞∑
n=1

rn(ν)

zn−1
(8.6)

in the sense of asymptotic expansion. We define two functions Ht, Ft and a weakly continuous c-
monotone convolution semigroup {(µt, νt)}t≥0 using Theorem 6.1. We obtain rn(µt, νt) = trn(µ, ν)
and rn(νt) = trn(ν) from the power additivity of the monotone cumulants and the c-monotone
cumulants. Therefore, µ1 and ν1 have the same moments as µ and ν, respectively. Since µ and ν are
compactly supported, (µ1, ν1) = (µ, ν); moreover, η1 and ξ1 are compactly supported. From Lemma
8.3 (1), ηt and ξt are compactly supported for 0 ≤ t ≤ 1. Recalling the equalities (6.11) and (6.16),
we conclude that supp τ1 ⊂ supp ηδ and supp τ2 ⊂ supp ξδ for sufficiently small δ > 0. Therefore,
supp τj is compact. It is immediate that µt and νt are compactly supported for all 0 ≤ t < ∞ from
Lemma 8.3 (2).

9 Remarks and discussions on infinite divisibility

Let D be the unit disc in the complex plane. Theorem 1.1 of [4] says that if a semigroup of analytic
maps φt(z) (t ≥ 0) defined on D with φ0(z) = z is continuous in [0,∞)×D, there exists an analytic
vector field as a generator of the semigroup. As a result, the semigroup also belongs to Cω([0,∞)×D).
There is a different proof of Theorem 6.1 based on the above (and its generalization). This approach
was used by Bercovici in [5] for multiplicative monotone convolutions (see also Franz’s argument in
[15]).

Weak convergence of probability measures on the real line is equivalent to pointwise convergence
of the reciprocal Cauchy transforms as shown in [30]. On the unit circle, the weak convergence is
equivalent to pointwise convergence of ηµ(z) := 1 − z

Gµ( 1
z
)
, z ∈ D. This fact can be proved in the

same idea as [30]. Therefore, a given weakly continuous convolution semigroup µt on R (resp. on T)
with µ0 = δ0 (resp. µ0 = δ1) has a continuous Hµt(z) (resp. ηµt(z)) for each z. The following fact is
needed to apply Theorem 1.1 of [4].

Proposition 9.1. Let {φt}t∈I be a family of analytic maps on D parametrized by t ∈ I, where I
is an interval. We assume that the map t 7→ φt(z) is continuous for each z ∈ D. Then the map
φ : I × D→ D defined by φ(t, z) = φt(z) is continuous.

The proof is not difficult; we will give a proof in [20]. Since D is analytically isomorphic to C+,
we can apply this to both additive and multiplicative convolutions.

In the case of the c-monotone convolution, the functional relation for reciprocal Cauchy transforms
is not only a composition semigroup: Fs+t = Fs ◦Ft and Ht+s = Ht ◦Fs−Fs +Hs. We used Muraki’s
method to prove Theorem 6.1, but it is also possible to use a method similar to Theorem 1.1 in [4]
for (Ht, Ft). This method is useful especially for the multiplicative convolution and we will show it
in [20].

We proved in Theorem 8.5 the equivalence between infinite divisibility and the embedding of a
measure into a convolution semigroup for compactly supported probability measures. We also proved
the positive definiteness of cumulants. This result is new even in the monotone case.
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10 Convolutions arising from the conditionally monotone

convolution

The c-monotone convolution unifies the monotone and Boolean convolutions:

(µ, µ) B (ν, ν) = (µ B ν, µ B ν), (10.1)

(µ, δ0) B (ν, δ0) = (µ ] ν, δ0). (10.2)

These are analogous to (3.5) and (3.6). We generalize these relations in this section in analogy with
the c-free case. Therefore, we first explain the c-free case.

For a map T : P → P , a new convolution ¢T can be defined by

(µ ¢T ν, Tµ ¢ Tν) = (µ, Tµ) ¢ (ν, Tν). (10.3)

A problem of Bożejko is to find all maps T : P → P such that

T (µ ¢T ν) = Tµ ¢ Tν. (10.4)

This relation exactly says that the graph {(µ, Tµ); µ ∈ P} is closed under the c-free convolution.
Once such T is found, the new convolution is associative and commutative. Moreover, this generalizes
the free and Boolean convolutions. Many maps satisfying (10.4) were found in [10, 11, 23, 24, 35, 36].

Motivated by these works, we consider the following type of convolution:

(µ BTν, Tν) = (µ, δ0) ¢ (ν, Tν). (10.5)

This relation is parallel to (10.3) in terms of the c-monotone convolution:

(µ BTν, Tµ B Tν) = (µ, Tµ) B (ν, Tν). (10.6)

Clearly, this convolution includes Boolean and monotone convolutions if we take T as Tµ = δ0 for
all µ and T = Id, respectively. Now we characterize the associativity of the convolution BT .

Proposition 10.1. (1) BT is characterized by the equality

Hµ BT ν = Hµ ◦HTν + Hν −HTν . (10.7)

(2) The convolution BT becomes associative if and only if

T (µ BTν) = Tµ B Tν (10.8)

for all µ and ν.

Remark 10.2. (1) In many cases T is only defined in a subset of P such as Pm. In such a case,
the above Proposition holds if the subset is closed under the convolution BT . Henceforth, we often
state results about the convolution BT only for T : P → P if such a generalization of the domain of
T is trivial.
(2) It seems to be not known whether the condition (10.4) is a necessary condition for the associativity
of ¢T .

Proof. (1) The proof is easy.
(2) First we calculate H(µ BT ν) BT λ as

H(µ BT ν) BT λ = Hµ BT ν ◦HTλ + Hλ −HTλ

= Hµ ◦HTν ◦HTλ + Hν ◦HTλ −HTν ◦HTλ + Hλ −HTλ.
(10.9)
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Hµ BT (ν BT λ) is calculated as follows.

