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ABSTRACT. We introduce an approach via the Riemann–Roch theorem to the
boundedness problem of minimal log discrepancies in fixed dimension. After
reducing it to the case of a Gorenstein terminal singularity, firstly we prove that
the minimal log discrepancy is bounded if either multiplicity or embedding di-
mension is bounded. Secondly we recover the characterisation of a Gorenstein
terminal three-fold singularity by Reid, and the sharp bound for its minimal log
discrepancy by Markushevich, without explicit classification. Finally we provide
the sharp bound for a special four-fold singularity, whose general hyperplane
section has a terminal piece.

A primary goal of birational geometry is to find and analyse a good representa-
tive in each birational equivalence class, and the minimal model program has been
formulated to find the representative by comparison of canonical divisors. It works
at present modulo the termination of flips by the work [7] of Hacon and McKernan,
or in the case of big boundaries by their subsequent work [3] together with Birkar
and Cascini, whereas the termination in the relatively projective case is reduced
by Shokurov in [23] to two conjectures on minimal log discrepancy, a numeri-
cal invariant attached to a singularity. Although the two conjectures are believed
very difficult, each of them implies a more accessible conjecture, the boundedness
(BDD), that there exists an upper bound for all minimal log discrepancies in fixed
dimension. In fact Shokurov has conjectured such a sharp bound in [20]. The pur-
pose of this paper is to introduce an approach to (BDD) via the Riemann–Roch
theorem.

It is standard to reduce (BDD) to the case of a Gorenstein terminal singular-
ity, Proposition 2.1. Then we derive (BDD), Theorem 2.2, under the assump-
tion of bounded multiplicity or embedding dimension by the basic property of the
Riemann–Roch formula that a kind of multiplicity appears in its top term. This
theorem would be attractive from the perspective that the minimal log discrepancy
measures how singular a variety is. It should be large only in the case of mild
singularities, like those with small multiplicity or embedding dimension. This is
supported also by the description [6] of minimal log discrepancies in terms of mo-
tivic integration by Ein, Mustaţǎ and Yasuda.

We follow the approach via the Riemann–Roch theorem by focusing on the
second-top term, in which an intersection number with the canonical divisor ap-
pears. It is essentially an argument on a surface obtained as the intersection of gen-
eral hyperplane sections. Besides formulae related to log discrepancies, we derive
an interesting property, Proposition 2.5, of an Artinian ring obtained in the same
manner, that its maximal ideal to the power dimension of the original singularity
vanishes.

Now this approach generates an extremely simple proof, Theorem 3.1, of the re-
sults on a Gorenstein terminal three-fold singularity due to Reid and Markushevich
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without explicit classification. It immediately provides Markushevich’s result [15]
that its minimal log discrepancy is bounded by three; then it recovers Reid’s char-
acterisation [19] by the property that its general hyperplane section is canonical,
without the detailed study [14], [17] of elliptic surface singularities.

Unfortunately we can bound minimal log discrepancies in dimension four, The-
orem 4.1, just in a special case, when the singularity has a terminal-like hyperplane
section. This limitation is presumably due to the lack of the study of special hyper-
plane sections of a singularity. We make a few remarks towards an advancement
of our approach.

A part of this research was achieved during my visit at University of Cambridge.
I should like to thank Dr C. Birkar for his warm hospitality. Partial support was
provided by Grant-in-Aid for Young Scientists (A) 20684002.

1. CONJECTURES ON MINIMAL LOG DISCREPANCIES

We work over an algebraically closed field k of characteristic zero throughout.
A pair (X ,∆) consists of a normal variety X and a boundary ∆ on X , which is
an effective R-divisor such that KX + ∆ is an R-Cartier R-divisor. A valuation of
the function field of X is called an algebraic valuation if it is defined by a prime
divisor E on a resolution X̄ of singularities of X . It is denoted by vE , and the
image of E in X is called the centre of vE on X . Writing the pull-back of KX + ∆

to X̄ as the sum of KX̄ and an R-divisor ∆̄ whose push-forward to X is ∆, we
define the log discrepancy aE(X ,∆) of vE with respect to (X ,∆) as one minus the
coefficient of E in ∆̄. For a closed subset Z of X , the minimal log discrepancy
mldZ(X ,∆) of (X ,∆) over Z is the infimum of aE(X ,∆) for all algebraic valuations
whose centres are in Z. It is either a non-negative real number or minus infinity
in dimension at least two, but for convenience we set mldZ(X ,∆) := −∞ even in
dimension one if the infimum is negative. The mldZ(X ,∆) is an invariant of the
formal scheme of X along Z as remarked in [10, Theorem 3.2]. We write simply
aE(X) and mldZ X when the boundary is zero. One should refer to [13] for the
definitions of ((Kawamata, purely, divisorially) log) terminal and (log) canonical
singularities, which can be formulated in terms of log discrepancies.

