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Synopsis 

Typhoon Morakot induced the catastrophic and deadly Shiaolin landslide in 

southern Taiwan on 9 August 2009, resulting in more than 400 casualties. We undertook 

a geological and geomorphological investigation with the aim of reconstructing the 

events leading up to this landslide and to clarify factors that contributed to its 

development. The research results have been published with the title “Catastrophic 

landslide induced by Typhoon Morakot, Shiaolin, Taiwan” to the Journal of 

Geomorphology, volume 127, in 2011, where we provided the same contents as this 

paper. Cumulative rainfall reached up to 1676.5 mm in about three days under the 

influence of the typhoon, and the Shiaolin landslide, with a volume of 25  106 m3, 

occurred one day after the peak in rainfall intensity. The landslide occurred on a dip 

slope overlying late Miocene to early Pliocene sedimentary rocks consisting of silty 

shale, massive mudstone, and sandstone. It started as a rockslide in the upper third of 

the landslide area and transformed into a rock avalanche that crossed a series of terraces 

and displaced or buried the village below. It buried the riverbed of the Chishan River 

and ran up the opposite slope, creating a landslide dam 60 m high, which was breached 

about 1 hour and 24 minutes later, flooding the village. The velocity of the landslide is 

estimated to have been 20.4 to 33.7 m s−1 and its apparent friction angle was 14°, which 

indicates its high mobility. The detachments in the source area consist of combinations 

of bedding planes and joints or faults. The landslide was preceded by gravitational 

deformation, which appeared as hummocky landforms before the landslide and as 

buckle folds exposed after the event. The landslide deposits consist of fragments of 

mudstone, shale, and sandstone, as well as clayey material at its base. This clayey 

material, consisting of illite, chlorite, quartz, feldspar, and calcite, is assumed to have 

strongly influenced the long, rapid runout.  

 

Keywords: Typhoon Morakot, landslide, deep-seated landslide, gravitational slope 
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1. Introduction  

 

A catastrophic landslide is a rapid, large 

gravitational mass movement, which changes the 

topography and remains for a long time. Guthrie 

and Evans (2007) regarded a landslide as 

catastrophic when it is individually formative and 

persist more than 10 times longer than moderate 

sized landslides. Many catastrophic landslides 

accompany avalanches—events that in their 

post-failure stage involve rapid runout and 

emplacement of relatively thin sheets of crushed, 

pulverized, and dry rock (Hewitt et al., 2008). Rock 

avalanche, which is also called sturzstrom (Heim, 
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NNE–SSW and E–W are found in the study area. 

An E–W-trending fault was exposed as the 

boundary of the southern margin of the landslide, 

and a NNE–SSW-trending fault bounded the 

eastern margin (Fig. 6). To the east of the NNE–

SSW-trending fault, an NNE–SSW-trending 

anticline axis is shown in the 1:50,000 scale 

geologic map (Sung et al., 2000) outside the present 

study area. 

 

4. Characteristics of the Shiaolin landslide 

 

4.1 Morphology and deposits of the landslide 

The Shiaolin landslide is 3.2 km long in an E–W 

direction and 0.8 to 1.5 km wide. The total fall 

height was 830 m from the top of the head scarp, at 

an elevation of 1280 m, to the toe of the landslide 

deposit at 450 m. The runout distance was about 

four times the total fall height, and its apparent 

friction angle, which is a parameter of landslide 

mobility, was 14°. A comparison of the topography 

before and after the landslide shows that the terrace 

above the village and the E–W-trending ridge to its 

northeast remained, and that the source area was the 

upper third of the landslide area. The source area is 

divided by the E–W-trending ridge into a larger 

southern part (source area A) and a smaller northern 

one (source area B) (Fig. 5a). The northern side of 

this ridge is cut by E–W-trending joints, as 

described below. The depth of the slide in the 

source area was estimated to be largely uniform, 

based on a comparison of DEM data before and 

after the event (Fig. 7). Calculations based on these 

DEMs indicate that the maximum depth of the 

landslide is 86.2 m in source area A and that the 

rock volume lost from source areas A and B was 25 

 106 m3. Corresponding to the two source areas, 

the depositional area is also separated into two 

areas (areas A’ and B’) by the same ridge that 

bounds the two source areas (Fig. 5a). 