Hµ BT (ν BT λ) = Hµ ◦HT (ν BT λ) + Hν BT λ −HT (ν BT λ)

= Hµ ◦HT (ν BT λ) + Hν ◦HTλ + Hλ −HTλ −HT (ν BT λ).
(10.10)

Then the associativity of the convolution implies that Hµ◦HTν ◦HTλ−Hµ◦HT (ν BT λ) only depends on
ν and λ. If HTν ◦HTλ were not equal to HT (ν BT λ) for some ν and λ, then there would exist w ∈ C\R
such that HTν ◦HTλ(w) 6= HT (ν BT λ)(w). In this case, Hµ ◦HTν ◦HTλ(w)−Hµ ◦HT (ν BT λ)(w) clearly
depends on µ, which is a contradiction. Therefore, we conclude that

HTν ◦HTλ = HT (ν BT λ) (10.11)

for all ν, λ ∈ P . Conversely, if (10.11) holds, it is not difficult to see that the convolution is associative.

We show the additivity of mean and variance; this will be used in the proof of Theorem 11.2.

Proposition 10.3. Let T : P → P be an arbitrary map. Then we have the following properties.

(1) P2 is closed under the convolution BT .

(2) m(µ) and σ2(µ) are additive with respect to the convolution BT considered in P2:

m(µ BTν) = m(µ) + m(ν), (10.12)

σ2(µ BTν) = σ2(µ) + σ2(ν). (10.13)

Proof. We use the notation

Hµ(z) = −m(µ) + z +

∫
1

x− z
dρµ(x). (10.14)

Then we have

Hµ BT ν(z) = Hµ ◦HTν(z) + Hν(z)−HTν(z)

= −m(µ) + HTν(z) +

∫

R

1

x−HTν(z)
dρµ(x) + Hν(z)−HTν(z)

= −m(µ) + Hν(z) +

∫

R

1

x− z
d
( ∫

R
(Tν)y(x)dρµ(y)

)

= −m(µ)−m(ν) + z +

∫

R

1

x− z
d
( ∫

R
(Tν)y(x)dρµ(y) + ρν(x)

)
,

(10.15)

where λy ∈ P is defined by Hλy = Hλ − y for λ ∈ P. With Lemma 2.2, P2 is closed under the
convolution; moreover, mean and variance are additive.

Thus, P2 is closed under the convolution BT for arbitrary map T . On the contrary, P+ and Psym

are not closed in general under the convolution BT . We show the necessary and sufficient conditions
for P+ and Psym.

Proposition 10.4. (1) The following two conditions are equivalent.

(1a) T (P+) ⊂ P+,

(1b) µ BTν ∈ P+ for all µ, ν ∈ P+.

(2) The following two conditions are equivalent.
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(2a) T (Psym) ⊂ Psym,

(2b) µ BTν ∈ Psym for all µ, ν ∈ Psym.

Proof. (1) We assume (1a). From Lemma 2.4, Hλ is analytic in C\[0,∞) and Hλ < 0 in (−∞, 0)
for λ = µ, ν, Tν. Then the composition Hµ ◦HTν is analytic in C\[0,∞), and hence, Hµ BT ν is also
analytic in the same region. This implies the condition (1) in Lemma 2.4. We use the notation

Hµ(z) = bµ + z +

∫

R

1 + xz

x− z
dηµ(x) (10.16)

and similarly for Hν . We put gµ(z) :=
∫
R

1+xz
x−z

dηµ(x). Proposition 10.1 implies that

Hµ BT ν(z) = Hµ ◦HTν(z) + Hν(z)−HTν(z)

= bµ + gµ(HTν(z)) + Hν(z).
(10.17)

Since gµ and HTν are non-decreasing, gµ ◦ HTν is also non-decreasing. Then bµ + gµ ◦ HTν(−0) ≤
bµ + gµ(−0) = Hµ(−0) ≤ 0. Therefore, we obtain Hµ BT ν(−0) ≤ 0.

Next we assume (1b). We shall prove the fact by reductio ad absurdum; we assume that there
exists ν ∈ P+ such that Tν /∈ P+. In the notation (10.15), we have

Hµ BT ν(z) = Hµ ◦HTν(z) + Hν(z)−HTν(z)

= −m(µ) + Hν(z) +

∫

R

1

x− z
d
( ∫

R
(Tν)y(x)dρµ(y)

)

= −m(µ) + Hν(z)−GρµBTν(z)

(10.18)

for all µ ∈ P2, where we defined ρµ B Tν using the affinity of the left component of the monotone
convolution. We can construct µ ∈ P+ such that a(ρµ) = 0. Therefore, we have a(ρµ BTTν) ≤
a(Tν) < 0 from Lemma 2.3 (3); this inequality means that GρµBTν is not analytic in C\[0,∞). On
the contrary, both Hµ BT ν(z) and Hν(z) are analytic in C\[0,∞) by assumption; this is a contradiction
(we note that Lemma 2.3 is applicable to all positive finite measures).

(2) We assume (2a). Since a probability measure µ is symmetric if and only if Hµ(−z) = −Hµ(z)
for z ∈ C\R, the proof is not difficult.

Conversely, we assume (2b). We take µ to be the arcsine law with mean 0 and variance 1. Clearly,
µ ∈ Psym. (2b) implies that Hµ BT ν(−z) = −Hµ BT ν(z) for all ν ∈ Psym. Using (10.7) we have

√
HTν(z)2 − 2−

√
HTν(−z)2 − 2 = HTν(z) + HTν(−z) (10.19)

for z ∈ C+. After some calculations we obtain HTν(−z) = −HTν(z), which means Tν ∈ Psym.

Remark 10.5. The above property unifies the properties of Boolean and monotone convolutions [18].
In the cases of Boolean and monotone convolutions, we can moreover prove that ν˜n ∈ P+ implies
ν ∈ P+, where ¤ is the Boolean or monotone convolution. This property was used to characterize
the subordinators in terms of the Lévy-Khintchine representations [18].

