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Kernel Methods for Chemical Compounds: From Classification to
Design

Tatsuya AKUTSU†a) and Hiroshi NAGAMOCHI††, Members

SUMMARY In this paper, we briefly review kernel methods for analy-
sis of chemical compounds with focusing on the authors’ works. We begin
with a brief review of existing kernel functions that are used for classifi-
cation of chemical compounds and prediction of their activities. Then, we
focus on the pre-image problem for chemical compounds, which is to in-
fer a chemical structure that is mapped to a given feature vector, and has
a potential application to design of novel chemical compounds. In par-
ticular, we consider the pre-image problem for feature vectors consisting
of frequencies of labeled paths of length at most K. We present several
time complexity results that include: NP-hardness result for a general case,
polynomial time algorithm for tree structured compounds with fixed K, and
polynomial time algorithm for K = 1 based on graph detachment. Then we
review practical algorithms for the pre-image problem, which are based
on enumeration of chemical structures satisfying given constraints. We
also briefly review related results which include efficient enumeration of
stereoisomers of tree-like chemical compounds and efficient enumeration
of outerplanar graphs.
key words: chemoinformatics, kernel method, pre-image, dynamic pro-
gramming, enumeration, graph detachment

1. Introduction

As a result of extensive studies done in these two decades,
kernel methods have become one of the standard tools in
machine learning, data mining, and bioinformatics. Kernel
methods have also been applied to chemoinformatics [7],
[9], [19], [21], especially to Quantitative Structure-Activity
Relationship (QSAR) and Quantitative Structure-Property
Relationship (QSPR) problems whose purposes are to pre-
dict the chemical activity and property for a given chemical
compound respectively [12], [14]. In most of these appli-
cations, chemical compounds are usually defined as graph
structures and then these graphs are mapped to feature vec-
tors in a feature space, to which such prediction methods
as Support Vector Machines (SVMs) and Support Vector
Regression (SVR) are applied. Though several methods
have been proposed for design of feature vectors, those
based on frequency of small fragments [7], [9] and frequency
of labeled paths [19], [21] have been widely used, where
weights/probabilities are sometimes put on paths/fragments,
and other traditional features such as molecular weights,
partial charges and logP might also be combined with them.
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Examples of feature vectors based on frequency of labeled
paths and frequency of small fragments are given in Fig. 1,
where the formal definitions are given in Sect. 2.

While classification of chemical compounds and pre-
diction of their activities and properties are still important,
design of new chemical compounds is becoming very im-
portant because of increasing need of development of novel
drugs. In the field of machine learning, the pre-image prob-
lem has been studied [4], [5]. In this approach, a desired ob-
ject is specified or computed as a vector in a feature space
using a suitable objective function or other methods and
then the vector is mapped back to the input space, where
this mapped back object is called a pre-image. Let φ be
a mapping from an input space to a feature space. Then,
the problem is, given a vector v in the feature space, to
find a pre-image x in the input space such that v = φ(x).
It is to be noted that φ is not necessarily injective or sur-
jective. If φ is not surjective, we need to compute an ap-
proximate pre-image, for example x∗ defined by x∗ =
arg minx dist(v, φ(x)) (see Fig. 2).

Bakir, Weston and Scölkopf proposed a method to find
pre-images in a general setting by using Kernel Principal
Component Analysis and regression [4]. Bakir, Zien and
Tsuda developed a stochastic search algorithm to find pre-
images for graphs [5]. Akutsu and Fukagawa studied the
problem of inferring graphs from the frequency of vertex
labeled paths of length at most K, which corresponds to
a pre-image problem on the path frequency-based feature
space [1]–[3]. They proved that this problem can be solved
by dynamic programming in polynomial time of the size of
an output graph if graphs are trees of bounded degree and K

Fig. 1 Path frequency-based feature vector φK
PF(G) and fragment-based

feature vector φFF(G).
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Fig. 2 Pre-image problem for chemical compounds. Multiple com-
pounds may correspond to the same feature vector, or no compound may
correspond to a given feature vector.

is fixed, whereas this problem is NP-hard even for trees of
bounded degree for general K [1]. They extended the poly-
nomial time algorithm for outerplanar graphs [2] and for
feature vectors based on frequencies of small fragments [3],
where a graph is outerplanar if it can be drawn on a plane
such that all vertices lie on the outer face without crossing of
edges and it is reported that 94.3% of chemical compounds
in the NCI chemical database have outerplanar graph struc-
tures [15].

