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Abstract 

Mg deficiency accelerates Fe accumulation in the liver, which may induce various 

metabolic disturbances. In the present study, we examined the gene expression of 

Hepcidin, a peptide hormone produced in the liver to regulate intestinal Fe absorption 

negatively, in Mg-deficient rats. Although liver Fe concentration was significantly 5 

higher in rats fed an Mg-deficient diet for 4 wk than in rats fed a control diet, Hepcidin 

expression in the liver was comparable between the dietary groups. Previous studies 

revealed that Fe overload up-regulated Hepcidin expression through transcriptional 

activation by Fe-induced bone morphogenic protein (Bmp) 6, a growth/differentiation 

factor belonging to the transforming growth factor- family, in the liver. Mg deficiency 10 

up-regulated the expression of Bmp6, but did not affect the expression of Id1, a 

sensitive Bmp-responsive gene. In addition, the expression of Bmp receptors such as 

Alk2, Actr2a, Actr2b and Bmpr2 was lower in the liver of Mg-deficient rats than in that 

of control rats. The present study indicates that accumulation of hepatic Fe by Mg 

deficiency is a stimulant inducing Bmp6 expression but not Hepcidin expression by 15 

blunting Bmp signaling possibly resulting from down-regulation of the receptor 

expression. Unresponsive Hepcidin expression may have a role in Mg-deficiency 

induced changes related to increased liver Fe. 
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Introduction 

Mg is a co-factor of numerous enzymes and plays an essential role in a wide range of 

fundamental cellular reactions. Insufficient Mg intake therefore induces numerous 

abnormalities in rodents
(1)

. Mg deficiency induced oxidative stress, which was 

evaluated by lipid peroxidation, and apoptosis in rat liver
(2,3)

. In addition, triglyceride 5 

and total cholesterol concentrations were increased in the liver and serum of 

Mg-deficient rats
(4)

. These features resemble the altered metabolism in the liver of rats 

fed a high Fe diet; Fe overload enhanced lipid peroxidation, increased apoptotic cell 

number, and elevated liver fat concentration and serum lipid concentrations, including 

triglycerides and total cholesterol
(5-8)

. In view of the accumulation of hepatic Fe in 10 

Mg-deficient rats
(2,9,10)

, increased hepatic Fe content may cause various Mg 

deficiency-related abnormalities in the liver. 

 

Hepcidin was originally isolated from human urine as an anti-microbial peptide
(11)

, and 

is currently recognized as a hormone secreted from the liver in response to Fe 15 

overload; it negatively regulates intestinal Fe absorption through internalization and 

degradation of an Fe transporter, Ferroportin
(12)

. Considering that hepatic Hepcidin 

transcription is triggered by excess Fe
(13,14)

, Mg deficiency is expected to increase 

Hepcidin expression in the liver; however, a previous study revealed an increase in the 

intestinal absorption of Fe in Mg-deficient rats
(10)

, suggesting the failure of regulatory 20 

Fe metabolism by Hepcidin. The present study examined expression of hepatic 

Hepcidin in Mg-deficient rats. 

 

 

Materials and methods 25 

Animals and diets 

Twelve 5-week-old male Sprague-Dawley rats were purchased from SLC Japan 

(Shizuoka, Japan) and cared for according to the Guide for the Care and Use of 

Laboratory Animals (Animal Care Committee, Kyoto University). They were 

individually housed in stainless steel cages in a temperature-, humidity- and 30 

light-controlled room (24C, 60 %, 12 h light/dark cycle). All rats were fed a control 

diet (AIN-93G diet)
(15)

 for a 5-d adaptation period, followed by feeding either the 

control diet or an Mg-deficient diet (AIN-93G-based diet with Mg-free mineral 

mixture). The Mg content determined in the control diet and Mg-deficient diet was 

49.6 mg/100 g and 4.2 mg/100 g, respectively. Rats were pair-fed their respective 35 

experimental diets and were allowed free access to demineralized water for 4 wk. After 
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the feeding trial, the rats were sacrificed by blood collection from the abdominal aorta 

under isoflurane anesthesia, and the liver was collected. 

 

Measurement of dietary magnesium and calcium, serum magnesium, liver iron 

and liver thiobarbituric acid-reactive substances 5 

Diet, serum and liver samples were digested with trace-element grade nitric acid and 

hydrogen peroxide (Wako, Osaka, Japan), and dietary and serum Mg, and liver Fe were 

determined by atomic absorption spectrophotometry (AA-6600F; Shimadzu, Kyoto, 

Japan). Analytical accuracy of liver Fe was confirmed by analysis of a certified 

reference material of bovine liver (Standard Reference Material 1577b, National 10 

Institute of Standards and Technology, Gaithersburg, MD, USA). The liver samples 

were also homogenized in chilled saline by Polytron (PT1600E; Kinematica, Lucerne, 

Switzerland) and the homogenate was centrifuged at 105,000  g for 30 min at 4C. 

Thiobarbituric acid-reactive substances (TBARS) concentration in the supernatant was 

determined by a commercial kit (OXI-TEK TBARS Assay Kit; ZeptoMetrix, NY, 15 

USA) according to the manufacturer’s instructions. 