For a pair (X ,∆), every closed subset Z of X is stratified into a finite union of
irreducible constructible subsets Zi such that mldZ(X ,∆) is equal to the minimum
of mldxi(X ,∆)−dimZi, where xi is a general closed point of Zi. Thus we are prin-
cipally interested in the case when Z is a closed point, and henceforth we consider
minimal log discrepancies over closed points only. One can generalise Conjectures
1.1, 1.3 and Problem 1.2 below straightforwardly.

Our main motivation to study minimal log discrepancies is their role in the min-
imal model program. Birkar, Cascini, Hacon and McKernan in [3], combining a
former work [7] or [8] of the last two authors, proved that this program runs at least
in one direction when the boundary is relatively big, from which the existence of
flips follows. Now the minimal model program works modulo the termination of
flips, and the termination in the relatively projective case has been reduced to the
two conjectures below on minimal log discrepancies by Shokurov in [23].

Conjecture 1.1. (i) (LSC, lower semi-continuity [2, Conjecture 2.4]) For a pair
(X ,∆), the function on the set of closed points of X sending x to mldx(X ,∆) is
lower semi-continuous.
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(ii) (ACC, ascending chain condition [20], [22, Conjecture 4.2]) Fix n and a finite
sequence {di} of real numbers. Then the set of all mldx(X ,∆) for pairs (X ,∆)
of dimension n such that ∆ has its irreducible decomposition ∑i di∆i, satisfies
the ascending chain condition.

Although the statement (ii), or a more general one, is a standard formulation of
(ACC), a weaker version of it besides (LSC) is enough to derive the termination
of flips, where a pair (X ,∆) is fixed and we consider the set of all mldx′(X ′,∆′) for
(X ′,∆′) obtained from (X ,∆) by a sequence of KX +∆-flips. We have (LSC) in di-
mension two by the classification of surface singularities, and (ACC) in dimension
two thanks to the deep numerical analysis of surface singularities by Alexeev in
[1]. In dimension at least three, we have only (LSC) in the case of local complete
intersection, which was proved as well as (PIA) stated below by Ein, Mustaţǎ and
Yasuda in [5], [6] by the theory of motivic integration.

The first conjecture (LSC) implies that mldx(X ,∆) is bounded from above by
the dimension of X as it holds for a smooth point x trivially, whereas the sec-
ond conjecture (ACC), with a reduction to the case of boundary zero, implies the
boundedness of minimal log discrepancies in fixed dimension. Therefore a basic
problem towards Conjecture 1.1 would be the following.

Problem 1.2 (BDD, boundedness). For each d, find a real number a(d) such that
all minimal log discrepancies in dimension d are at most a(d).

In fact Shokurov has conjectured in [20] the sharp bound a(d) = d, and that
mldx(X ,∆) should attain d if and only if x is a smooth point outside the support of
∆. The conjecture (BDD), which is discussed in this paper, is not known even in
dimension four, and we have had a(3) = 3 after the explicit classification [19] of
Gorenstein terminal three-fold singularities with [6] or [15].

As it has been indicated already, there exists one more conjecture on minimal
log discrepancies, closely related to those above.

Conjecture 1.3 (PIA, precise inversion of adjunction [12, Chapter 17]). Let (X ,S+
B) be a pair such that S is a normal prime divisor not contained in the support of B,
and x a closed point of S. One can construct the different BS which is a boundary
on S such that KS +BS is the restriction of KX +S+B to S. Then mldx(X ,S+B) =
mldx(S,BS).

