Musty odor of entomopathogens enhances disease-prevention behaviors in the termite Coptotermes formosanus.

Author(s)
Yanagawa, Aya; Fujiwara-Tsujii, Nao; Akino, Toshiharu; Yoshimura, Tsuyoshi; Yanagawa, Takashi; Shimizu, Susumu

Citation

Type
Journal Article

© 2011 Elsevier Inc.; This is not the published version. Please cite only the published version.
TITLE: Musty odor of entomopathogens enhances disease-prevention behaviors in the termite *Coptotermes formosanus*

AUTHORS: Aya Yanagawa¹, Nao Fujiwara-Tsujii², Toshiharu Akino³, Tsuyoshi Yoshimura¹, Takashi Yanagawa⁴ and Susumu Shimizu⁵

AFFILIATIONS:

1) Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan

2) National Institute of Agrobiological Science, Ohwashi, Tsukuba, 305-0851, Japan

3) Chemical Ecology Laboratory, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan

4) Biostatistics Centre Kurume University, Fukuoka, 830-0011, Japan

5) Institute of Biological Control, Graduate School of Bioenvironmental Science, Kyushu University, Fukuoka, 812-8581, Japan

FOOTNOTES TO THE TITLE: Fungal odor enhances termite disease-prevention behavior.

Correspondence to: A. Yanagawa, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan

E-mail: ayanagawa@rish.kyoto-u.ac.jp
Abstract

Termites often eliminate pathogens directly through mutual grooming, and are thereby prevent infections from entomopathogenic fungi. Our previous study confirmed that the antennae of *Coptotermes formosanus* sensitively responded to the musty odor of entomopathogenic fungi. However, it is unclear if this odor has any effect on termite behavior. The purpose of this study was to clarify the effects of fungal odor on termite behavior, especially on conidia removal. The musty odor was prepared as an aqueous solution by immersing conidia in distilled water. When untreated termites were mixed with fungal-odor-treated termites at a ratio of 4:1, mutual grooming and attack of treated termites were frequently observed. This indicated that the fungal odor triggered these behavioral responses. While some components of the fungal odor were found in all of the entomopathogenic fungi tested, the odor profiles differed among the isolates.

1. Introduction
Hygiene behavior plays a key role in insect prevention against pathogens (Oi and Pereira, 1993; Swanson et al., 2009). Mutual grooming behavior, which has been well studied in termites, is a typical hygiene behavior (Kramm and West, 1982; Boucias et al., 1996; Shimizu and Yamaji, 2003). Through mutual grooming, termite workers ingest fungal conidia on the cuticle of a nestmate with the glossae and dispose of them through their alimentary tract (Yanagawa and Shimizu, 2007; Chouvenc et al., 2009). When together with nest mates, mutual grooming reduces the chances of termites getting infected by entomopathogenic fungi. This aspect of termite behavior is one of the key reasons that control of termite populations with entomopathogenic fungi had so far only limited if any effect. Since such biological approaches are an environment-friendly alternative to the current chemical control (Verma et al., 2009), it is important to identify the cues that induce termite hygiene behavior. Although microbes vary greatly with regard to competitive strength, attachment pattern, germination ability, environmental adaptability, and so on (Clarkson and Charnley, 1996), it is not yet clear what cues lead termites to notice the presence of entomopathogenic fungi on the cuticle of their nestmates.

Termite hygiene behaviors are most likely triggered by chemical information, since most termites are blind. Recent studies have revealed that termite antennae sensitively respond to the musty odors of entomopathogenic fungi (Yanagawa et al., 2009; Yanagawa et al., 2010). To understand the role played by chemical perception in Coptotermes formosanus behavior, we investigated whether odor from entomopathogenic fungi may be the cue that induces termite hygiene behavior. We report here the results from a laboratory study.
2. Materials and methods

2.1 Insects

Matured workers of *C. formosanus* were obtained from a laboratory colony maintained since 2002 (Okayama, Japan) in the dark at 28 °C and more than 85% R.H. at Kyoto University, Japan. Termites were separated into two groups, A and B, and each group was placed in a Petri dish (90 × 15 mm). At the center of the dishes was a filter paper (about 90 mm in diam., Whatman No.1) that was impregnated with distilled water (group A) or an aqueous solution of 0.05% (wt/wt) Nile blue A (group B). They were then kept at 25 °C for 1 to 2 weeks before use in the bioassay. This treatment stained all of the termites in group B blue.