Though these algorithms work in polynomial time, the
degree of polynomial is too high to be applied to real in-
stances. Nagamochi developed an efficient polynomial time
algorithm for the case of K = 1 which can be applied to
general graph structures as well as tree structures, based on
graph detachment [24].

In order to develop practical algorithms, Akutsu and
Fukagawa proposed a branch-and-bound algorithm for tree-
like chemical structures [1]. Then, Fujiwara et al. developed
a much more efficient branch-and-bound algorithm [13],
which combines an existing tree enumeration algorithm [25]
with several bounding operations. Ishida et al. developed
an improved algorithm by introducing a novel and strong
bounding operation named detachment cut [18], which is
based on Nagamochi’s work on detachment [24].

The pre-image problem has also been studied as a part
of inverse QSAR/QSPR studies. Kier et al. developed meth-
ods for reconstructing molecular structures from the count
of paths of a length up to two and the count of paths of a
length up to three, by combining enumeration and bound-
ing operations [20]. Skvortsova et al. developed a similar
method, in which paths of the same length are further classi-
fied into several classes based on atom and bond types [28].
Faulon et al. defined another descriptor based on trees and
developed methods for enumerating all the structures con-
sistent with a given descriptor [10].

As mentioned above, enumeration of structures con-
sistent with given constraints plays a key role in practical
algorithms for the pre-image problem for chemical com-
pounds. In fact, the enumeration of chemical graphs is one
of the fundamental problems in chemoinformatics [11], [12]
and has a long history going back to Cayley’s work on the
enumeration of structural isomers of alkanes in the 19th
Century [8] and including seminal group theoretic studies

by Pol̀ya and others [27]. Our approach provides somewhat
different methodology to these existing approaches. In addi-
tion to enumeration of chemical graphs, it is also important
to enumerate stereoisomers. For this stereoisomer enumer-
ation problem, several methods have been proposed, which
mostly follow the work by Nourse [26]. The basic strategy
employed in these methods is to create a list of all 2m com-
binations after identification of m stereocenters and then re-
move duplicated structures. Imada et al. recently developed
an alternative approach using dynamic programming [16],
[17] whereas the applicability of this approach is currently
limited to chemical graphs having tree-like structures and
outerplanar structures.

In this paper, we review some of existing kernels for
chemical compounds, algorithms for the pre-image problem
for chemical compounds, and algorithms for enumeration
of isomers and stereoisomers, with focusing on the authors’
works.

2. Kernels for Chemical Compounds

In this section, we briefly review some of existing kernels
for chemical compounds. Other recent kernels for chemical
compounds can be found in [23].

We begin with feature vectors based on frequency of
vertex labeled paths and its probabilistic extension called
marginalized graph kernel or random walk kernel. Let
G(V, E) be an undirected connected multigraph without self
loops†. Let ΣV and ΣE be sets of vertex labels and edge la-
bels, respectively. In this paper, we mainly consider vertex
labels and ignore edge labels in many cases. Since we are
considering chemical structures, we reasonably assume that
the maximum degree of vertices and the sizes of ΣV and ΣE

are bounded by constants. Then, we use n = |V | to denote
the size of graph G(V, E) since the number of bonds con-
necting to each vertex is bounded by a constant and thus |E|
is O(n). For each a ∈ ΣV , its valence val(a) is assigned (e.g.,
val(C) = 4, val(N) = 3, val(O) = 2). Let Σ≤k

V be the set of la-
bel sequences (i.e., the set of strings) over ΣV whose lengths
are between 1 and k. Let �(v) be the label of vertex v. For
each path π = (v0, . . . , vh) of G, �(π) denotes the label se-
quence of π (i.e., �(π) = (�(v0), . . . , �(vh))). For graph G and
label sequence s, occ(s,G) denotes the number of paths π in
G such that �(π) = s. It is to be noted that we consider di-
rected paths for π although G is an undirected graph. Then,
the level K feature vector φK

PF(G) for G(V, E) is defined by

φK
PF(G) = (occ(s,G))s∈Σ≤K+1

V

and the corresponding kernel K(G,G′) between graphs
G(V, E) and G′(V ′, E′) is defined by

KK
PF(G,G′) = φK

PF(G) · φK
PF(G′)

†Multigraph means that there can be multiple edges between
the same pair of vertices. Though multigraphs were not explicitly
considered in [1]–[3], the algorithms can be modified to cope with
multigraphs.
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where x · y denotes the inner product between two vectors x
and y. See Fig. 1 for an example. It should be noted that the
size (i.e., number of vertices) n of the original graph can be
obtained from φK

PF(G).
The frequency-based kernel can be extended to the

marginalized graph kernel as follows. For two sequences
s and s′ over Σ. we define KID(s, s′) by

KID(s, s′) =

{
1 if s = s′,
0 otherwise.