Inversion of adjunction has its origin in the connectedness lemma [12, 17.4 The-
orem], [21, 5.7], which implies that (X ,S+B) is purely log terminal about S if and
only if (S,BS) is Kawamata log terminal. It was extended to the equivalence of log
canonicity in [9]. Its precise version (PIA) holds in the case when both X and S
are local complete intersection by [5], [6]. Referring to [12, Chapter 17] we may
consider a strong version of (PIA), on a variant mld′x(X ,S+B) of minimal log dis-
crepancy defined as the infimum of aE(X ,S +B) for vE with E exceptional whose
centre intersects S exactly at x. Then we expect that mld′x(X ,S+B) should be equal
to mldx(X ,S +B), hence to mldx(S,BS), and actually this was proved in the purely
log terminal case with mld′x(X ,S +B)≤ 1 in [3] by the idea of [12, Chapter 17].

2. ARBITRARY DIMENSION

Returning to Problem 1.2, we start with the following standard reduction. Note
that this reduction is applicable also to the sharp version of (BDD).
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Proposition 2.1. Let (x ∈ X ,∆) be a germ of a pair. Then there exists a germ y ∈Y
of a Q-factorial Gorenstein terminal singularity of the same dimension as X has
such that mldx(X ,∆)≤mldyY .

Proof. We may assume that (X ,∆) is log canonical, equivalently mldx(X ,∆) ≥ 0.
First we shall construct a projective birational morphism g : W → X from a log
terminal variety W and a boundary ∆W such that KW + ∆W = g∗(KX + ∆). Take
a log resolution f : X̄ → X of (X ,(∆ + ∆′)/2) for a general effective R-divisor ∆′

different from ∆ by an R-Cartier R-divisor. Let ∆̄, ∆̄′ denote the strict transforms of
∆,∆′. According to [3] we run the minimal model program over X for the Kawa-
mata log terminal pair (X̄ ,(1− ε)∆̄ + ε∆̄′) for a small positive real number ε to
obtain its relative minimal model g : W → X . Then every g-exceptional divisor has
log discrepancy at most one with respect to (X ,(1− ε)∆ + ε∆′) by the negativity
lemma [12, 2.19 Lemma], and so with respect to (X ,∆) as ε is small, whence we
have the desired boundary ∆W on W .

Consider a germ of W at a closed point w ∈ g−1(x). Take its index-one cover
ŵ ∈ Ŵ → w ∈W , the covering associated to the Q-Cartier divisor KW , and a Q-
factorial terminalisation h : Y → Ŵ by [3]. Then for a closed point y ∈ h−1(ŵ) we
have mldx(X ,∆)≤mldw(W,∆W )≤mldwW ≤mldŵŴ ≤mldyY . q.e.d.

We shall not use the Q-factorial property in this paper. We try to bound min-
imal log discrepancies of Gorenstein terminal singularities, but in this section we
allow Gorenstein canonical singularities since this relaxation does not affect any
statements.

We have an experimental knowledge that the minimal log discrepancy measures
how singular a variety is. For example, a surface singularity is smooth if its mini-
mal log discrepancy is greater than one, is a Du Val singularity if it is at least one,
and is a quotient singularity if it is greater than zero. It gives us the expectation
that Problem 1.2 should be reduced to the case of mild singularities, like those with
small multiplicity or embedding dimension. This expectation is supported also by
the theory of motivic integration. Roughly speaking, for a scheme X its jet scheme
JnX is the collection of morphisms Speck[t]/(tn+1)→ X , and the arc space J∞X ,
the inverse limit of them, is that of morphisms Speck[[t]]→ X . Set πn : JnX → X ,
πnm : JmX → JnX . For a Gorenstein canonical singularity x ∈ X of dimension d,
the ideal sheaf JX is the image of the natural map Ωd

X ⊗OX(−KX)→ OX . Then
the minimal log discrepancy is described as mldx X = −dim

∫
π−1

∞ (x) LordJX dµX in
terms of motivic integration by [6]. It means that for j, n� j and a constructible
subset U of π−1

n (x) on which JX has constant order j, mldx X is at most (n+1)d−
j−dimπnm(π−1

nm (U)) for m� n. Hence mldx X should be small when X has large
jet schemes, particularly large J1X , the total tangent space.

The following theorem provides (BDD) under the assumption of the bounded-
ness of multiplicity or embedding dimension.

Theorem 2.2. (i) For each e there exists a number m(e) such that an arbitrary
Gorenstein canonical singularity of embedding dimension at most e has mul-
tiplicity at most m(e).

(ii) A Gorenstein canonical singularity has minimal log discrepancy at most its
dimension times its multiplicity.