2.2 Preparation for collecting fungal odor

Three isolates of highly virulent entomopathogenic fungi, *M. anisopliae* 455, *I. fumosorosae* K3 and *B. brongniartii* 782, and three low-virulence isolates, *M. anisopliae* UZ, *I. fumosorosae* 8555 and *B. bassiana* F1214 were selected. Termites show 90–100% mortality on highly virulent fungi and 10-50% mortality on low virulent fungi at 7 days after treatment, and there are 10- to 100-fold difference in LC\textsubscript{50} between lower- and higher- virulence fungi when 5 termites are kept in a dish (for further information see Yanagawa and Shimizu 2005; Yanagawa et al., submitted).

All of the *Metarhizium*, *Isaria* and *Beauveria* fungi were maintained on L-broth agar (1% polypeptone, 0.3% yeast extract, 2.0% sucrose, 0.5% NaCl, 2.0% agar) at 25 °C. Entomopathogenic fungal conidia were...
harvested with a brush from 10- to 15-day-old cultures and suspended in distilled water. About 3 ml of conidia suspensions, which contained 1.59×10^7 – 3.94×10^8 conidia/ml, could be collected from one culture. The conidial suspensions were left overnight at 25 ºC and the conidia were then removed through a 0.2 μm filter unit (Dismic-13CP, Advantec, Japan). Volatiles trapped in these filtered solutions were used for fungal odor.

One ml of distilled water was prepared as control solution W. Another distilled water solution was prepared by gently washing the surface of solid L-broth agar that had not been inoculated with entomopathogenic fungi as control solution L. These two control solutions were left overnight and filtered as described above.

2.3 Comparison of grooming behavior among the 6 isolates

In this assay, groups of four workers treated with control solution and one worker treated with fungus odor were kept in a Petri dish (35 × 15 mm) and their touching frequency was monitored. The odor-treated termites were taken from the blue-stained termite group B, all termites treated with control solution originated from the unstained group A. As a control, one termite in group B was treated with control solution W or L and added to four termites from group A treated with control solution W, and their touching frequency was estimated.

For treatment, termites were collected from the Petri dishes and put in 1 ml microcentrifuge tubes containing a fungus-odor solution. The termites were submerged in the solution with gentle swirling for 5 seconds and allowed to dry on Whatman filter paper. The treated termite groups were then partitioned into the
dishes. After treatment, five termites were placed in Petri dishes and covered with a cardboard box during the experiment to reduce the effect of room light on termite movements. The termites were then left for 15 minutes to reduce the impact of the artificial treatment. Since it was impractical to observe and estimate the level of grooming behavior for the entire duration of termite activity, the frequency at which the termites touched each other was counted on photographs taken every 30 sec for 15 min. Only termites for which the mouth parts touched their nestmates were counted. A total of 30 photographs were taken per dish to clarify differences in grooming behavior among the 6 isolates in addition to the two control solutions. Data were obtained from 20 replicates, thus 800 termites were used.

2.4 Comparison of disease-preventive behaviors and other responses

Daily observation of other hygiene behaviors was conducted using the same assay model as described above; four termites treated with control solution from group A were allowed to contact a single fungus odor-treated nestmate from group B, and their behaviors were observed. Dead individuals were not removed and the responses of other termites to the dead individual were also observed. Attack, cannibalism, burial and death caused by contact with the odor-treated termite in a dish were observed for a week, and the number of dead individuals and the duration until the first dead individual was found were estimated. The death rate was calculated both for all of the individuals in a dish and for only the odor-treated individual in a dish. Attacks were determined by the loss of body parts, and therefore cannibalism only included the eating of a dead body. As a
control, one termite in group B treated with control solution W (distilled water solution) or L (distilled water solution treated with L-broth medium) and four termites in group A treated with distilled water solution were placed in a dish. Data were obtained from 20 replicates.

2.5 Estimation of fungal volatiles

Volatile from entomopathogenic fungal conidia collected in water were extracted with SPME fiber.

SPME fiber coated with 100 μm polydimethylsiloxane (Red: 100 m; Supelco, Bellefonte, PA, USA) was used to sample the volatiles in the solution. A SPME fiber was immersed in 3ml of each of the solutions containing odor substances for 30 min at room temperature.