Sometimes the limit distribution of Poisson’s law of small numbers concerning a deformed con-
volution does not belong to P+ [23]. We can prove a sufficient condition for this problem. We also
show a condition for the central limit measure to be contained in Psym.

Corollary 10.6. (1) We assume that T (P+) ⊂ P+. If Poisson’s law of small numbers holds, then
the limit distribution belongs to P+.
(2) We assume that T (Psym) ⊂ Psym. If the central limit theorem holds, then the limit distribution
belongs to Psym.

Remark 10.7. Poisson’s law of small numbers and the central limit theorem mean the statements
as in Theorem 15.6.

Proof. If we take µ(N) := (1− λ
N

)δ0+
λ
N

δ1 ∈ P+, then the limit distribution limN→∞(µ(N)) BT N ∈ P+ by
using Lemma 2.7. For the central limit theorem, we take µ := 1

2
(δ−1 +δ1). Then (D 1√

N
µ) BT N ∈ Psym

and the limit distribution also belongs to Psym again from Lemma 2.7.
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11 Transformations Vt,u,a

We introduce a family of transformations denoted by Vt,u,a and prove that the transformations satisfy
the condition (10.8). Moreover, this family unifies the generalized t-transformation [24] and the Va-
transformation [23].

Let f : Q → R, where Q is a subset of P . Typically Q is chosen to be P2, Pm or Pc. Motivated
by the generalized t-transformation in [24] and Va-transformation in [23], we look for a transform
Vt,f of the form

µ 7→ Vt,fµ, HVt,f µ(z) = tHµ(z) + (1− t)z + f(µ). (11.1)

If f(µ) = (t−u)m(µ), this is the same as the generalized t-transformation. If t = 1 and f(µ) = aσ2(µ),
this is the same as Va-transformation.

Lemma 11.1. Assume that Q is closed under the convolution BVt,f
. Vt,f satisfies the associativity

condition (10.8) considered in Q if and only if f(µ BVt,f
ν) = f(µ) + f(ν) for all µ, ν ∈ Q.

Proof. Denote BVt,f
by Bt,f for simplicity. Applying (10.7) we obtain

HVt,f (µBt,f ν)(z) = tHµBt,f ν(z) + (1− t)z + f(µ Bt,f ν)

= tHµ ◦HVt,f ν(z) + tHν(z)− tHVt,f ν(z) + (1− t)z + f(µ Bt,f ν)

= tHµ ◦HVt,f ν(z) + tHν(z) + (1− t)z + f(ν)− tHVt,f ν(z) + f(µ Bt,f ν)− f(ν)

= tHµ ◦HVt,f ν(z) + (1− t)HVt,f ν(z) + f(µ Bt,f ν)− f(ν).

(11.2)

On the other hand, we have

HVt,f µBVt,f ν(z) = HVt,f µ ◦HVt,f ν(z)

= tHµ ◦HVt,f ν(z) + (1− t)HVt,f ν(z) + f(µ).
(11.3)

Therefore, the associativity condition (10.8) is equivalent to f(µ Bt,f ν) = f(µ) + f(ν).

We define transformations Vt,u,a by letting

f(µ) = ft,u,a(µ) = (t− u)m(µ) + aσ2(µ). (11.4)

More clearly, we define

HVt,u,aµ(z) = tHµ(z) + (1− t)z + (t− u)m(µ) + aσ2(µ). (11.5)

We expect that higher order moments for f have nontrivial structure, but we do not treat them in
this article. We use the notation Bt,u,a for the convolution defined by Vt,u,a.

Theorem 11.2. The convolution Bt,u,a defined on P2 is associative.

Proof. This fact follows from Lemma 11.1 and Proposition 10.3.

In order to calculate the inverse transformation of Vt,u,a, we show the following facts.

Lemma 11.3. We have the following equalities.

m(Vt,u,aµ) = um(µ)− aσ2(µ), (11.6)

σ2(Vt,u,aµ) = tσ2(µ). (11.7)
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Proof. A direct computation leads to

HVt,u,aµ(z) = −um(µ) + aσ2(µ) + z + t

∫
1

x− z
dρµ(x), (11.8)

from which and Lemma 2.16 the conclusion follows.

Proposition 11.4. We have the following equality:

Vt′,u′,a′Vt,u,a = Vt′t,u′u,u′a+a′t for t ≥ 0, u, a ∈ R. (11.9)

In particular, we have
V −1

t,u,a, = Vt−1,u−1,− a
tu

for t > 0, u 6= 0, a ∈ R. (11.10)

Proposition 11.5. (1) P+ ∩P2 is closed under the convolution Bt,u,a if and only if u ≥ t and a = 0.
(2) Psym ∩ P2 is closed under the convolution Bt,u,a if and only if a = 0.

Proof. These facts are easy consequences of Proposition 10.4.

Example 11.6. (1) Oravecz introduced the Fermi convolution • in [35]. He mentioned a relation
between the Fermi convolution and the c-free convolution:

(µ • ν, δm(µ) ¢ δm(ν)) = (µ, δm(µ)) ¢ (ν, δm(ν)), (11.11)

where m(µ) denotes the mean of µ. We can easily extend the Fermi convolution to the convo-
lution coming from the map Fu defined by Fuµ = δum(µ). Clearly V0,u,0 = Fu. An associative
convolution BFu arises from Fu:

(µ BFu ν, δum(µ)+um(ν)) = (µ, δum(µ)) B (ν, δum(ν)). (11.12)

(2) The t-transformation is realized as Ut = Vt,t,0. An associative convolution Bt arises from the
relation

(µ Bt ν,Ut(µ) B Ut(ν)) = (µ,Ut(µ)) B (ν,Ut(ν)). (11.13)

We note that the t-transformation interpolates the Boolean and monotone convolutions: they
appear when t = 0 and t = 1, respectively.

(3) The Va-transformation is equal to V1,1,a.