Proof. Let x ∈ X be a Gorenstein canonical singularity of dimension d. Take a
log resolution f : X̄ → X such that the strict transform H̄ of a general hyperplane
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section H of X through x is f -free. We write f ∗H = H̄ +E, then mxOX̄ = OX̄(−E)
for the maximal ideal sheaf mx, and multx X = (E · H̄d−1) by the Cohen–Macaulay
property of X . Set KX̄/X := KX̄ − f ∗KX , which is an exceptional divisor.

(i) We suppose d ≤ dimmx/m2
x ≤ e. Take the exact sequences

0→ OX̄(KX̄/X − (l +1)E)→ OX̄(KX̄/X − lE)→ OE(KE − (l +1)E|E)→ 0

and consider the polynomial P(l) := χ(OE(KE − (l +1)E|E)) of degree d−1 in l.
Since Ri f∗OX̄(KX̄/X− lE) = 0 for i≥ 1, l≥ 0 by the Kawamata–Viehweg vanishing
theorem [11, Theorem 1-2-3], we have for l ≥ 0

P(l) = dim f∗OX̄(KX̄/X − lE)/ f∗OX̄(KX̄/X − (l +1)E).

Because of the canonicity of X , the direct image sheaf f∗OX̄(KX̄/X − lE) contains
f∗OX̄(−lE), which contains ml

x. Hence the sheaf f∗OX̄(KX̄/X − lE)/ f∗OX̄(KX̄/X −
(l + 1)E) is a sub-quotient sheaf of OX/ml+1

x , whose dimension is bounded by(e+l
e

)
. Therefore the polynomial P(l) has only finite possibilities, whence so does

the coefficient multx X/(d−1)! of ld−1 in P(l).
(ii) We write E = ∑i miEi for its irreducible decomposition, and choose an E0

such that H̄|E0 is big, equivalently (E0 · H̄d−1) > 0. Take the exact sequences

0→ OX̄(KX̄/X − lE)→ OX̄(KX̄/X +E0− lE)→ OE0(KE0− lE|E0)→ 0

and consider the polynomial Q(l) := χ(OE0(KE0 − lE|E0)) of degree d−1 in l. A
similar application of the vanishing theorem implies for l ≥ 1

Q(l) = dim f∗OX̄(KX̄/X +E0− lE)/ f∗OX̄(KX̄/X − lE).

The direct image sheaves f∗OX̄(KX̄/X + E0− lE) and f∗OX̄(KX̄/X − lE) are sub-
sheaves of the sheaf OX of regular functions on X . Since the only difference be-
tween them is E0, the quotient f∗OX̄(KX̄/X +E0− lE)/ f∗OX̄(KX̄/X− lE) is spanned
by some of regular functions whose multiplicity along E0 is exactly the coefficient
of E0 in −(KX̄/X + E0− lE), that is lm0− aE0(X). In particular the value of Q(l)
at l ≥ 1 is zero if lm0− aE0(X) < 0. On the other hand Q(l) as a polynomial is
of degree d− 1, whence at least one of Q(1), . . . ,Q(d) is non-zero. Thus dm0−
aE0(X)≥ 0, and mldx X ≤ aE0(X)≤ dm0 ≤ d(∑i miEi · H̄d−1) = d multx X . q.e.d.

The above argument makes use of the property of the Riemann–Roch formula
that the intersection number of a divisor with H̄d−1, a kind of multiplicity, ap-
pears in its top term. It leads us to the idea to retrieve information on the relative
canonical divisor KX̄/X from its second-top term, in which the intersection number
with KX̄/X · H̄d−2 appears. Henceforth x ∈ X is a germ of a Gorenstein canonical
singularity of dimension d ≥ 2. We follow the above setting that f : X̄ → X is a
log resolution such that the maximal ideal sheaf mx is pulled back to an invertible
sheaf OX̄(−E). Then f ∗H = H̄ +E for a general hyperplane section H of X with its
strict transform H̄. Set K := KX̄/X , E = ∑i miEi, K′ := ∑i a′iEi and a′i +1 = aEi(X),
where the summations are over the divisors Ei contracted to the point x. The K′

is different from K by the divisors which have centres of positive dimension, but
K′ · H̄d−2 = K · H̄d−2 as 1-cycles thanks to the freedom of H̄. Let Xt be a scheme
obtained from X as the intersection of d− t general hyperplane sections through
x. Then for t ≥ 1 the intersection X̄t of their strict transforms on X̄ is a log resolu-
tion of Xt . We discuss on Xt with t = 2,1,0 essentially because we are looking at
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the first two terms of the Riemann–Roch formula only. Set S := X2, C := X1 and
O0 := OX0 . The lemma below is a naive application of the Riemann–Roch theorem.