We assume that each path π in G has the probability Pr(π),
where

∑
π∈V∗ Pr(π) = 1 holds. This probability is usually

given as the probability of generating π by random walk on
G under some probabilistic model. Then, the marginalized
graph kernel KMG(G,G′) is defined by

KMG(G,G′) =
∑

(π,π′)∈V∗×(V ′)∗
Pr(π)Pr(π′)KID(π, π′).

Though the number of paths appearing in this kernel is in-
finite, the kernel value can be computed efficiently by ma-
trix inversion under a certain probabilistic model of random
walk [19]. In the following, we assume that tottering paths
(paths for which there exists some i such that vi = vi+2)
are not counted in feature vectors, where it is suggested that
avoiding tottering paths is useful in practice [21].

Next we briefly review feature vectors based on small
fragments, which have been traditionally used in chemoin-
formatics (see also Fig. 1). Let F = {F1, . . . , FM} be a set
of graphs (chemical substructures). Since information on
the number of occurrences of each atom type is usually in-
cluded in feature vectors, we assume that all single atoms
are included in F . We also assume that the size of each
Fi is bounded by a constant K because small fragments are
usually employed. Let occ(Fi,G) denote the number of sub-
graphs of G that are isomorphic to Fi. Different from the
case of path frequency, subgraphs consisting of the same
vertices are counted only once for each Fi because the num-
ber of automorphisms may become large whereas it is at
most two for each path. Then, a feature vector φFF(G) for G
is defined by

φFF(G) = (occ(Fi,G))Fi∈F .

The kernel function for this feature vector is simply defined
as the inner product φFF(G) · φFF(G′).

As a variant of path frequency-based kernels and
fragment-based kernels, tree pattern kernels have been pro-
posed [22]. Let T = {T1, . . . ,T|T |} be a set of trees. Let
occ(T,G) denote the number of occurrences of T in G (see
[22] for the meaning of occurrences). Assume that weight
w(T ) is given for each tree. Then, the tree-pattern kernel is
defined as

KTR(G,G′) =
∑
T∈T

w(T )occ(T,G)occ(T,G′).

It is shown in [22] thatKTR(G,G′) can be computed in poly-
nomial time if T and w(T ) satisfy some reasonable condi-
tions.

Chemical compounds are regarded as undirected la-
beled graphs in the above. However, two chemical com-
pounds with the same graph structure may have different
three-dimensional configurations due to asymmetry around
carbon atoms and many other structural asymmetries. Such
compounds are called stereoisomers. Since stereoisomers
often exhibit different chemical properties, it is also impor-
tant to develop kernel functions incorporating such stereo-
chemical information. Brown et al. developed such a kernel
based on the tree pattern kernel [6].

3. Dynamic Programming Algorithms for Pre-image
Problem

As mentioned in Introduction, the pre-image problem is to
find a graph G(V, E) such that φ(G) = v for a given feature
vector v under some fixed feature map φ. The most basic
version of the pre-image problem is defined as follows.

Definition 1: (GIPF: Graph Inference from Path Fre-
quency)
Given a path frequency-based feature vector v of level K,
output a graph G(V, E) satisfying φK

PF(G) = v. If there does
not exist such G(V, E), output “no solution.”

We also consider several variants of GIPF by taking
into account the valence condition, the distance between a
given vector and a possible feature vector, and fragment-
based features†.

GIFV (Graph Inference from path Frequency and label Va-
lence)
Given a path frequency-based feature vector v of level
K, output a graph G(V, E) satisfying φK

PF(G) = v and∑
w:{v,w}∈E m({v,w}) = val(�(v)) for all v ∈ V , where

m denotes the multiplicity of an edge {v,w} (e.g.,
m({v,w}) = 2 if there exist two edges (i.e., double
bond) between v and w). If there does not exist such
G(V, E), output “no solution.”

GIFV-M (Graph Inference from path Frequency and label
Valence with Minimum distance)
Given a path frequency-based feature vector v of
level K, output a graph G(V, E) which minimizes L1-
distance between φK

PF(G) and v under the condition that∑
w:{v,w}∈E m({v,w}) = val(�(v)) holds for all v ∈ V .