In the following we make the meaning of the results in this section clearer. It is known that the
t-transformation Ut (t > 0) satisfies the condition (10.4), so that a new convolution ¢Ut [10] can be
defined. This convolution can also be written as

µ ¢Ut ν = U1/t(Ut(µ) ¢ Ut(ν)) (11.14)

for t > 0. Apart from the context of the c-free convolution, it seems interesting to study the
deformation of Boolean and tensor convolutions defined by the right hand side of (11.14), with ¢
replaced by ] and ∗, respectively. The new convolutions were studied in [11]. By definition, the
deformed convolutions are associative and commutative.

We can also define the same deformations in the monotone case. The results in this section show
that the deformation has a natural meaning in terms of the c-monotone convolution as in the case
of the free convolution (cf. (10.3) and (10.6)). The above discussion is meaningful for any T which
is invertible such as some class of the t-transformation.
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12 Deformations related to monotone infinitely divisible dis-

tributions

Krystek and Wojakowski have introduced a deformation connected to a ¢-infinitely divisible distribu-
tion in [23], which we explain now. For a ¢-infinitely divisible distribution ϕ with a compact support,
there corresponds a unique weakly continuous ¢-convolution semigroup {ϕt}t≥0 with ϕ0 = δ0 and
ϕ1 = ϕ. Define a transformation Φϕ

t by

Φϕ
t µ = ϕσ2(µ)t. (12.1)

This map satisfies the condition (10.4).
We introduce the monotone analog of Φϕ

t .

Definition 12.1. For a B-infinitely divisible distribution ξ ∈ P2, let {ξt}t≥0 be the corresponding
weakly continuous B-convolution semigroup with ξ0 = δ0 and ξ1 = ξ. Let f : P2 → R. We define a
transformation Ξξ

f by setting

Ξξ
fµ := ξf(µ). (12.2)

Lemma 12.2. Ξξ
f satisfies the associativity condition (10.8) in P2 if and only if f(µ BΞξ

f
ν) =

f(µ) + f(ν) for all µ, ν ∈ P2.

Proof. This fact follows from the equality Ξξ
fµ B Ξξ

fν = ξf(µ)+f(ν).

Theorem 12.3. The map Ξξ
t (t ≥ 0) defined by f(µ) = tσ2(µ) satisfies the condition (10.8).

Proof. The fact follows from Proposition 10.3.

Remark 12.4. (1) If ξ = δa, the map fs,t(µ) = −sm(µ) + tσ2(µ) (s, t ∈ R) is also possible. In this
case we have Ξδ1

fu,a
= V0,u,a.

(2) Higher order moments may be possible for f , which we do not consider in this paper.

Proposition 12.5. (1) P+ ∩P2 is closed under the convolution BΞξ
t

if and only if ξ ∈ P+ ∩P2.

(2) We assume that ξ ∈ Pc. Then Psym ∩ Pc is closed under the convolution BΞξ
t

if and only if

ξ ∈ Psym ∩ Pc.

Proof. This is an immediate consequence of Lemma 2.5, Lemma 2.6 and Proposition 10.4.

13 Cumulants for a general convolution

Only in this section, rn(µ) denote general cumulants, not only the monotone cumulants.
To define cumulants for deformed convolutions in the section 14, we consider what are cumulants

of a convolution product. We have clarified three axioms of cumulants in [21] for random variables;
however, we need more general axioms to treat convolutions appearing in Sections 11, 12. Results
in this section are quite general and will be applicable to other convolutions which do not appear in
this paper.

Let ¤ be a convolution defined on Pm. We shall treat convolutions which are not necessarily
commutative for the later applications. All results in this section hold for both Pm and Pc , except
for Theorem 13.9. Then we use the set Pm mainly.

Definition 13.1. (1) We define recursively ν˜n := ν¤ν˜n−1 for ν ∈ Pm. ¤ is said to be power
associative if ν˜(n+m) = ν˜n¤ν˜m for all m, n ≥ 0.

Let mn(µ) be the n-th moment of µ ∈ Pm. We put the following assumptions.
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(M1) There exists a universal polynomial Pn of 2n− 2 variables for each n ≥ 1 such that

mn(µ¤ν) = mn(µ) + mn(ν) + Pn(m1(µ), · · · ,mn−1(µ),m1(ν), · · · ,mn−1(ν)). (13.1)

(M2) The polynomial Pn contains no constants for any n ≥ 1.

Remark 13.2. The condition (M2) is equal to the condition δ0¤δ0 = δ0.

Let rn(µ) be a polynomial of {mk(µ)}k≥1 for any n ≥ 1. We consider the following properties.

(C1) Power additivity: for any n, N ≥ 1,

rn(µ˜N) = Nrn(µ). (13.2)

(C2) There exists a universal polynomial Qn of n− 1 variables such that

rn(µ) = mn(µ) + Qn(m1(µ), · · · ,mn−1(µ)). (13.3)

(C2’) In addition to the condition (C2), the polynomial Qn never contains linear terms mk(µ), 1 ≤
k ≤ n− 1 for any n.

Q1 is understood to be a constant which turns out to be 0 in Proposition 13.3.
If a sequence {rn} satisfies (C2), we can write mn in terms of rn as

mn(µ) = rn(µ) + Rn(r1(µ), · · · , rn−1(µ)), (13.4)

where Rn is a polynomial of n− 1 variables.
We note that in many important examples the condition of homogeneity

rn(Dλµ) = λnrn(µ) (13.5)

holds. Indeed, this condition holds for tensor, free, Boolean and monotone cumulants. Clearly (C2)
and (13.5) imply (C2’). We do not assume this condition since the uniqueness of cumulants follows
from only (C1) and (C2’) (see Proposition 13.4). Moreover, there are examples which satisfy (C2’)
but do not satisfy (13.5) such as cumulants for a convolution deformed by the Va-transformation [23].