Lemma 2.3. Set sl := dim f∗OS̄(K− lE|S̄)/ f∗OS̄(K− (l +1)E|S̄). Then

(i) (E · H̄d−1) = multx X = sd−1− sd−2.
(ii) (K′ · H̄d−1) = (d−1)multx X−2sd−2.

Proof. KS̄/S = K− (d−2)E|S̄. By the exact sequence

0→ OS̄(KS̄/S− (l +1)E|S̄)→ OS̄(KS̄/S− lE|S̄)→ OE|S̄(KE|S̄ − (l +1)E|E|S̄)→ 0

and the vanishing theorem, P(l) := χ(OE|S̄(KE|S̄− (l +1)E|E|S̄)) is equal to sd−2+l
for l ≥ 0, whence P(l) = (sd−1− sd−2)l + sd−2 as a polynomial in l. On the other
hand the Riemann–Roch formula provides P(l) =−(E|S̄)2l + 1

2((KS̄/S−E|S̄) ·E|S̄).
The lemma follows from comparison of coefficients in P(l). q.e.d.

This lemma is translated into the language of the curve C or the Artinian ring
O0 by the following inductive principle. For a divisor A on X̄s which is effective
outside f−1(x), we set OXt (A) := f∗OX̄t

(A|X̄t
)∩OXt for 1 ≤ t ≤ s (the intersection

∩OXt necessary only when t = 1) , which consists of regular functions on Xt with
multiplicity at least the coefficient in −A|X̄t

along every prime divisor of X̄t . For
example OXt (−E) is equal to the maximal ideal sheaf mxOXt . Then with a function
h in mxOXt defining Xt−1 we have

dimOXt (A+E)/OXt (A)

=dimOXt (A+E)/(hOXt ∩OXt (A+E)+OXt (A))

+dim(hOXt ∩OXt (A+E)+OXt (A))/OXt (A)

=dimOXt (A+E)OXt−1/OXt (A)OXt−1 +dim(hOXt ∩OXt (A+E))/(hOXt ∩OXt (A))

=dimOXt (A+E)OXt−1/OXt (A)OXt−1 +dimOXt (A+2E)/OXt (A+E).

Hence dimOXt (A+E)/OXt (A) = dimOXt−1/OXt (A)OXt−1 by the inductive use of it.
Set O0(A) := OC(A)O0 and m0 := mxO0.

Lemma 2.4. (i) sl = dimOC/OC(K− (l +1)E) for l ≥ d−2.
(ii) (K′ · H̄d−1) = (d−1)dimO0−2∑1≤l≤d−1 dimO0/O0(K− lE).

Proof. By the inductive principle (ii) follows from (i), Lemma 2.3(ii) and dimO0 =
multx X . For (i) it suffices to show that OS(K− lE)OC = OC(K− lE) for l ≥ d−1,
but it is an application of the vanishing theorem to the exact sequence

0→ OS̄(K− lE|S̄−C̄)→ OS̄(K− lE|S̄)→ OC̄(K− lE|C̄)→ 0.

q.e.d.

We close this section by an important result on the Artinian ring O0.

Proposition 2.5. O0(K−dE) = 0. In particular md
0 = 0.

Proof. The application of the inductive principle to Lemmata 2.3(i) and 2.4(i)
provides multx X = dimOC(K− (d− 1)E)/OC(K− dE) = dimO0/O0(K− dE).

q.e.d.
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3. DIMENSION THREE

In dimension three we recover the following result without explicit classifica-
tion, such as [14] by Laufer, [17], [18], [19] by Reid.

Theorem 3.1. Let x ∈ X be a Gorenstein terminal three-fold singularity. Then
(i) A general hyperplane section of X is canonical, proved by Reid in [19].

(ii) mldx X ≤ 3, proved by Markushevich in [15].