GIFF (Graph Inference from Fragment Frequency)
Given a feature vector v based on a set of fragments
F , output a graph G(V, E) satisfying φFF(G) = v and∑

w:{v,w}∈E m({v,w}) = val(�(v)) for all v ∈ V . If there
does not exist such G(V, E), output “no solution.”

GIFF-M (Graph Inference from Fragment Frequency with
Minimum distance)
Given a feature vector v based on a set of frag-
ments F , output a graph G(V, E) which minimizes L1-
distance between φFF(G) and v under the condition that∑

w:{v,w}∈E m({v,w}) = val(�(v)) holds for all v ∈ V .

†The names of some problems are changed from the original
ones [3].
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GIULF (Graph Inference from Upper and Lower bounds
of Fragment frequency)
Given feature vectors ub and lb based on a set
of fragments F , output a graph G(V, E) satisfying
lb � φFF(G) � ub and

∑
w:{v,w}∈E m({v,w}) ≤ val(l(v))

for all v ∈ V , where x � y denotes that xi ≤ yi holds
for any i-th elements of x and y. If there does not exist
such G(V, E), output “no solution.”

Interestingly, all of the above mentioned problem can
be solved in polynomial time for reasonably wide classes of
constraints and graph structures [1]–[3]

Theorem 1: GIPF, GIFV, GIFV-M, GIFF, GIFF-M and
GIULF for outerplanar graphs can be solved in polynomial
time in n if K, M and Σ are fixed, and the number of edges of
each face and the maximum degree of graphs are bounded
by constants.

On the other hand, it is known that the most basic
version GIPF is NP-hard even for trees of unbounded de-
gree [1], [2]

Theorem 2: GIPF is strongly NP-hard (i) even for K = 3
and trees of unbounded degree, and (ii) even for trees of
bounded degree and for a fixed Σ.

Here, we briefly present the basic idea of the above
mentioned polynomial time algorithms, all of which use
dynamic programming. We consider a simple case where
Σ = {0, 1}, K = 1, and m(e) = 1 holds for any edge e. We
construct a dynamic programming table D(. . .) defined by

D(n0, n1, n00, n01, n10, n11) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if there exists tree T such that

φ1
PF(T ) = (n0, n1, n00, n01, n10, n11),

0, otherwise,

where ni and ni j denote the numbers of vertices (i.e., paths
of length 0) having label i and edges (i.e., paths of length
1) having vertex labels i, j (i.e., each edge is directed from
vertex labeled i to vertex labeled j), respectively. This ta-
ble can be constructed by the following procedure where we
omit the initialization part:

D(n0, n1, n00, n01, n10, n11) = 1 iff
D(n0 − 1, n1, n00 − 2, n01, n10, n11) = 1 or
D(n0 − 1, n1, n00, n01 − 1, n10 − 1, n11) = 1 or
D(n0, n1 − 1, n00, n01 − 1, n10 − 1, n11) = 1 or
D(n0, n1 − 1, n00, n01, n10, n11 − 2) = 1.

The correctness of the algorithm follows from the fact that
any tree can be constructed incrementally by adding a vertex
(leaf) one by one. For example, the second and third lines
in this procedure correspond to cases where a new vertex la-
beled 0 is attached to an existing vertex labeled 0 and a new
vertex labeled 0 is attached to an existing vertex labeled 1,
respectively. The required tree (if exists) can be obtained by
means of a standard traceback procedure. Since the value
of each element of the feature vector is O(n), the table size

is O(n6). Since it takes a constant time per entry to con-
struct the dynamic programming table, we can see that the
computation time is O(n6).

As seen from this analysis, the degree of polynomial is
quite high in the above mentioned dynamic programming-
based algorithms. Therefore, the polynomial time results in
this section are not practical and thus alternative ways are
required as mentioned in the following sections.

4. Detachment Algorithms for Level One GIFV

In this section, we review that GIPF and GIFV for general
graphs admit efficient algorithms if K = 1. For a subset X ⊆
E (resp., X ⊆ V) of a multigraph G(V, E), let G−X denote
the multigraph obtained by removing the edges in X (resp.,
the vertices in X together with the incident edges) from G.
Let comp(G) denote the number of connected components
in G.