Landslide deposits consist of blocks of 

sandstone, mudstone, shale, and dark clayey 

material containing mudstone fragments. The 

surfaces of landslide deposits displayed wrinkles, 

streaks of rock blocks of the same colors, and 

streaks of soil clods. Sandstone blocks of landslide 

deposits are larger than mudstone or shale blocks, 

with many being 2 to 5 m in diameter and a few as 

large as 10 m across. The deposits are topped with 

trees and grass, which are not mixed into the 

deposits even in the distal part across the Chishan 

River. The terrace surface above Shiaolin Village 

was covered by a layer of debris averaging 18 m in 

thickness, and the small valley was buried by debris 

to a maximum thickness of 82.5 m, so that only a 

small valley remained with its channel shifted about 

50 m northward from its original location. Debris 

that covered Shiaolin Village was largely flushed 

away by surge waves after the dam breach, leaving 

landslide deposits mostly less than 10 m thick, 

topped with scattered large rock blocks. Landslide 

debris at the distal end across the Chishan River 

toppled trees forward and buried them. A N–

S-trending linear step was found in these deposits 

36 m from the landslide toe, which was 1 m high 

and 400 m long. This suggests that the deposits 

settled downhill after rushing up the slope. 

The debris from source area A moved straight 

across the terrace surface or was deflected by a 

small mound at 580 m elevation and then descended 

the small valley dissecting the terrace, and swept 

across the Chishan River, forming a landslide dam. 

The debris from source area B moved 

northwestward to northward down a small valley, 

hit a spur projecting from the north side of the 

valley, and then changed direction to westward to 

reach the Chishan River. This distal part is assumed 

to have been thin and immersed in the lake behind 

the landslide dam. 

 

4.2 Landslide dam 

Substantial amounts of debris from source area 

A moved rapidly downhill to the west, burying the 

village, crossed the Chishan River and climbed 80 

m up the opposite slope to an elevation of 460 m. 

Debris that was derived mainly from the small 

valley dissecting the terrace blocked the 80-m-wide 

river channel and formed a debris dam. From the 

topographic map and the DEMs, we estimate the 

landslide dam to have been 60 m high with its crest 

elevation at 435 m, which was the elevation of 

water marks in a house on the right bank of the 

river just upstream of the dam (Jia-Jyun Dong, pers. 

com.). Upstream from this dam, we observed signs 

of water on the slopes of both sides of the river: 

vegetation was draped on trees and grass was  
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Fig. 6. G
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stress. This could have been the trigger of the 

initiation of the Shiaolin landslide. After the 

initiation of the movement, the clayey material 

probably played an important role to form a 

lubricating layer at the base of landslide material by 

keeping high pore pressure during movement. This 

phenomenon has been investigated in flume tests, 

which show that the pore pressure increases rapidly 

with increasing fine-grained content and movement 

velocity during shearing (Wang and Sassa, 2003). 

Evans et al. (2007) attributed the long runout of the 

Leyte landslide, the Philippines, to the loading of 

undrained paddy field material in the path of the 

landslide. 

 

5.3 Role of rain in this event 

The Shiaolin landslide occurred about 1 day 

after the peak of rainfall intensity, which could be 

attributable to the infiltration behavior of rainwater 

through the gravitationally deformed rock body. 

The source area of the Shiaolin landslide had been 

gravitationally deformed beforehand, which 

suggests that the deformed rock body was fractured 

and permeable, except for the essentially 

impermeable clayey material and intact rock. 