The exceptional divisors Ei treated by our numerical argument are only those
the restriction of H̄ to which is big, which explains the failure to derive the char-
acterisation of a smooth three-fold point in (ii) by the property that it has minimal
log discrepancy three. For, a Du Val singularity of type D or E has a minimal reso-
lution on which the strict transform of a general hyperplane section intersects only
an exceptional curve along which every non-unit function has multiplicity at least
two. Only this curve corresponds to the Ei with H̄|Ei big, which has a′i = mi = 2,
in the case when S has such a singularity. Of course one can avoid this difficulty
by [6]. Also note that the converse of (i), for an isolated Gorenstein three-fold
singularity, is a simple application of the connectedness lemma.

Proof. In contrast to the historical context, we prove (ii) firstly. Lemma 2.4(ii) with
d = 3 is

(K′ · H̄2) = 2dimO0(K−2E)−2dimO0/O0(K−E),

which is positive as X is terminal. We use the Gorenstein property of the Artinian
ring O0 that its socle (0 : m0) is isomorphic to k; a reference is [16, Theorem
18.1]. The ideal O0(K− 2E) is contained in the socle of O0 by Proposition 2.5,
whence dimO0(K − 2E) ≤ 1. Thus (K′ · H̄2) is positive only if (K′ · H̄2) = 2,
O0(K−E) = O0 and O0(K−2E)' k. Therefore mldx X −1≤ (∑i a′iEi · H̄2) = 2,
which is (ii).

We proceed to a more delicate analysis for (i). We assume that X is singular,
equivalently multx X ≥ 2, since (i) is trivial when X is smooth. We have already
obtained OC(K − E) = OC, that is K|C̄ ≥ E|C̄. Also, multx X = dimO0 = 2 by
O0(K−E) = O0 and O0(K−2E)' k. Thus E|C̄ has the same degree 2 as K|C̄ has,
whence K|C̄ = E|C̄.

We construct the contraction S̄→ T of all curves which have positive coefficients
in KS̄/S, which is an isomorphism about C̄ by KS̄/S|C̄ = K−E|C̄ = 0. Write KS̄/S =
P−N with effective divisors P,N which have no common components. If P > 0
there exists an irreducible curve on S̄ which has negative intersection number with
P, hence so with KS̄/S; that is a (−1)-curve with positive coefficient in KS̄/S. By
contracting such curves successively, we obtain a smooth surface T with KT/S ≤ 0.

We want to prove KT/S = 0. Suppose not, then there exists an exceptional irre-
ducible curve on T which intersects the support of KT/S properly. It has negative
intersection number with KT/S, whence it is a (−1)-curve. By contracting such
curves successively outside a neighbourhood of C̄, we finally obtain a smooth sur-
face T ′ on which there exists an irreducible curve l0 which intersects both C̄ and
another l1 with negative coefficient in KT ′/S, where we set li to be the push-forward
of Ei|S̄, possibly reducible when H̄|Ei is not big. Then l0 is a (−1)-curve, and
(C̄ · l0)T ′ = (−∑mili · l0)T ′ ≤ m0−m1. But m0 ≤ (E · H̄2) = 2 and m1 > a′1 ≥ 1, a
contradiction. q.e.d.
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4. DIMENSION FOUR

In dimension four we bound minimal log discrepancies in a special case, just
for which we introduce one ad hoc definition. For a germ (x ∈ X ,∆) of a pair, an
algebraic valuation is called a terminal piece if it has log discrepancy greater than
one and in addition if it is defined by a divisor F on a resolution X̄ such that the
maximal ideal sheaf is pulled back to an invertible sheaf OX̄(−E) and−E|F is big.

Theorem 4.1. Let x∈ X be a Gorenstein terminal four-fold singularity whose gen-
eral hyperplane section has a terminal piece. Then multx X ≤ 2 and mldx X ≤
5−multx X.

At some point of the proof, we have to use either (PIA) on smooth varieties [6] or
the sharp (BDD) for three-folds [15]; otherwise we would obtain only mldx X ≤ 5.
First we provide a proposition on all Gorenstein terminal four-fold singularities.

Proposition 4.2. Let x ∈ X be a Gorenstein terminal four-fold singularity.
(i) If multx X ≤ 2 then mldx X ≤ 5−multx X.

(ii) If multx X ≥ 3 then multx X ≥ (K′ · H̄3) and O0(K − 4E|C̄ + P) ' k for an
arbitrary effective divisor P on C̄ with 0 < P≤ E|C̄.