 

RNA isolation and quantitative RT-PCR 

Total RNA was isolated from the liver samples using TRIzol (Invitrogen, Carlsbad, CA, 

USA), according to the manufacturer's instructions. Absorbance at 260 nm was 20 

measured to quantify RNA concentration, and simultaneously the ratio of absorbance at 

260 nm to that at 280 nm was monitored to assess the purity of RNA. Quantitative 

RT-PCR (qRT-PCR) was carried out as previously described
(16,17)

. The following 

oligonucleotides were used as PCR primers: 5’-gggcagaaagcaagactgat-3’ and 

5’-ttacagcatttacagcagaagagg-3’ for Hepcidin (Genbank accession number: 25 

NM_053469.1), 5’-gacagcagagtcgcaatcg-3’ and 5’-agctcacgtaaagctcatgc-3’ for bone 

morphogenetic protein (Bmp)6 (Genbank accession number: NM_013107), 

5’-gcgagatcagtgccttgg-3’ and 5’-ttttcctcttgcctcctgaa-3’ for inhibition of DNA binding 1 

(Id1) (Genbank accession number: NM_012797.2), 5’-actacctgcagagggactgc-3’ and 

5’-actttcaccaaagtaggcacttg-3’ for Hfe (Genbank accession number: NM_053301.4), 30 

5’-gtagcatcgggagccaac-3’ and 5’-tcaaaggctgcaggaagatt-3’ for Hemojuvelin (Genbank 

accession number: NM_001012080.1), 5’-gagttcactgacatcatcaagca-3’ and 

5’-tccagcctcacgaggagtat-3’ for  transferrin receptor 1 (Tfr1) (Genbank accession 

number: NM_022712), and 5’-tcagtaacatctttgcgtgcat-3’ and 5’-gccccgataacgacatagtg-3’ 

for  Tfr2 (Genbank accession number: NM_001105916). PCR primers for activin 35 

receptor-like kinase (Alk)2, Alk3, activin receptor type IIA (Actr2a), activin receptor 
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type IIB (Actr2b), Bmp type II receptor (Bmpr2) and G3pdh were previously 

described
(18)

. The relative mRNA level was expressed as a ratio of the G3pdh mRNA 

level. 

 

Statistical analyses 5 

Data are expressed as the mean  SEM. Differences between treatments were 

examined by Student’s t-test. Differences of P < 0.05 were considered significant. 

 

 

Results and discussion 10 

Consistent with the previous results
(2,9,10)

, the serum concentration of Mg was 

significantly lower in rats fed the Mg-deficient diet (Table 1). In addition, liver 

concentrations of Fe and TBARS, an index of oxidative stress, were higher in the 

Mg-deficient group. Expression of hepatic Tfr1 was significantly lower in 

Mg-deficient rats in control rats, whereas that of hepatic Tfr2 was comparable between 15 

groups. These results were consistent with the results of Fe overloaded mice
(19,20)

. Fe 

responsive elements within the untranslated region are present for Tfr1 but not Tfr2 

mRNA, which explains why the mRNA level of Tfr1 but not Tfr2 was negatively 

regulated by Fe status
(21)

. Thus, effects of Mg deficiency on the expression of Tfr1 and 

Tfr2 could reflect Fe status in the liver. 20 

 

Mg deficiency did not affect the gene transcript level of Hepcidin in the liver (Table 2). 

Hepcidin is a hormone that regulates intestinal Fe absorption negatively
(12)

. Hepcidin 

expression is transcriptionally induced in response to the elevation of hepatic Fe
(12)

. 

The present study revealed that the expression of Hepcidin in the liver is not 25 

up-regulated by Mg deficiency, irrespective of the enhanced accumulation of hepatic 

Fe. Thus, it is suggested that the lack of response of the Hepcidin expression is at least 

partly responsible for Mg deficiency-induced dysregulation of Fe homeostasis. 

 

Expression of Bmp6 was significantly higher in Mg-deficient rats than in control rats, 30 

but Id1 expression was not different between the dietary groups (Table 2). In the liver, 

Hepcidin is transcriptionally regulated by Bmp6
(22,23)

, and Id1 is a representative 

Bmp-responsive gene regulated at the transcription level
(24)

. Previous studies revealed 

that Fe overload up-regulated the expression of Bmp6 and Id1 in the liver
(14,25)

. 

Exogenous Bmp6 increased Hepcidin expression in Hep3B cells
(22)

 as well as in the 35 

liver
(23)

. Furthermore, targeted disruption of the Bmp6 gene decreased the expression of 
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Hepcidin and accumulated Fe in the liver
(23,26)

. Thus, Bmp6 is a signal mediator linking 

Fe accumulation and Hepcidin expression, although transcriptional activation of the 

Bmp6 gene by excess Fe accumulation is currently unclear at the molecular level
(27)

. In 

the present study, the expression of Bmp6 was increased 2.2-fold in rats fed the 

Mg-deficient diet. The extent of the response was comparable to a previous result; 5 

feeding a high Fe diet for 7 wk resulted in a 1.8-fold increase in Bmp6 expression and 

7-fold increase in Hepcidin expression in DBA/2 mice
(14)

. Mg deficiency may blunt the 

Bmp pathway by altering the function of factors involved in hepatic Hepcidin 

induction. 