Fractures have the potential to become pathways for 

water infiltration that would cause water pressure 

buildup at depth. In contrast to the Shiaolin 

landslide, many shallow landslides occurred when 

rainfall intensity was increasing or near its peak 

(Godt et al., 2006; Yu et al., 2006). This difference 

in terms of landslide timing is attributed to the 

difference in the effects of water infiltration and 

pore water pressure buildup. A time lag between 

peak rainfall intensity and landslide initiation is 

commonly observed for large landslides (Lollino et 

al., 2006; Evans et al., 2007; Chigira, 2009), 

considered to reflect the time required for water 

infiltration to deep levels. Rapid infiltration in 

shallow soil layers means that pore water pressure 

responds to rainfall quickly and landslides occur 

when rainfall intensity is strong.  

We suggest the geological, geomorphological 

conditions, and landslide type needs to be taken 

into account when evaluating the susceptibility of a 

location to rain-induced landsliding in addition to 

the variables of rainfall, such as the combination of 

rainfall intensity and duration (Caine, 1980; 

Guzzetti et al., 2008) or the combination of mean 

and maximum hourly intensity, duration, and 

rainfall amount (Dhakal and Sidle, 2004). 

 

5.4 Prediction of the Shiaolin landslide site 

Can the site of the Shiaolin landslide be 

predicted beforehand? We believe that this site 

could be extracted as a potential site based on the 

unusual landform before the event. The hummocky 

slope morphology was easily identified on the 

Google earth image before the event as stated 

before and it could have been delineated more 

clearly by using aerial photographs, which have 

much higher resolution than the Google earth image. 

Internal structure of the hummocky slopes, which 

have been identified as gravitational buckle folds 

with many openings after the event, might not have 

been found before the event, but the geological map 

made by the Central Geological Survey (Sung et al., 

2000) indicated that the source area are located on a 

dip slope notwithstanding that the detailed 

distribution of beds was not precise. On a dip slope, 

buckle folds is one of the common gravitational 

deformation types as well as sliding (Chigira, 2001) 

and are highly unstable and easily transform into 

catastrophic failure, because when the downslope 

limb of a buckle fold is removed, the upslope limb 

loses its support from downslope and becomes 

suddenly destabilized (Wang et al., 2003; Tommasi 

et al., 2009).  

Gravitational slope deformation develops and 

leads to a catastrophic landslide at a certain 

condition, so we need to pick up a gravitational 

slope deformation just before the catastrophic event 

from various stages of gravitational slope 

deformation. Moriwaki (2001) performed a 

statistical analysis of various field monitoring and 

experimental data on landslides and found that there 

is a critical strain, which is defined as the ratio 

between a slope displacement at its upper part and 

the slope length just before landsliding. According 

to Chigira (2009), this ratio is consistent with the 

ratio between the length of a scarplet and the length 

of a gravitationally deformed slope. Chigira (2009) 

also analyzed large landslides induced by a 

rainstorm and found that they were preceded by 

gravitational deformation and that their “strains” 

were as small as 1 to 16% before the event and 
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interpreted that they were under the critical strain 

just before the failure. These ideas of critical strain 

may be similar to those found by Saito and Uezawa 

(1966), Fukuzono (1985), Voight (1988), and 

Petley and Allison (1997). Whether the 

gravitational deformation at the Shiaolin landslide 

site had been at a critical condition or not could be 

examined by using high-resolution aerial 

photographs, which were not available. In addition 

we need further research to examine whether there 

were such potential sites near the Shiaolin landslide 

site or not by using aerial photographs.  