If there exists a sequence {rn} satisfying (C1) and (C2), we consider a transformation of the form

rn 7→ r′n := rn +
n−1∑

k=1

an,krk (13.6)

for real numbers an,k, 1 ≤ k ≤ n−1, 2 ≤ n < ∞. This transformation clearly preserves the properties
(C1) and (C2). Moreover, we obtain the following property (1).

Proposition 13.3. We assume (M1) and (M2) and assume that ¤ is power associative.
(1) If there are two sequences {rn} and {r′n} satisfying (C1) and (C2), there exists a unique trans-
formation of the form (13.6) which maps {rn} to {r′n}.
(2) The polynomial Qn in (C2) never contains a constant term.

Proof. (1) There exists a polynomial An of variables n − 1 for each n ≥ 1 such that r′n = rn +
An(r1, · · · , rn−1) by using (13.3) and (13.4). Replacing µ by µ˜N , we obtain Nr′n = Nrn+An(Nr1, · · · , Nrn−1)
for any N . This is an equality between polynomials of N , and hence, An is of the form An(r1, · · · , rn−1) =∑n−1

k=1 an,krk.
(2) We show the fact inductively. For n = 1, there exists b1 ∈ R such that r1 = m1 + b1.
Since Pn does not contain a constant term in (13.1), we have m1(µ¤µ) = 2m1(µ), which implies
2r1(µ)− b1 = 2r1(µ)− 2b1. Therefore, b1 = 0. We assume that Qn does not contain a constant term
for n ≤ k. Using a similar argument, we can prove that Qk+1 does not contain a constant term.
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Proposition 13.4. We assume (M1) and (M2) and assume that ¤ is power associative. The fol-
lowing statements are equivalent:

(a) There exists a sequence {rn}n≥1 satisfying (C1) and (C2);

(b) There exists a sequence {rn}n≥1 satisfying (C1) and (C2’);

(c) mn(µ˜N) is a polynomial of m1(µ), · · · ,mn(µ) and N for any n.

Moreover, the sequence {rn} in (b) is unique and is given by

rn(µ) =
∂

∂N
mn(µ˜N)

∣∣∣
N=0

. (13.7)

Remark 13.5. We can see from (13.7) that cumulants are strongly related to a convolution semi-
group {µt}t≥0 with µ0 = δ0 and to infinite divisibility.

Proof. (a) ⇒ (c): if there exists a sequence {rn}n≥1 satisfying (C1) and (C2), we have

mn(µ˜N) = rn(µ˜N) + Rn(r1(µ
˜N , · · · , rn−1(µ

˜N))

= Nrn(µ) + Rn(Nr1(µ), · · · , Nrn−1(µ))

= Nmn(µ) + NQn(m1(µ), · · · ,mn−1(µ))

+ Rn(Nm1(µ), · · · , Nmn−1(µ) + NQn−1(m1(µ), · · · ,mn−2(µ))).

(13.8)

Therefore, mn(µ˜N) is a polynomial of N and mk(µ).
(c) ⇒ (a): by using (M1), (M2) and the assumption (c), mn(µ˜N) has such a form as

mn(µ˜N) = Nmn(µ) +
L∑

l=0

N lSl(m1(µ), · · · ,mn−1(µ)) (13.9)

for polynomials Sl and an L ∈ N. We define

rn(µ) :=
∂

∂N
mn(µ˜N)

∣∣∣
N=0

= mn(µ) + S1(m1(µ), · · · ,mn−1(µ)).
(13.10)

The power associativity of ¤ implies (C1). (C2) follows from (13.10).
(a) ⇒ (b): for a sequence {rn} satisfying (C1) and (C2), we can write rn in the form rn =

mn +
∑n−1

k=1 bn,kmk +Tn(m1, · · · ,mn−1), where Tn is a polynomial which does not contain linear terms
mk, 1 ≤ k ≤ n− 1. We define a new sequence {r′n} inductively as follows: r′1 := r1, r′2 = r2 − b2,1r1,
r′n = rn −

∑n−1
k=1 an,kr

′
k for n ≥ 2. Then r′n do not contain linear terms mk.

We note that Qn does not contain a constant term from Proposition 13.3 (2). If there exists a
sequence {rn} satisfying (C1) and (C2’), the corresponding polynomial Rn in (13.4) also does not
contain linear terms mk, 1 ≤ k ≤ n − 1 or a constant term. Therefore, the equality mn(µ˜N) =

Nrn(µ) + Rn(Nr1(µ), · · · , Nrn−1(µ)) implies that rn = ∂
∂N

mn(µ˜N)
∣∣∣
N=0

.

Definition 13.6. Let ¤ be a power associative convolution defined on Pm satisfying (M1) and (M2).
Then the polynomials rn satisfying (C1) and (C2’) are called the cumulants for the convolution ¤.
Cumulants are unique.

Remark 13.7. This definition extends the cumulants for the tensor, free, Boolean and monotone
convolutions.

We can prove the existence of cumulants.
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Theorem 13.8. We assume the conditions (M1) and (M2) for a power associative convolution ¤.
Then cumulants of ¤ exist.

Proof. It is sufficient to prove that mn(µ˜N) is a polynomial of N due to Proposition 13.4. Then the
proof is the same as in [21], which we omit here.

We discuss when the additivity of cumulants holds. In the proof of the following theorem, we
assume the convolution is defined on Pc so that moments determine a unique probability measure.

Theorem 13.9. Let ¤ be a power associative convolution defined on Pc satisfying (M1) and (M2).
Let rn be the cumulants. Then the following conditions are equivalent.

(1) rn(µ¤ν) = rn(µ) + rn(ν) for all n and µ, ν ∈ Pc.

(2) ¤ is associative and commutative, and moreover, Pn in (13.1) does not contain linear terms
mk(µ) or mk(ν), 1 ≤ k ≤ n− 1.

Proof. (1)⇒ (2): the associativity and commutativity follow immediately since a probability measure
with compact support is determined by the cumulants. From (M1) and (13.4) we obtain the identity

Pn(m1(µ), · · · ,mn−1(µ),m1(ν), · · · ,mn−1(ν))

= Qn(m1(µ), · · · ,mn−1(µ)) + Qn(m1(ν), · · · ,mn−1(ν))

+ Rn(r1(µ) + r1(ν), · · · , rn−1(µ) + rn−1(ν)).