 10 

The gene transcript level of Hfe was significantly lower in Mg-deficient rats than in 

control rats, whereas that of Hemojuvelin was higher in Mg-deficient rats (Table 2). 

Upon Bmp binding to the two types of receptors, i.e., type I and type II 

serine/threonine receptors, the receptor complex phosphorylates and activates 

Smad1/5/8, leading to transcriptional activation of the target genes such as Id1
(28)

. The 15 

strength and duration of the Bmp signal are regulated at multiple steps; expression of 

co-receptors for Bmp is involved in the fine-tuning of Bmp signaling
(28)

. Previous 

studies revealed that Hemojuvelin, which is a gene product of Hfe2 and a co-receptor 

of Bmps, including Bmp6, enhances Hepcidin expression both in vitro and in 

vivo
(22,29,30)

. In view of the up-regulation of Hemojuvelin expression in Mg-deficient 20 

rats, the co-receptor is unlikely to be involved in the unresponsiveness to Bmp6. 

 

Recently, Kautz et al.
(25)

 revealed that the expression of Bmp6 was enhanced in 

Hfe-null mice, but hepatic Bmp signaling, such as phosphorylation of Smad1/5/8 and 

Id1 expression, was not accelerated. Similar results were also recently obtained in 25 

patients with hereditary hemochromatosis with mutation of the HFE gene
(31)

. In the 

liver of Fe-overloaded mice, both Hfe and Hemojuvelin expressions were increased
(20)

. 

Therefore, the blunting of Bmp signaling at the gene transcript level of Hepcidin may 

be explained by the result that Mg deficiency down-regulated Hfe expression in the 

liver, although up-regulation of Hepcidin expression in response to Bmp2, Bmp4 and 30 

Bmp9 in primary hepatocytes from wild-type mice was comparable to in those from 

Hfe-null mice
(32)

. 

 

Down-regulation of expression of Bmp receptors is possibly related to blunting of Bmp 

signaling in Mg-deficient rats. Among Bmp receptors, expression of hepatic Alk2, 35 

Actr2a, Actr2b and Bmpr2 was significantly lower in Mg-deficient rats than in control 
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rats (Table 2); expression of Alk6, a Bmp type I receptor, was not significant (data not 

shown). Receptor expression level also determines strength of the Bmp signaling
(28,33)

. 

 

In conclusion, the accumulation of hepatic Fe by Mg deficiency is a stimulant inducing 

Bmp6 expression but not Hepcidin expression by blunting Bmp signaling possibly 5 

resulting from down-regulation of the receptor expression. Unresponsive Hepcidin 

expression may have a role in Mg-deficiency induced changes related to increased 

liver Fe. 
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Table 1 Effect of magnesium deficiency on serum 

concentration of magnesium, liver concentration 

of iron and thiobarbituric acid-reactive 

substances (TBARS), and hepatic expression of 

iron-related molecules 5 

 Control Mg deficiency 

Serum Mg, mg/l 22.1 ± 1.7 7.3 ± 1.2** 

Liver Fe, µg/g 87.8 ± 5.8 148.1 ±14.9** 

Liver TBARS, nmol/g 35.9 ± 2.4 57.8 ± 1.7** 

Fe-related molecules 10 

   Tfr1 1.00 ± 0.18 0.45 ± 0.11* 

   Tfr2 1.00 ± 0.04 0.93 ± 0.06 

Values are the mean ± SEM (n=6) 

* and **P < 0.05 and 0.01, respectively, as compared to 

the control group. 15 
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Table 2 Effect of magnesium deficiency on hepatic 

expression of Hepcidin, bone 

morphogenetic protein (Bmp) 6, 

inhibition of DNA binding 1 (Id1), Hfe, 

Hemojuvelin, and Bmp receptors 5 

 Control Mg deficiency 

Hepcidin 1.00 ± 0.13 0.98 ± 0.11 

Bmp6 1.00 ± 0.29 2.22 ± 0.38* 

Id1  1.00 ± 0.41 1.57 ± 0.72 

Hfe  1.00 ± 0.05 0.70 ± 0.06** 10 

Hemojuvelin 1.00 ± 0.21 1.66 ± 0.17** 

Bmp receptors 

 Type I receptors 

  Alk2 1.00 ± 0.15 0.44 ± 0.06** 

  Alk3 1.00 ± 0.10 0.70 ± 0.10 15 

 Type II receptors 

  Actr2a 1.00 ± 0.09 0.55 ± 0.06** 

  Actr2b 1.00 ± 0.08 0.65 ± 0.09* 

  Bmpr2 1.00 ± 0.13 0.51 ± 0.04* 

Values are the mean ± SEM (n=6) 20 

* and **: P < 0.05 and 0.01, respectively, as 

compared to the control group. 

 