The gas chromatography apparatus was a GC-14A equipped with a polar capillary column, DB-WAX (30m length, 0.25 mm diameter, 0.25 μm film thickness; J & W Scientific. Inc.) and a flame ionization detector. Helium was used as the carrier gas. The SPME fiber was inserted into the GC injection port kept at 200 °C for 1 min in splitless mode with a detector temperature of 220 °C. The column oven was programmed to hold at 40 °C for 5 min, to increase at 10 °C/min to 180 °C and then 20 °C/min to 220 °C, and finally to hold for 10 min at 220 °C. The substances collected from the solutions were also analyzed by a Shimadzu QP5000 GC-MS system (Shimadzu, Japan) equipped with a polar capillary column (DB-WAX polar column). Helium was used as a carrier gas at a flow rate of 50ml/min. The 70 eV EI spectra were recorded at a rate of 0.5s per scan. Volatile
compounds were identified by comparison to the mass spectra and retention times of authentic compounds, which were purchased from Nacalai Tesque (Kyoto, Japan).

2.6 Statistical analysis

To compare the differences in the grooming behavior of termites, a Poisson regression (Proc GENMOD, SAS institute, 1999) was applied. For the analysis of behavioral differences and the number of dead individuals, a logistic regression was applied and the survival time of the first individual to die, i.e., the duration until the first dead individual was found, was analyzed by a Cox regression model using JMP 6.0 software (SAS). The differences between control groups, which were treated with distilled water and broth solution, and the odor-treated groups were described in terms of fungal odor parameters, and the differences among the 6 isolates were examined with respect to genera, isolates and virulence.

3. Results

3.1 Comparison of grooming behavior among the 6 isolates

Grooming behavior was estimated in terms of the touching frequency among 5 termites in a dish consisting of one odor-treated and four untreated termites. The frequency of mutual touching in a group is presented in Fig. 1(A) and that toward one odor-treated termite by its four nestmates was presented in Fig 1(B). There was no statistically significant difference in the touching frequency between the two control groups, which
included termites treated with control solutions W and L (p = 0.077 in Fig. 1 A, p = 0.517 in Fig. 1 B). On the other hand, the touching frequencies in a dish containing a fungus odor-treated termite were significantly greater than those of the two controls (Fig. 1 A, p < 0.001 in Table 1(a); fungal odor parameter). Significant differences in touching frequency were observed among the genera (*Metarhizium*, *Isaria* and *Beauveria*; p < 0.001 in Table 1(a); genus parameter) and isolates (*M. anisopliae* UZ, *M. anisopliae* 455, *I. fumosorosae* 8555, *I. fumosorosae* K3, *B. bassiana* F1214 and *B. brongniartii* 782; p < 0.001 in Table 1(a); isolate parameter) in odor-treated groups. However, though the frequency at which other termites touched the treated termite in a mixed group was clearly greater than that in the control (Fig. 1B, p < 0.001 in Table 1(b); fungal odor parameter), no difference was seen among genera, isolates or the level of fungal virulence (Table 1(b); genus, isolate and virulence parameters). The odor substances induced high levels of grooming activity.

3.2 Comparison of disease-preventive behaviors and other responses

The changes in termite behavior caused by the fungal odor over 7 days after treatment are illustrated in Fig. 2, and the mortality rates and survival time are shown in Table 2. Attack, cannibalism and burial behaviors were not observed in either of the two control groups. Attack behavior increased significantly upon treatment (Table 3, p < 0.015; fungal odor parameter). While this increase in attack behavior was specific to the isolates of entomopathogenic fungi, it was not influenced by the fungal genera or the level of virulence (Table 3, p = 0.026; isolate parameter; p = 0.826 and p = 0.613; genus and virulence parameters, respectively). On the
other hand, treatment with fungal odor did not alter the burial and cannibalism behaviors (Table 3, p = 0.055 and
p = 0.169; fungal odor parameter, respectively).

The number of dead individuals also depended on the specific fungal isolate (Fig. 3 and Table 3, p < 0.001; isolate parameter). As in the results regarding behavioral alterations, there was no difference in the
number of deaths between the two controls (p = 0.165, t-test). Death here was caused by attack from their
nestmates since conidia were removed from the solutions and no physical pathogen was present in this study.

Therefore, the pattern for the number of dead individuals parallels that of attack behavior. No remarkable
difference was seen in the survival time until the first dead individual was discovered (Fig. 4 and Table 3, p =
0.166; fungal odor parameter).