Let v = v1+v2 be a given path frequency-based feature
vector of level K = 1, where vi (i = 1, 2) denotes the vector
consisting of the elements for label sequences of length i in
v. Let n (n′) denote the sum of all elements in v1 (v2). Thus
n and n′ are the numbers of vertices and edges of a possible
solution to GIPF, i.e., a graph G satisfying φ1

PF(G) = v.
For an example of feature vector v in Fig. 3 (a), both

graphs G1 and G2 in Fig. 3 (b) and (c) are solutions to GIPF.
Let us consider what graph will appear from these graphs
if we merge all the atoms of the same element into a single
vertex. Figure 4 (a) shows such a graph Gv(ΣV ,E) resulting
from G1 (or G2). Note that Gv is a mulitgraph on the vertex
set ΣV such that edges are determined by v2.

Conversely by splitting each vertex t ∈ ΣV in Gv into a
specified number v[t] of vertices, we can get a solution G to
GIPF such as G1 and G2 as long as G is connected and has no
self-loops. Such an operation is called detachment. To find
a detachment that generates a loopless and connected graph
G from Gv, we construct the expansion H of Gv, which is
a loopless multigraph obtained from Gv by splitting each
vertex t ∈ ΣV into v[t] vertices t1, t2, . . . , tv[t] and putting
v[st] multiple edges between every vertices si and t j. See
Fig. 4 (b) for an example of H.

Fig. 3 (a) A vector v of level K = 1; (b) a solution G1 to GIPF with v;
and (c) a solution G2 to GIFV with v and the valence val(H) = 1, val(O) = 2
and val(C) = 4.
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Fig. 4 (a) The multigraph Gv(ΣV ,E); (b) the expansion H of Gv with
v[H] = 4, v[O] = 1 and v[C] = 2; and (c) a spanning tree T of H such that
φ1

PF(T ) � v2.

Now GIPF has a solution G if and only if H con-
tains a spanning tree T whose edge set does not exceed the
one specified by v2 (obviously any spanning tree of G sat-
isfies the condition; on the other hand, given such a tree
T , G can be obtained by adding the remaining edges ar-
bitrarily). The example H in Fig. 4 (b) has such a tree T
as shown in Fig. 4 (c), in which the number of edges be-
tween O1 and {C1, C2} is at most v[OC] = 2, that between C1

and C2 is at most v[CC] = 1, and that between {C1, C2} and
{H1, H2, H3, H4} is at most v[CH] = 4. In this case, v[OC] = 2
and occ(OC,T ) = 1, and we add one more edge to T to ob-
tain a solution G to GIPF, such as G1 in Fig. 3 (b).

Finally, we convert a solution to GIPF to that to GIFV
by modifying the edge-vertex incidence relationship un-
til the valence condition is satisfied. For example, G2 in
Fig. 3 (c) is obtained from G1 by changing the end-vertex C
of three edges HC to the other carbon atom C.

A mathematical characterization of vectors v that ad-
mit solutions to GIPF (GIFV) together with polynomial al-
gorithms have been obtained as follows [24].

Theorem 3: GIPF of level 1 has a solution if and only if
the following conditions hold:

(1) for every nonempty subset X ⊆ ΣV , the number of
edges between X and ΣV in Gv is not smaller than∑

t∈X v[t] + comp(Gv−X) − 1; and
(2) for each tt ∈ Σ2

V with v[tt] � 0, it holds v[t] ≥ 2.

GIFV of level 1 has a solution if and only if (1), (2) and the
following condition hold:

(3) for each t ∈ ΣV , the number of edges incident to the
vertex t ∈ ΣV in Gv is at least val(t).

Whether GIPF (GIFV) has a solution or not can be tested in
O(min{n+ |ΣV |22|Σ|, n3.5+n′}) time, and a solution G to GIPF
(GIFV), if any, can be constructed in O(n3.5 + n′n2) time.

The result has been extended to a variant of GIFV with
K = 1 which requires a graph G satisfying the valence con-
dition, φ0

PF(G) = v1 and φ1
PF(G) 
 v2 [24].

5. Enumeration of Tree-Like Chemical Graphs

In this section, we give a sketch of our branch-and-bound
algorithm for enumerating all solutions to GIFV for mul-
titrees [13], [18]. We first observe that the multiplicity

Fig. 5 Ordered trees and their depth-label sequences, where T1 is left-
heavy, and T3 is the parent P(T1) of T1.

m({u, v}) of two adjacent vertices u and v in a multitree is
uniquely determined due to the valence of vertices. We as-
sume that a given vector v represents path frequency in a
possible simple tree, and consider how to compute all solu-
tions to GIFV, i.e., simple trees G satisfying φK

PF(G) = v and
the valence condition.
Canonical Forms To avoid generating duplications of the
same simple tree, we introduce a canonical form of trees
based on “left-heavy trees” due to Nakano and Uno [25].