It follows from (C2’) that Qn and Rn do not contain linear terms.
(2) ⇒ (1): Using (M1), (C2’) and (13.4) we have

rn(µ¤ν) = mn(µ¤ν) + Qn(m1(µ¤ν), · · · ,mn−1(µ¤ν))

= rn(µ) + rn(ν) + Pn(m1(µ), · · · ,mn−1(µ),m1(ν), · · · ,mn−1(ν))

+ Rn(r1(µ), · · · , rn−1(µ)) + Rn(r1(ν), · · · , rn−1(ν))

+ Qn(m1(µ¤ν), · · · ,mn−1(µ¤ν)).

Therefore, there exists a polynomial Un which does not contain linear terms such that rn(µ¤ν) =
rn(µ) + rn(ν) + Un(r1(µ), · · · , rn−1(µ), r1(ν), · · · , rn−1(ν)). We replace µ and ν by µ˜N and ν˜N ,
respectively. The associativity and commutativity implies that rn(µ˜N¤ν˜N) = rn((µ¤ν)˜N) =
Nrn(µ¤ν). Then Nrn(µ¤ν) = Nrn(µ)+Nrn(ν)+Un(Nr1(µ), · · · , Nrn−1(µ), Nr1(ν), · · · , Nrn−1(ν)).
This can be seen as an identity between polynomials of N ; therefore, we have Un = 0.

Limit theorems can be formulated in terms of moments and cumulants. The proofs are easy.

Theorem 13.10. Let ¤ be a power associative convolution defined on Pm satisfying (M1) and (M2).
Let rn be the cumulants.
(1) (Central limit theorem) For µ ∈ Pm with m1(µ) = 0 and m2(µ) = 1, we define µN := (D 1√

N
µ)˜N .

Then r1(µN) → 0, r2(µN) → 1 and rn(µN) → 0 as N →∞ for any n ≥ 3.
(2) (Poisson’s law of small numbers) Let {µ(N)} be a sequence such that for any n ≥ 1 Nmn(µ(N)) →
λ > 0 as N →∞. We define µN := (µ(N))˜N . Then rn(µN) → λ as N →∞ for any n ≥ 1.

14 Cumulants for deformed convolutions

We define rT
n (µ) := rn(µ, Tµ). rT

n (µ) turn out to be cumulants for the convolution BT in the sense
of Definition 13.6.
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Proposition 14.1. We assume that there exists a polynomial Vn of n + 1 variables, which does not
contain a constant term, such that

mn(Tµ) = Vn(m1(µ), · · · ,mn+1(µ)) (14.1)

for any n ≥ 1. Then the conditions (M1) and (M2) hold for the convolution BT .

Proof. (M1) follows from (4.1) and (14.1); (M2) follows from the fact that both Wn and Yn do not
contain constant terms nor linear terms.

Theorem 14.2. Let T : Pm → Pm be a map satisfying (10.8) and (14.1). Then rn(µ, Tµ) satisfy
the conditions (C1) and (C2’) for the convolution BT .

Proof. (C2’) follows from the definition of c-monotone cumulants and (14.1). (C1) can be proved
showed as follows: rT

n (µ BT N) = rn(µ BT N , T (µ BT N)) = rn((µ, Tµ)BN) = Nrn(µ, Tµ) = NrT
n (µ).

The c-free cumulants Rn(µ, Tµ) satisfy the conditions (C1) and (C2’) under similar conditions.

Proposition 14.3. Let T : Pm → Pm be a map satisfying the condition (10.4). We assume that the
n-th moment of Tµ is of the form

mn(Tµ) = Vn(m1(µ), · · · ,mn+1(µ)) (14.2)

for any n ≥ 1, where Vn is a polynomial which does not contain a constant term. Then the convolution
¢T satisfies the conditions (M1) and (M2), and Rn(µ, Tµ) satisfies the conditions (C1) and (C2’).

Remark 14.4. All the convolutions studied in [10, 11, 23, 24, 35] satisfy the condition (14.2).

15 Limit theorems for deformed convolutions

We can apply Theorem 13.10 to the convolution BT under the conditions (10.8) and (14.1). We
summarize the statements combining Theorem 13.10 and Theorem 14.2.

Theorem 15.1. Let T : Pm → Pm be a map which satisfies (10.8) and (14.1).
(1) (Central limit theorem) Let µ be a probability measure in Pm with mean 0 and variance 1. We

define µN :=
(
D 1√

N
µ
) BT N

. Then mn(µN) converges to mn(ν
(T )
1 ), where mn(ν

(T )
t ) are characterized

by
∂

∂t
H

ν
(T )
t

(z) = − 1

H
Tν

(T )
t

(z)
. (15.1)

(2) (Poisson’s law of small numbers) Let {µ(N)}∞N=1 be a sequence of probability measures in Pm such
that Nmn(µ(N)) → λ > 0 as N → ∞ for all n ≥ 1. We define µN := (µ(N)) BT N . Then mn(µN)

converges to mn(p
(T )
λ ), where mn(p

(T )
λ ) are characterized by

∂

∂λ
H

p
(T )
λ

(z) =
H

Tp
(T )
λ

(z)

1−H
Tp

(T )
λ

(z)
. (15.2)

In this section we calculate the limit distributions for T constructed in Sections 11 and 12. If
T is invertible, we can use monotone cumulants to calculate the limit distributions since µ BTν =
T−1(Tµ B Tν). Cumulants introduced in Section 14, however, enable us to calculate the limit
distributions for even non-invertible T . In this section, we always use cumulants introduced in
Section 14.
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15.1 Transformations Vt,u,a

We now calculate the central limit measure for the convolution Bt,u,a. We only calculate the two
cases a = 0 and t = 0; otherwise explicit expressions of the limit measures are difficult. For simlicity,
let r

(t,u,a)
n (µ) denote the cumulants r

Vt,u,a
n (µ). In this section we use two logarithms log[1] and log[2]:

log[1](z) is defined by log[1](z) := log |z|+ i arg(z), arg(z) ∈ (−π, π), z ∈ C\(−∞, 0]; log[2] is defined

by log |z|+ i arg(z), arg(z) ∈ (0, 2π), z ∈ C\[0,∞). Let
√

z be exp(1
2
log[2] z) for z ∈ C\[0,∞). Then,

for instance, the Cauchy transform of the normalized arcsine law becomes 1√
z2−2

for z ∈ C+.