In both cases, 0≤ (K′ · H̄3)−dimO0(K−2E)/O0(−2E)≤ 2.

Proof. Lemma 2.4(ii) with d = 4 is

(K′ · H̄3) =dimO0(K−2E)−dimO0/O0(K−2E)(1)

+2(dimO0(K−3E)−dimO0/O0(K−E)).

The ideal O0(K− 3E) is contained in the socle of O0 by Proposition 2.5, whence
dimO0(K− 3E) ≤ 1. If O0(K− 3E) = 0, then dimO0(K− 2E) ≤ 1 by the same
reason, and O0(K−2E) = O0 by (K′ · H̄3) > 0, whence dimO0 = 1. Therefore we
assume that O0(K−3E)' k.

Then by (1),

multx X− (K′ · H̄3) = 2(dimO0/O0(K−E)+dimO0/O0(K−2E)−1).

If multx X < (K′ · H̄3), then O0(K− 2E) = O0 and (K′ · H̄3) = multx X + 2. Thus
multx X ≤ 2 by O0(K−2E) = O0 and O0(K−3E)' k. In particular O0(−2E) = 0,
X is a hypersurface singularity and (i) follows from (PIA) in [6]. (Instead one may
derive (i) as follows. Supposing mldx X ≥ 4 one can deduce the canonicity of
S as in the proof of Theorem 3.1(i), then X3 as well as X must be terminal by the
connectedness lemma, and actually X3 is smooth by OX3(K−2E)OS = OS obtained
as in the proof of Lemma 2.4(i) and (BDD) in [15].) Therefore, we assume that
multx X ≥ (K′ · H̄3) besides O0(K−3E)' k henceforth.

We adopt the notation E ∧K′ := ∑i min{mi,a′i}Ei following [3]. Let P be an
arbitrary effective divisor on C̄ with P≤ E∧K′|C̄ such that O0(K−4E|C̄ +P) = 0;
an example is P = 0. The ideal O0(K− 3E|C̄ + P) is contained in the socle of O0
but contains O0(K−3E)' k, whence O0(K−3E|C̄ +P)' k. Consider the bilinear
form

O0(−E)/O0(P−2E|C̄)×O0(K−2E)/O0(K−3E|C̄ +P)→ k,

which is right non-degenerate because O0 has the socle O0(K − 3E|C̄ + P). In
particular dimO0/O0(P−2E|C̄)≥ dimO0(K−2E). With (1) we obtain that

(K′ · H̄3)≤ dimO0(K−2E)/O0(P−2E|C̄)+2(1− c1),(2)
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where c1 := dimO0/O0(K−E)≤ 1.
We compute (K′ · H̄3) in terms of P. Consider the exact sequence

0→ OC̄(P−3E|C̄)→ OC̄(K−3E|C̄)→ OK|C̄−P(K−3E|K|C̄−P)→ 0.

We have checked OC(K−3E|C̄) = f∗OC̄(K−3E|C̄) in the proof of Lemma 2.4(i).
Hence the direct image sheaf f∗OC̄(P− 3E|C̄) also is contained in the structure
sheaf OC, which means OC(P− 3E|C̄) = f∗OC̄(P− 3E|C̄). Then the difference
OC(K−3E)/OC(P−3E|C̄) between them has the same dimension (K′ ·H̄3)−degP
as OK|C̄−P(K−3E|K|C̄−P) has. Thus with the inductive principle we have

dimOC(K−2E)/OC(P−2E|C̄)

=dimOC(K−3E)/OC(P−3E|C̄)

+dimOC(K−2E)/OC(K−3E)−dimOC(P−2E|C̄)/OC(P−3E|C̄)

=(K′ · H̄3)−degP+dimO0/O0(K−3E)−dimO0/O0(P−3E|C̄)

=(K′ · H̄3)−degP− (1− c2),

where c2 := dimO0(P− 3E|C̄) ≤ 1. This principle also computes dimOC(K −
2E)/OC(P−2E|C̄) = dimO0(K−2E)/O0(P−2E|C̄)+c3, with c3 := dimOC(K−
E)/OC(P−E|C̄)≤ 1. Therefore

(K′ · H̄3) = dimO0(K−2E)/O0(P−2E|C̄)+(1− c2)+ c3 +degP,(3)

and the inequalities on (K′ · H̄3) follows from the case P = 0.
Supposing degP = 1 we shall derive multx X = 1, which completes the proof.