A rooted tree is a tree G with a designated vertex r,
called the root, which introduces a parent-child relationship
among vertices and defines the depth d(v) of each vertex
v to be the length of the path from r to v. An ordered
tree is a rooted tree T = (G, r, π) with a left-right rela-
tionship π, a total order over the children of each vertex.
We denote the vertices in T by v0, v1, . . . , vn−1 which are in-
dexed by the depth-first search (DFS) that starts from r = v0

and visits vertices from the left to the right. An ordered
tree T is encoded into the depth-label sequence DL(T ) =
(d(v0), �(v0), d(v1), �(v1), . . . , d(vn−1), �(vn−1)), which is an
alternating sequence of the depth d(v) and the label �(v) of
all vertices vi. Fix a total order over ΣV . An ordered tree
T = (G, r, π) is called left-heavy if DL(T ) is lexicographi-
cally larger than that of any other ordered tree T ′ = (G, r, π′)
of (G, r). Figure 5 (a) and (b) show two ordered trees T1 and
T2 of the same rooted tree, where T1 is left-heavy.

To regard “unrooted trees” as rooted trees, we use the
fact that every tree G possesses the centroid, which is a
unique vertex v∗, called the unicentroid, or a unique edge e∗,
called the bicentroid, such that any subtree in G−v∗ (G−e∗)
contains at most (n − 1)/2 (n/2) vertices. In what follows,
we treat only trees which have the unicentroids and regard
them as trees rooted at the unicentroids. The canonical form
of a tree G is defined to be the left-heavy tree T = (G, v∗, π)
of the tree (G, v∗) rooted at the unicentroid v∗.
Branching In a branch-and-bound method, branching is an
algorithm for generating all candidates for the solutions.
Our branching generates all the left-heavy trees with at most
n vertices labeled by ΣV . To generate all left-heavy trees,
we introduce a parent-child relationship between left-heavy
trees. The parent P(T ) of a left-heavy tree T is defined to
be the ordered tree obtained by removing the rightmost leaf
of T . Notice that the resulting tree P(T ) is also left-heavy.
Figure 5 (a) and (c) show a left-heavy tree T1 and its parent
T3 = P(T1). Hence all the left-heavy trees T with at most
n vertices labeled by ΣV are connected into a tree structure,
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called family tree F (n,ΣV ) whose leaves correspond to left-
heavy trees with exactly n vertices. The left-heavy tree of
each tree rooted at its unicentroid with n vertices must corre-
spond to a leaf in the family tree. The task of our branching
is to visit all nodes in F (n,ΣV ) in a DFS manner after start-
ing from the empty tree (the root node of F (n,ΣV )). When
we visit a child node v of the current node u in F (n,ΣV ), we
append a new leaf to an appropriate place on the rightmost
path of the left-heavy tree Tu corresponding to u to gener-
ate a left-heavy tree Tv. It is shown that traversing a link
between two nodes in F (n,ΣV ) can be executed in constant
time [25].
Bounding In a branch-and-bound method, bounding im-
plies several procedures for discarding part of process for
producing candidates that do not lead to any solutions. Our
bounding operation skips the task of appending leaves to the
current left-heavy tree T with at most n vertices if at least
one of the following criteria is violated:

(1) The root of T remains the unicentroid of an output (the
centroid constraint);

(2) φK
PF(T ) � v (the feature vector constraint);

(3)
∑

w:{v,w}∈E(T ) m({v,w}) ≤ val(�(v)) for all v ∈ V(T ) (the
valence constraint);

(4) T can be extended to a connected and loopless tree with
n vertices (the detachment constraint).

Testing whether criterion (4) holds or not can be checked by
the algorithms in Theorem 3.

It is our future work to extend our branch-and-bound
algorithm to a wider class of graphs than multitrees. Re-
cently we have developed an algorithm for generating all
rooted outerplanar graphs with at most n vertices in constant
time per output [29].