The gravitational slope deformation that 

preceded the Shiaolin landslide were located at the 

margin of a low-relief surface, which suggests that 

the gravitational deformation leading to 

catastrophic landslide can be interpreted and 

located from the view point of long-term slope 

development. The paleosurface, the age of which is 

unknown, has been dissected by the rejuvenation of 

the Chishan River and its tributaries in response to 

base-level lowering associated with tectonic uplift 

of the area. Corresponding to the incision, the walls 

of the river valley have been denudated by mass 

movements, which possibly started as gravitational 

slope deformation in areas with adverse geological 

structures as a precursory stage of landslide. During 

this dissection, the valley walls were debuttressed 

and destabilized by undercutting. This idea can also 

be linked to the notion of ‘waves of aggression’ in 

landscape (Brunsden, 2001). Such a combination of 

slope development, gravitational deformation, and 

landslide occurrence was reported in nonglaciated 

areas such as Kyushu in Japan (Chigira, 2009). The 

effect of debuttressing on slope destabilization is 

expected to be similar but less severe than that of 

glaciated valleys in Europe and North America 

(Bovis and Evans, 1996; Arsenault and Meigs, 

2005; Ambrosi and Crosta, 2006; Brückl and 

Brückl, 2006), initiating gravitational deformation 

of slopes, destabilization, and failure during severe 

rainstorms or snow melting (Crosta et al., 2006).  

 

6. Conclusions 

 

We investigated the geological and 

geomorphological features of the catastrophic 2009 

Shiaolin landslide, which was induced by a 

cumulative rainfall of 1676.5 mm by Typhoon 

Morakot and buried Shiaolin Village. The landslide 

occurred on a dip slope in late Miocene to early 

Pliocenesedimentary rocks consisting of shale, 

massive mudstone, and sandstone. The source area 

was the slope that had been gravitationally 

deformed beforehand. The deformation appeared as 

a hummocky slope surface before the event and was 

observed as gravitational buckle folds in the source 

area after the event. Gravitational deformation 

occurred with a preferable geological structure of 

wedge-shaped detachments consisting of bedding 

planes and joints or fault planes. Gravitational 

deformation occurred at the margin of a low-relief 

paleosurface, the apparent result of denudation of 

this surface. The gravitationally deformed rocks 

were not only mechanically but also chemically 

deteriorated, as suggested by large amounts of 

calcite precipitation from water draining from the 

source area. Thus, structural factors, weathering, 

and gravitational slope deformation were the 

underlying causes of the landslide. The landslide 

deposit consisted of a thin sheet of debris consisting 

of rock blocks and pulverized rock with weak 

clayey material at their base. This clayey material, 

which was probably produced by shearing during 

the landslide movement as well as earlier 

gravitational deformation, must have played an 

important role in the long, rapid runout by pressure 

build up and its persistence.  
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2009 年台風モラコットによる台湾の深層崩壊災害 
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要 旨 

台湾南部の小林村は2009年8月9日に台風莫拉克（Morakot）によって深刻な崩壊がもたらされ，400人以上の死者が出

た。三日間の累計降雨量は1676.5mmに達し，降雨強度のピークを迎えた翌日に崩壊が発生した。今回の崩壊は流れ盤に

起こり，崩壊体積は25106m3に及んだ。その基盤は中新世後期から鮮新世前期にかけて形成した堆積岩であり，シルト頁
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岩，厚い泥岩と砂岩を含有する。大規模な斜面崩壊土が旗山川の谷を塞ぎ，向かい側の急斜面上に広がりながら，村の

上流に高さ60mの天然ダムを形成した。天然ダムは形成後の1時間24分後に崩壊した。崩壊の移動速度は約20.4～33.7ms−1

と推定され，また，見かけ摩擦角度は14°であった。崩壊源のディタッチメントは層理，節理及び断層であった。崩壊

源の地層は重力変形を受けており，崩壊前には不規則な凹凸の地形を示していた。また，この地層の重力変形は崩壊後

に座屈変形として確認された。崩壊の堆積物は泥岩，頁岩および砂岩などの岩屑を含有し，底部には広く粘度が認めら

れ，それはイライト，緑泥石，石英，長石および方解石からなっていた。この粘度が高速かつ長距離の移動の大きな要

因となったと推定される。 

 

キーワード: 台風モラコット，豪雨，地すべり，深層崩壊，重力斜面変形，小林村 
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