Then 2c1 + c3 ≤ c2 by (2) and (3). In particular c1 = 0, that is K|C̄ ≥ E|C̄ and in
fact K|C̄ = E|C̄ by the assumption multx X ≥ (K′ · H̄3). Hence O0(P− 3E|C̄) =
O0(K − 4E|C̄ + P) = 0, that is c2 = 0. Therefore c3 = 0, whence P = E|C̄ and
multx X = degE|C̄ = 1. q.e.d.

Proof of Theorem 4.1. We shall exclude the case (ii) of Proposition 4.2. Since X3
has a terminal piece, there exists a divisor E0 with H̄|E0 big and m0 < a′0. Suppose
multx X ≥ 3. Then there exists another E1 with H̄|E1 big and m1 > a′1 by multx X ≥
(K′ · H̄3) in Proposition 4.2(ii). For points Q0 in E0|C̄ and Q1 in E1|C̄, the proposi-
tion deduces O0(K−4E|C̄ +m0Q0 +Q1) = O0(K−4E|C̄ +(m0−1)Q0 +Q1)' k.
As the computation of dimOC(K − 2E)/OC(P− 2E|C̄) in the proof of Proposi-
tion 4.2, we can compute dimOC(K−3E|C̄ + m0Q0 + Q1)/OC(K−3E|C̄ +(m0−
1)Q0 +Q1) = dimOC(K−4E|C̄ +m0Q0 +Q1)/OC(K−4E|C̄ +(m0−1)Q0 +Q1) =
1. Therefore by the same reason as in the proof of Theorem 2.2(ii), there exists a
regular function h ∈ OC(K−3E|C̄ +m0Q0 +Q1) on C whose multiplicity at Q0 is
exactly the coefficient of Q0 in −(K−3E|C̄ + m0Q0 + Q1), that is 2m0−a′0. This
happens only if h is a unit in OC since 2m0− a′0 < m0. But h must have multi-
plicity at Q1 at least the coefficient of Q1 in −(K− 3E|C̄ + m0Q0 + Q1), that is
3m1−a′1−1 > 0, a contradiction. q.e.d.

5. CONCLUDING REMARKS

The idea to use the Riemann–Roch theorem stems from an observation of the
simplest case when a Gorenstein singularity x ∈ X of dimension d has a resolution
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f : X̄ → X with only one exceptional divisor E0, mapped to x, such that −E0 is
f -ample. Then the exact sequence

0→ OX̄(KX̄/X − (l +1)E0)→ OX̄(KX̄/X − lE0)→ OE0(KE0− (l +1)E0|E0)→ 0

with the vanishing theorem implies that P(l) := χ(OE0(KE0−(l+1)E0|E0)) is equal
to dim f∗OX̄((aE0(X)− l − 1)E0)/ f∗OX̄((aE0(X)− l − 2)E0) for l ≥ 0, whence
aE0(X)≤ d as P(l) is a polynomial of degree d−1 in l. This argument looks simi-
lar to that of Theorem 2.2, but in fact is completely different by the reason that one
can choose E0, a divisor divided by multiplicity, in place of E = m0E0. As far as
our approach treats divisors such as E appearing in the pull-back of ideal sheaves,
it will provide properties of log canonical thresholds, or more generally jumping
coefficients as defined in [4], rather than those of the minimal log discrepancy, be-
cause it analyses the values l in divisors of form K− lD with K canonical divisor,
which encode information on K divided by D, corresponding to thresholds. For
example it implies that log canonical thresholds are bounded by dimension. This
philosophy manifests itself also in positive characteristic, where the log canonical
threshold has its correspondent, the F-pure threshold as defined in [24], in contrast
to the minimal log discrepancy.

The proofs of Theorems 3.1 and 4.1 are in the nature of the singularities con-
cerned. Namely, these singularities are characterised in terms of a surface ob-
tained as the intersection of general hyperplane sections, and one can apply the full
Riemann–Roch formula on such a surface since it is free from higher Chern classes.
Therefore there seem to exist two directions to advance our approach. One is to
face also the lower terms in this formula, which amounts to cutting out varieties
of higher dimension, whereas the other is to treat also divisors from non-maximal
ideal sheaves, which amounts to analysis of special hyperplane sections.
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