3.3 Estimation of fungal volatiles

Gas chromatograms obtained for volatiles from the 6 fungal isolates extracted by SPME fiber are
shown in Fig. 1. 3-Octanone, 3-octanol and 1-octen-3-ol (1; RT = 9.2 min, 2; RT = 11.9 min, 3; RT = 12.8 min,
respectively) were estimated by comparison to the mass spectra and retention times of authentic compounds.

The most common chemical, which all fungi possess, was 1-octen-3-ol (No. 3 in Fig. 5, Retention time = 12.8
min). The peak at a retention time of 9.2 min (No. 1 in Fig. 5) was found with *M. anisopliae* 455, *I. fumosorosae*
K3, *B. brongniartii* 782 and *B. bassiana* F1214, and was considered to be 3-octanone. There was also another
peak at a retention time of 12.0 min (No. 2 and * in Fig.5) with *I. fumosorosae* K3, *B. brongniartii* 782 and *B.
The results of mass spectrometry showed that the chemical was 3-octanol in the two isolates of *Bassiana* F1214. The results of mass spectrometry showed that the chemical was 3-octanol in the two isolates of *Beauveria*, but the chemical peak in *I. fumosorosae* K3 could not been identified (* in Fig. 5).

4. Discussion

The volatile odor of pathogenic fungi significantly increased termite grooming and attack behavior, which resulted in an increased number of dead individuals. On the other hand, there were no changes in cannibalism or burial behavior. This suggests that cannibalism and burial behavior are induced by signals after infection, rather than by the pathogen itself. These results indicate that odor information affects behavior in the termite *C. formosanus*. Presence of spores on a termite body may also trigger grooming and attack behaviors. There are certainly differences in response to *Metarhizium* spore by nestmates depending on whether the isolate is virulent or less virulent. This could also be odor related. In other words, some of the behaviors could also be induced prior to infection. However odor triggers the remarkable responses as detailed in this study.

Grooming behavior was remarkably enhanced by the odor stimuli (Fig. 1 and Table 1 (a)(b); fungal odor parameters). The termites showed specific changes in behavior related to fungal genera and isolates (Fig. 1 A and Table 1 (a); p < 0.001; genus and isolate parameters), but all termites carrying odor were groomed at similar high rates irrespective of pathogen source (Fig. 1 B and Table 1 b; p > 0.05; genus, isolate and virulence parameters). This may have been because the termites could not find an actual target to groom since there were no conidia for the termites to remove from the surface of their nestmate. However, they still sensed something
unusual in the population, and thus there was an increase in overall grooming behavior. Rosengaus et al. (1999) reported an increase in pathogen alarm behavior by the termite *Zootermopsis angusticollis* using *M. anisopliae*. In their study, termites were not allowed to directly contact treated individuals, and they showed an enhanced vibration display. This increase in the vibration display may have been caused by chemical perception of the pathogen. In our study, attack behavior and the number of dead individuals also increased by having the fungal odor-treated nestmate in the population (Table 3; fungal odor parameter for attacks and number of deaths).

According to Myles (2002), alarm, grooming, attack and burial behaviors occur as an interactional sequence. In contrast, our results suggest that these behaviors may be regulated by different neural mechanisms, since burial and cannibalism behaviors were not enhanced by treatment with the fungal odor solution (Table 3, p = 0.055 and p = 0.169; fungal odor parameter for burial and cannibalism, respectively). For grooming to be effective as a preventive strategy, it has to be triggered as early as possible. Most effective would be to respond simply due to the presence of fungal conidia or their odor. Grooming and attacking behaviors are probably enhanced by signals before infection, and cannibalism and burial behavior are enhanced by signals after infection. These chemical compounds, which induce aggressive behavior in termites, may lead to new strategies for managing termites.

A statistical analysis showed that the number of dead individuals was correlated with virulence (Table 3, p = 0.038; virulence parameter for the number of deaths). This correlation, however, appeared to be very complicated. For example, in *Metarhizium*, dead individuals were only found with the weak virulent UZ isolate, while in *Isaria* and *Beauveria*, more termites died due to treatment with the odor of the high-virulence isolates.
While several studies have reported that termites are repelled by the odor of strongly virulent entomopathogenic fungi (Myles 2002; Mburu et al., 2009), the more isolates one examines the more complicated the picture can become. Contrasting outcomes between studies are common; it often comes down to which isolates were used. Our previous study showed that fungal virulence did not significantly affect termite behavior towards these conidia (Yanagawa et al., submitted). The solutions, however, also contain exotoxins of the pathogens and high molecular compounds, which will be recognized by gustatory receptors and thus the interaction between all these factors is still ambiguous. Our results here suggest just that termites cannot identify differences in virulence solely from their odor. Besides, the observation indicates that odor of dead individuals affects the behavior of the termites. Although the biological control using fungal agent has not been successful yet (Chouvc and Su, 2010), if we learn more of the termite habitat, it may bring new possibilities to use entomopathogenic fungi for the biological control of termites.