Theorem 15.2. (1) Let µ be a probability measure in Pm with mean 0 and variance 1. Then
µN := (D 1√

N
µ)Bt,u,0N converges weakly to a Kesten distribution ν(t,0). The absolutely continuous part

is 1
2π

√
2t−x2

1−(1− t
2
)x2 dx on [−√2t,

√
2t]. There is no singular part for t ≥ 1, but ν(t,0) contains atoms at

x = ± 1√
1− t

2

for t < 1.

(2) Let µ be a probability measure in Pm with mean 0 and variance 1. Then µN := (D 1√
N

µ)B0,0,aN

converges weakly to a probability measure ν(0,a). The absolutely continuous part of ν(0,a) is given by

ν(0,a)|ac =

{
a

(log |1+ a
x
|−ax)2+π2 dx, x ∈ [−a, 0], a > 0,
|a|

(log |1+ a
x
|−ax)2+π2 dx, x ∈ [0, |a|], a < 0.

(15.3)

ν(0,a) contains two atoms: one in (−∞,−a) and the other in (0,∞) if a > 0; one in (−∞, 0) and
the other in (|a|,∞) if a < 0.

Remark 15.3. (1) Kesten distributions also appear in the central limit theorem of ¢Ut [10, 11] with
the parameter t replaced by 2t.
(2) The limit distribution of (2) is symmetric only in the case of a = 0 where the convolution becomes
a Boolean convolution (cf. Proposition 11.5).

Proof. (1) Let {ν(t,0)
s }s≥0 be a (formal) convolution semigroup which is a solution of (15.1) for T =

Vt,u,0. (The word “formal” means that the limit moments might not be deterministic. Therefore,

we consider ν
(t,0)
s as a sequence of moments.) We note that m1(ν

(t,0)
s ) = sr

(t,u,0)
1 (ν

(t,0)
1 ) = 0. Then

H
Vt,u,aν

(t,a)
s

(z) = tH
ν
(t,a)
s

(z) + (1 − t)z. We let Hs(z) denote H
ν
(t,0)
s

(z) for simplicity. (15.1) can be

integrated and we obtain t
2
Hs(z)2 + (1− t)zHs(z) = −s + (1− t

2
)z2, which implies

Gs(z) =
(1

2
− t

2
) + 1

2

√
z2 − 2st

(1− t
2
)z2 − s

. (15.4)

G1 is the Cauchy transform of a Kesten distribution (see [11]), whose support is compact. Then the
weak convergence holds (see Theorem 4.5.5 of [12]).

(2) Let {ν(0,a)
s }s≥0 be a (formal) convolution semigroup which is a solution of (15.1) for T = V0,0,a.

We note that m1(ν
(0,a)
s ) = 0 and σ2(ν

(0,a)
s ) = r

(0,0,a)
2 (ν

(0,a)
s ) = s. Then H

V0,0,aν
(0,a)
s

(z) = z + as. Let

Hs(z) denote H
ν
(0,a)
s

(z) for simplicity. We have

Hs(z) = −
∫ s

0

1

z + ar
dr + z

= z − 1

a
log[1]

(
1 +

as

z

)
.

(15.5)

Case a > 0: the absolutely continuous part of the limit distribution is a
(log |1+ a

x
|−ax)2+π2 dx supported

on the interval {x ∈ R : G1(x + i0) < 0} = [−a, 0]. We can show that the limit distribution contains
an atom in (0,∞) and the other in (−∞,−a).
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Case a < 0: the absolutely continuous part is |a|
(log |1+ a

x
|−ax)2+π2 dx supported on the interval [0, |a|].

We can show that the limit distribution contains an atom in (|a|,∞) and the other in (−∞, 0).
We note that the case a = 0 corresponds to the Boolean convolution, and hence, the limit

distribution is 1
2
(δ−1 + δ1).

We calculate the limit distribution for Poisson’s law of small numbers. We consider only the case
T = V0,u,a; otherwise, the explicit form is difficult to obtain.

Theorem 15.4. Let {µ(N)}∞N=1 be a sequence of probability measures in Pm such that Nmn(µ(N)) →
λ > 0 as N →∞ for all n ≥ 1. Then µN := (µ(N))B0,u,aN converges weakly to a compactly supported

distribution p
(u,a)
λ . The absolutely continuous part of p

(u,a)
λ is given by

p
(u,a)
λ |ac =





a−u(
log |1+ (a−u)λ

x−1
|−(a−u)(x−λ)

)2

+π2
dx, x ∈ [1− (a− u)λ, 1], a > u,

|a−u|(
log |1+ (a−u)λ

x−1
|−(a−u)(x−λ)

)2

+π2
dx, x ∈ [1, 1 + (u− a)λ], a < u.

(15.6)

p
(u,a)
λ contains two atoms: one in (−∞, 1 − (a − u)λ) and the other in (1,∞) for a > u; one in

(−∞, 1) and the other in (1 + (u− a)λ,∞) for a < u.

Remark 15.5. One can see that p
(u,a)
λ is in P+ if and only if u ≥ a (cf. Proposition 11.5).