6. Enumeration of Stereoisomers of Tree-Like Chemi-
cal Graphs

In this section, we describe an outline of our algorithm for
enumerating all stereoisomers of a given tree-like chemi-
cal compound composed of carbon, hydrogen, oxygen and
nitrogen atoms, where a tree-like chemical compound is
modeled as a multitree [16], and it was further extended
for chemical compounds having outerplanar graph struc-
tures [17]. The algorithm generates each stereoisomer in
linear time and space. We assume that stereoisomers in
a multitree G arise from the three-dimensional configura-
tions around “asymmetric” carbon atoms (or double bonds
between them). Informally, a carbon atom v is said to be
asymmetric if one of the following cases occurs:

(i) v is adjacent to four subtrees Ti, i = 1, 2, 3, 4, and their
configurations are all distinct;

(ii) v is adjacent to a subtree T1 by a double bond and two
subtrees T2 and T3 by single bonds, the configuration
of T1 is asymmetric along the double bond, and the
configurations of T2 and T3 are distinct to each other;
and

Fig. 6 A multitree rooted at the centroid, where the number beside each
vertex v shows the index id(v) of Tv, and the symbol +/- (cis/trans)
indicates that the corresponding carbon atom (double bond) can be asym-
metric.

(iii) v is adjacent to two subtrees T1 and T2 by double
bonds, and the configuration of Ti is asymmetric along
the double bond for each i = 1, 2.

We regard a given multitree G(V, E) as a tree rooted
at its centroid. For each non-root vertex v ∈ V , let Tv de-
note the tree rooted at v induced from G by the descen-
dants of v. Our algorithm consists of two phases. The
first phase counts the total number f ∗(G) of stereoisomers
of G by using dynamic programming. For a given number
i ∈ {1, 2, . . . , f ∗(G)}, the second phase constructs the i-th
stereoisomer by backtracking the computation process in the
first phase. We illustrate the two phases using an example in
Fig. 6.
Counting Phase For each non-root carbon atom v, one of
the subtrees adjacent to v contains the centroid and its con-
figuration is always distinct from that of any of the other
subtrees. Hence we only need to examine whether the sub-
trees in the tree Tv can take distinct configurations or not.
Let g(v) (resp., h(v)) denote the number of combinations of
configurations of subrees in tree Tv so that v (or a double
bond incident to v) becomes symmetric (resp., asymmet-
ric). Then the number f (v) of stereoisomers of Tv is given as
f (v) = g(v) + 2h(v). Counting phase computes the numbers
g(v), h(v) and f (v) for all carbon atoms v in a bottom-up
manner along tree G. As a preprocessing, we first com-
pute the index id(v) of Tv for all vertices v ∈ V such that
id(u) = id(v) if and only if Tv and Tu are structurally isomor-
phic without considering any three-dimensional information
(see Fig. 6 for an example of id).

In Fig. 6, the three subtrees in tree Tv1 rooted at car-
bon atom v1 have structurally distinct configurations (i.e.,
distinct indices id), and v1 is always asymmetric. Hence
g(v1) = 0, h(v1) = 1 and f (v1) = g(v1) + 2h(v1) = 2.
Similarly, we have g(v2) = 0, h(v2) = 1 and f (v2) =
g(v2) + 2h(v2) = 2. For carbon atom v3, its rooted tree
Tv3 has two subtree Tv1 and Tv2 , which have the structurally
same configuration id(Tv1 ) = id(Tv2 ) = 5. But Tv1 can take
two sterically distinct configurations, say T+v1

and T−v1
. Sim-

ilarly T+v2
and T−v2

for Tv2 . Hence there are three combina-
tions of them, i.e., {T+v1

,T+v2
}, {T−v1

,T−v2
} and {T+v1

,T−v2
}, where
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the first two give g(v3) = f (v1) = 2 and the last one shows
h(v3) =

(
f (v1)

2

)
= 1. Hence f (v3) = g(v3) + 2h(v3) = 4,

which indicates the four stereoisomers around v3, deter-
mined by (T+v1

,T+v2
), (T−v1

,T−v2
), (T+v1

,T−v2
) and (T−v1

,T+v2
), re-

spectively. Analogously, we have g(v4) = 2, h(v4) = 1 and
f (v4) = g(v4) + 2h(v4) = 4.