Although the SPME technique has its limitations (Pedrini et al., 2007), it provided the best chance to estimate soluble chemical volatiles in the applied solution. While the substances on the surface of entomopathogenic fungi have been well examined by HPLC (Hallsworth and Magan 1993, 1997; Crespo and Cafferata 2000), little information is available regarding the volatile compounds of entomopathogenic fungi. This study used a novel approach to examine the effects of entomopathogenic fungi on termites by using an odor solution. Among the volatile compounds themselves, 3-octanol was only seen with Beauveria. We could only identify a few chemicals, but were not able to determine at what quantities they were present. It seems that the
odor emission of fungi changes readily depending e.g. on growing conditions, age of the culture etc. Although
the chemical composition was quite stable, it was difficult to quantify the collected odors. The methods for
quantification and standardization of the fungal odor are necessary for future studies.

Acknowledgements

This study was supported by Research Fellowships from the Japan Society for the Promotion of Science
for Young Scientists. We thank Dr. K. Tsunoda (RISH, Kyoto University, Japan) for his helpful comments on this
study.

References

Boucias, D.G., Stokes, C., Storey, G., Pendland, J.C. 1996. The effects of imidacloprid on the termite
Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-
Nachr. Bayer 49, 103–144.

Trends in Microbiol. 4, 197-203.

Chouvenc, T., Su, N-Y., Robert, A. 2009. Inhibition of Metarhizium anisopliae in the alimentary tract of the

Chouvenc, T., Su, N-Y. 2010. Apparent synergy among defense mechanisms in subterranean termite
(Rhinotermitidae) against epizootic events: limits and potential for biological control. Journal of
Economic Entomology 103(4), 1327-1337.

Crespo, R., Cafferata, L.F.R. 2000. Biochemical interaction between entomopathogenic fungi and their insect-
host-like hydrocarbons. Mycologia 92, 528-536.

Microbiological Methods 29, 7-13.

Hallsworth, J.E., Magan, N. 1993. Effects of KCL concentration on accumulation of acyclic sugar alcohols and
trehalose in conidia of three entomopathogenic fungi. Letters in Applied Microbiology 18, 8-11.

conidia on worker termite (Reticulitermes sp.). J. Invertebr. Pathol. 40, 7–11.

Mburu, D.M., Ochola, L., Maniania, N.K., Njagi, P.G.N., Gitonga, L.M., Ndung’u, M.W., Wanjoya, A.K.,
Hassanali, A. 2009. Relationship between virulence and repellency of Entomopathogenic isolates of
Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni. J. Insect
Physiol. 55, 774-780.

Myles, T.G. 2002. Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally
occurring isolate of Metarhizium anisopliae. Sociobiology 40, 243-255.

76(1), 63-75.

FIGURE LEGENDS

Fig. 1. Comparison of grooming activity in termite groups of 5 individuals which included a termite treated with the odor substances of 6 different fungal isolates. A: Frequency of touching between all 5 termites in a dish. B: Frequency at which 4 untreated termites touched one odor-treated termite. Vertical bar represents standard deviations (n = 20).

Fig. 2. Behavioral changes observed in termites treated with the odor substances of 6 fungal isolates. ■: Number of attacked termites in a dish (attack), □: Number of eaten dead bodies in a dish (cannibalism), ■: Number of buried dead bodies in a dish (burial). Vertical bar represents standard deviations (n = 20).

Fig. 3. Mortality of termites in a dish at a 4:1 mixing ratio of untreated and odor-treated termites. Vertical bar represents standard deviations (n = 20).

Fig. 4 Number of days until the first dead individual was found in a dish at a 4:1 mixing ratio of untreated and odor-treated termites (survival time).
Fig1
Number of termites in a dish (Total 5)

Isolates

Metarhizium Isaria Beauveria

Control W L UZ 455 8555 K3 F1214 782

Fig2
Number of dead termites in a dish

Isolates

Metarhizium
Isaria
Beauveria

Control

L UZ 455 8555 K3 F1214 782

Fig3
Days

Fig4
Fig5
Table 1 Comparison of the frequency of touching (a) between all 5 termites in a dish and (b) of one termite treated with odor from 6 fungal isolates by 4 untreated termites.