Proof. We note that m1(p
(u,a)
λ ) = r

(0,u,a)
1 (p

(u,a)
λ ) = λ and σ2(p

(u,a)
λ ) = λ. Then we obtain the differen-

tial equation
∂

∂λ
H

p
(u,a)
λ

(z) = −1− 1

z − 1 + (a− u)λ
. (15.7)

The remaining arguments are similar to Theorem 15.2 and we omit the proof.

15.2 Deformations related to B-infinitely divisible distributions

For a compactly supported B-infinitely divisible distribution ξ, let {ξt}t≥0 be the corresponding
weakly continuous B-convolution semigroup with ξ0 = δ0 and ξ1 = ξ. Then ξt is compactly supported
for every t > 0 [31]. Let {ν [ξ,t]

s }s≥0 and {p[ξ,t]
s }s≥0 be the (formal) convolution semigroups defined by

(15.1) and (15.2), respectively. Let r
[ξ,t]
n (µ) denote r

Ξξ
t

n (µ). Since r
[ξ,t]
2 (ν

[ξ,t]
s ) = σ2(ν

[ξ,t]
s ) = s we obtain

Ξξ
t (ν

[ξ,t]
s ) = ξst. Similarly, we obtain Ξξ

t (p
[ξ,t]
λ ) = ξλt. Therefore, (15.1) and (15.2) become

∂

∂s
H

ν
[ξ,t]
s

(z) = − 1

Hξst(z)
, (15.8)

∂

∂λ
H

p
[ξ,t]
λ

(z) =
Hξtλ

(z)

1−Hξtλ
(z)

. (15.9)

These equations have been defined in the sense of formal power series. However, once equations
(15.8) and (15.9) are understood to be ordinary differential equations, the solutions are analytic
outside a ball for every s > 0 and λ > 0. As a result, (15.8) and (15.9) give moments of compactly

supported probability measures for each s > 0 and λ. Therefore, ν
[ξ,t]
s and p

[ξ,t]
λ make sense as uniquely

determined probability measures. Moreover, the convergence of moments in Theorem 15.1 becomes
the weak convergence. We summarize the above arguments. Let B[ξ,t] denote BΞξ

t
.

Theorem 15.6. Let ξ be a B-infinitely divisible distribution in Pc.
(1) (Central limit theorem) Let µ be a probability measure in Pm with mean 0 and variance 1. Then

µN :=
(
D 1√

N
µ
)B[ξ,t]N converges to ν

[ξ,t]
1 weakly.

(2) (Poisson’s law of small numbers) Let {µ(N)}∞N=1 be a sequence of probability measures in Pm such

that Nmn(µ(N)) → λ > 0 as N → ∞ for all n ≥ 1. Then µN := (µ(N))B[ξ,t]N converges to p
[ξ,t]
λ

weakly.
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We calculate the limit distributions explicitly when ξ is the normalized arcsine law.

Theorem 15.7. Let η be the normalized arcsine law.
(1) The limit distribution ν

[η,t]
1 is the Kesten distribution ν(t,0).

(2) The absolutely continuous part of p
[η,t]
λ is supported on [−

√
2λt,

√
2λt]∪[1,

√
2λt + 1]. The singular

part consists of atoms: an atom exists in (
√

2λt + 1,∞); another exists in (
√

2λt, 1) if 0 < t < 1
2λ

and (1 − 1
t
)
√

2λt − 1
t
log(1 −

√
2λt) − λ < 0; the other exists in (−∞,−

√
2λt) if (1

t
− 1)

√
2λt −

1
t
log(

√
2λt + 1) > 0.

Remark 15.8. It is remarkable that the limit distribution in (1) also appears in Theorem 10 of [23]
with the parameter t replaced by 2t.

Proof. (1) The differential equation (15.8) becomes

∂

∂s
H

ν
[η,t]
s

(z) = − 1√
z2 − 2ts

, (15.10)

which implies H
ν
[η,t]
s

(z) = (1 − 1
t
)z + 1

t

√
z2 − 2ts. Therefore, the limit distribution is the Kesten

distribution.
(2) The differential equation (15.9) becomes

∂

∂λ
H

p
[ξ,t]
λ

(z) =

√
z2 − 2λt

1−√z2 − 2λt
. (15.11)

We can solve this and obtain

H
p
[ξ,t]
λ

(z) =
(
1− 1

t

)
z +

1

t

√
z2 − 2λt +

1

t
log[1]

(√z2 − 2λt− 1

z − 1

)
− λ. (15.12)

One can see that limImz↘0 H
p
[ξ,t]
λ

(z) > 0 if and only if Rez ∈ (−
√

2λt,
√

2λt) ∪ [1,
√

2λt + 1]. We re-

mark that H
p
[ξ,t]
λ

(x) is strictly increasing in the intervals (−∞,−
√

2λt), (
√

2λt, 1) and (
√

2λt + 1,∞).

Then it is not difficult to show the existence of atoms.
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Ann. I. H. Poincaré-PR 37 (2001), 737–761.

[12] K. L. Chung, A Course in Probability Theory, Harcourt, Brace & World, Inc., 1968.

[13] U. Franz, Monotone independence is associative, Infin. Dim. Anal. Quantum Probab. Rel.
Topics 4, no. 3 (2001), 401–407.
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bilités, Séminaires et Congrès 16 (2009), 83–93.

[17] U. Franz, Monotone and boolean convolutions for non-compactly supported probability mea-
sures, Indiana Univ. Math. J. 58, no. 3 (2009), 1151–1186.

[18] T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175–199.
arXiv:1002.3430v2.

[19] T. Hasebe, Monotone convolution and monotone infinite divisibility from complex analytic
viewpoint, Infin. Dim. Anal. Quantum Probab. Rel. Topics 13, No. 1 (2010), 111–131.
arXiv:1002.3430v2.

[20] T. Hasebe, Conditionally monotone independence II: Multiplicative convolutions and infinite
divisibility, Complex Analysis and Operator Theory, to appear. arXiv:0910.1319v3.

[21] T. Hasebe and H. Saigo, The monotone cumulants, to appear in Ann. Inst. Henri Poincaré
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