For the double bond between carbon atoms v5 and v6,
we let g(v5) (resp., h(v5)) store the number of combina-
tions of configurations in tree Tv5 so that no cis-trans isomer
(resp., a cis-trans isomer) arises around the double bond.
Since Tv3 and Tv4 have the structurally same configuration,
we have h(v5) =

(
f (v3)

2

)
= 6 and g(v5) = f (v3) = 4. We set

f (v6) = g(v5) + 2h(v5) = 16, which shows the number of all
cis-trans isomers around the double bond between v6 and v5.
Output Phase After the first phase, f (v), g(v) and h(v) are
stored for each non-root vertex v. For each number i =
1, 2, . . . , f ∗(G), the second phase outputs the i-th stereoiso-
mer of G by backtracking the process of computing these
functions f , g and h in a top-down manner along tree G.
When we visit a carbon atom v, we wish to compute the
k-th stereoisomer T (k)

v of the subtree Tv for a specified num-
ber k ∈ {1, 2, . . . , f (v)}. For this, we detect the integer ku for
each child u of v such that T (k)

v consists of the ku-th stereoiso-
mer of Tu for all children u of v. We repeat this process until
an appropriate configuration of Tw is determined for all car-
bon atoms w in G.

We explain such a computation using the example in
Fig. 6. Suppose that we wish to compute the k-th stereoiso-
mer of Tv3 , where k ∈ {1, 2, 3, 4 = f (v3)}. Recall that the
four stereoisomers of Tv3 are determined by a combination
of configurations of Tv1 and Tv2 , where we call T+v1

and T−v1

the first and second stereoisomers of Tv1 . Similarly for the
first T+v2

and second T−v2
of Tv2 . We here fix a mapping μ

from {1, 2, 3, 4 = f (v3)} to {1, 2 = f (v1)} × {1, 2 = f (v2)}
such as μ(1) = (1, 1), μ(2) = (2, 2), μ(3) = (1, 2) and
μ(4) = (2, 1), where μ(kv3 ) = (kv1 , kv2 ) means that the k-
th stereoisomer of Tv3 is composed of the kv1 -th stereoiso-
mer of Tv1 and the kv2 -th stereoisomer of Tv2 . To represent
the symmetry of carbon atom v1, we set a label of v1 to be
[id(v1), nil] for μ(1) = (1, 1) and μ(2) = (2, 2), [id(v1),+]
for μ(3) = (1, 2), and [id(v1),−] for μ(4) = (2, 1), respec-
tively. Similarly the label of carbon atom v6 in Fig. 6 is set
to be one of [id(v6), nil], [id(v6), cis] and [id(v6), trans]
depending on the type of a specified configuration of Tv6 .

7. Conclusion

In this paper, we have reviewed kernel functions for chem-
ical graphs and algorithms for pre-image and enumeration
problems for chemical structures. In order to make the de-
veloped enumeration algorithms easily available, we have
been developing the EnuMol system (see Fig. 7) [18]. Cur-
rently, EnuMol includes algorithms for enumeration of tree-
like chemical structures from path frequency-based feature
vectors and enumeration of their stereoisomers. Though the
current version of EnuMol can handle benzene rings, each
benzene ring is treated as a vertex in a chemical graph.

Fig. 7 Snapshot of EnuMol.

Although kernel methods provided a new approach to
QSAR/QSPR, it seems that their performances are not sig-
nificantly better than those of traditional descriptor-based
approaches. Therefore, further improvements are required.

For enumeration problems, we have shown novel ap-
proaches: branch-and-bound algorithms with strong cut
operations for enumeration of chemical graphs, and dy-
namic programming-based algorithms for enumeration of
stereoisomers. Though the theoretical and practical perfor-
mances are better than existing algorithms, the classes of
graphs covered by these algorithms are limited. Therefore,
extension of algorithms to wider graph classes is left as fu-
ture work.

For the pre-image problem on chemical compounds,
we presented a dynamic programming-based approach and
an enumeration-based approach. It seems that the latter ap-
proach is much more practical than the former approach.
However, unless strong constraints are given, the number of
possible structures would be quite large and thus it would
be impossible to enumerate all possible structures. In such
a case, it would be useful to sample non-similar structures
instead of enumerating all possible structures. Therefore, al-
gorithms for sampling non-similar structures should be de-
veloped whereas there exist several studies in chemoinfor-
matics [11], [12]. Though we have developed enumeration-
based methods for the pre-image problem from path fre-
quency, we have not yet developed such methods for frag-
ment frequency. Therefore, development of enumeration-
based methods for fragment frequency is left as future
work. Another important future work is to develop efficient
methods for specifying a desirable compound in a feature
space. Again, some heuristic methods have been proposed
in chemoinformatics [11], [12]. However, existing meth-
ods can only be applied to design of small compounds and
thus novel methods should be developed. For this design
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problem, machine learning approaches could be useful and
should be explored.
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