Results of Poisson regression

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard error</th>
<th>Wald 95% confident limit</th>
<th>X2</th>
<th>Pr > <chi>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Touching frequency of all nestmates in a dish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungal odor</td>
<td>1</td>
<td>0.938</td>
<td>0.186</td>
<td>0.574</td>
<td>1.303</td>
<td>25.45</td>
</tr>
<tr>
<td>Genus</td>
<td>1</td>
<td>-0.0356</td>
<td>0.080</td>
<td>-0.513</td>
<td>-0.120</td>
<td>19.92</td>
</tr>
<tr>
<td>Isolate</td>
<td>1</td>
<td>-0.176</td>
<td>0.038</td>
<td>-0.251</td>
<td>-0.102</td>
<td>21.45</td>
</tr>
<tr>
<td>Virulence</td>
<td>1</td>
<td>-0.157</td>
<td>0.127</td>
<td>-0.406</td>
<td>0.091</td>
<td>1.54</td>
</tr>
<tr>
<td>(b) Touching frequency to one treated termites in a dish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungal odor</td>
<td>1</td>
<td>1.714</td>
<td>0.468</td>
<td>0.798</td>
<td>2.631</td>
<td>13.45</td>
</tr>
<tr>
<td>Genus</td>
<td>1</td>
<td>-0.204</td>
<td>0.138</td>
<td>-0.474</td>
<td>0.066</td>
<td>2.19</td>
</tr>
<tr>
<td>Isolate</td>
<td>1</td>
<td>-0.107</td>
<td>0.066</td>
<td>-0.236</td>
<td>0.022</td>
<td>2.62</td>
</tr>
<tr>
<td>Virulence</td>
<td>1</td>
<td>-0.156</td>
<td>0.223</td>
<td>-0.594</td>
<td>0.281</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Table 2 Occurrence of dead termites in 20 replicates

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Metarhizium</th>
<th>Peacilomyces</th>
<th>Beauveria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>control</td>
<td>LB</td>
<td>UZ</td>
</tr>
<tr>
<td>Total of dead individuals (n= 100)</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>First dead individuals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated termite</td>
<td>0</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>Untreated termite</td>
<td>0</td>
<td>1/1</td>
<td>2/3</td>
</tr>
</tbody>
</table>

Dead individuals; n / total dead individuals (rate in termite group%)

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Metarhizium</th>
<th>Peacilomyces</th>
<th>Beauveria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>control</td>
<td>LB</td>
<td>UZ</td>
</tr>
<tr>
<td>Treated termite (n=20)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>1/3(5)</td>
</tr>
<tr>
<td>Untreated termite (n=80)</td>
<td>0(0)</td>
<td>1/1(1.25)</td>
<td>2/3(2.5)</td>
</tr>
</tbody>
</table>
Table 3 Comparison of differences in termite responses to odors from 6 fungal isolates. Results of logistic regression.

<table>
<thead>
<tr>
<th>Behavioral response</th>
<th>Fungal odor (control - treated termite group)</th>
<th>Parameters Genus</th>
<th>Isolate</th>
<th>Virulence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack</td>
<td>$p = 0.015$</td>
<td>$p = 0.826$</td>
<td>$p = 0.026$</td>
<td>$p = 0.613$</td>
</tr>
<tr>
<td>Burial</td>
<td>$p = 0.055$</td>
<td>$p = 0.762$</td>
<td>$p = 0.171$</td>
<td>$p = 0.547$</td>
</tr>
<tr>
<td>Cannibalism</td>
<td>$p = 0.169$</td>
<td>$p = 0.231$</td>
<td>$p = 0.227$</td>
<td>$p = 0.398$</td>
</tr>
<tr>
<td>Other factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of death</td>
<td>$p = 0.015$</td>
<td>$p = 0.160$</td>
<td>< 0.001</td>
<td>$p = 0.038$</td>
</tr>
<tr>
<td>Time until first death</td>
<td>$p = 0.166$</td>
<td>$p = 0.421$</td>
<td>$p = 0.519$</td>
<td>$p = 0.524$</td>
</tr>
</tbody>
</table>