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Abstract: We consider the problem of pricing American options with uncertain volatility and
propose two deterministic formulations based on the expected value method and the expected
residual minimization method for a stochastic complementarity problem. We give sufficient con-
ditions that ensure the existence of a solution of those deterministic formulations. Furthermore
we show numerical results and discuss the usefulness of the proposed approach.
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1 Introduction

A derivative is a financial instrument whose value depends on the value of underlying assets
such as stock, bond, currency and rate of interest [17]. Derivatives may be used for speculation
purpose, but they are usually used for hedging the risk of fluctuation of a commodity or an
exchange. Option is a kind of derivatives; it is the right to buy or sell the underlying assets by
a certain date for a certain price. A call option is the right to buy an asset for a certain price.
A put option is the right to sell an asset for a certain price, and the price at which the asset
can be bought or sold in an option contract is called the strike price. A European option can be
exercised only at the end of its life. An American option can be exercised at any time during its
life, and the end of a contract is called the expiration date. Using the Black-Scholes model [3],
we can compute the prices of European options explicitly under some assumptions. On the other
hand, since an American option is permitted to exercise at any time of its life, we have to decide
whether or not to exercise it and need to compute its boundary. Hence, pricing American options
is more complicated than pricing European options. In particular, we cannot express the prices of
American options explicitly and hence we can obtain the prices only by numerical computation.
The binomial lattice model, finite difference approximation, and Monte Carlo simulation are
used for pricing American options. In the binomial lattice model, we divide the time from now
to the expiration date and create a binomial lattice representation of the asset price. Then,
by backward induction on the lattice, we compute the prices of American options [10]. In
the finite difference approximation method, we approximate the partial differential equation or



partial differential inequality that the asset follows, and formulate pricing options as a linear
complementarity problem [5, 16]. In Monte Carlo simulation, by sampling random paths of
the process of the asset, we calculate the mean of the sample payoff and discount the expected
payoff [4, 21].

The prices of European options and American options are dependent on the asset price, the
strike price, the expiration date, the risk-free rate, and the volatility of the asset price. The
Black-Scholes model [3] assumes that these values are constant. Since we know the asset price
and the strike price correctly and the contractor can decide the expiration date, these values are
absolutely constant. Moreover, we can estimate the risk-free rate by referring to the interest rate
of the bank deposits or the national bonds. However, it is practically difficult to set the volatility
as a constant value, because each expert has his own view for the volatility. Besides, even if we
adopt a historical volatility, it may fluctuate according to the chosen period. In practice, traders
work with what are known as implied volatility. The implied volatility is the value calculated
backward using the asset price, the strike price, the expiration date, the risk-free rate, and the
price of option observed in the real market. Traders buy options if the implied volatility is
comparatively low and sell options if it is comparatively high.

Recently, there have been a number of works on pricing options which suppose the volatility
is not a constant value in order to remedy the shortcoming of the Black-Scholes model. In most
of those works, the volatility of the asset is assumed to be stochastic and its variance is assumed
to follow a mean-reverting process that indicates its tendency to return to a long-term average.
Such a model is called the stochastic volatility model. The stochastic volatility model [15] gives a
closed-form formula for the prices of the corresponding European options. For American options
with varying volatility, their prices are obtained by using Heston model [15] via Monte Carlo
simulation [8, 23]. However, the stochastic volatility model assumes that the volatility varies
with time. So this model may not suit the situation where the volatility is constant until the
expiration time but uncertain at the present time.

In this paper, we assume that the volatility itself follows some probability distribution and
propose new formulations for pricing American options through a stochastic linear complemen-
tarity model. The stochastic complementarity problem is the problem whose coefficients are
random variables. Since there is in general no solution that satisfies the complementarity condi-
tions for all realizations of the coefficient values simultaneously, some deterministic formulations
are constructed. We propose two deterministic formulations for pricing American options with
uncertain volatility through the expected value method [13] and the expected residual minimiza-
tion method [6]. Moreover, by analyzing numerical results based on some criteria, we show the
usefulness of the proposed approach.

This paper is organized as follows: In Section 2, we recall the Black-Scholes partial differential
equation and formulate pricing American options as a linear complementarity problem. In
Section 3, we describe the expected value method and the expected residual minimization method
for stochastic complementarity problems. In Section 4, we present two formulations for pricing
American options with uncertain volatility by means of the expected value method and the
expected residual minimization method. In Section 5, we discuss conditions that ensure the
existence of a solution of those formulations. Numerical results are reported and discussed in
Section 6. Finally, Section 7 concludes the paper.
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2 Linear complementarity model for pricing American options

In this section, after reviewing the Black-Scholes partial differential equation [22], we describe
a linear complementarity formulation for pricing American options [16].

First we specify the model of asset prices. Let S denote the asset price at time t. Consider
a small time interval dt, during which S changes to S + dS. We can write the corresponding
return on the asset as dS/S. The common model decomposes this return into two parts. One
is a deterministic return like the return on money invested in a risk-free bank. It gives the
contribution

µdt (2.1)

to the return dS/S, where µ is a measure of the average rate of growth of the asset price. In
this paper, µ is taken to be a constant. The second part is a random change in the asset price
in response to external effects such as unexpected news. It adds the term

σdX (2.2)

to the return dS/S. Here σ is the standard deviation of returns, called the volatility, and dX is
a Wiener process. The Wiener process has the following properties:

• dX has a normal distribution,

• the mean of dX is zero,

• the variance of dX is dt.

Putting (2.1) and (2.2) together, we obtain the stochastic differential equation

dS

S
= µdt + σdX.

By multiplying both sides of the equation by S, we get the following equation:

dS = µSdt + σSdX. (2.3)

Now we recall the Black-Scholes partial differential equation, which is used for pricing Eu-
ropean options. Throughout the paper, we make the following assumptions:

• The asset price follows the stochastic differential equation (2.3).

• There are no arbitrage possibilities. This means that there is no opportunity to make an
instantaneous risk-free profit.

• Trading of the asset can take place continuously.

• Short selling is permitted and the asset is divisible. This means that we may sell assets
that we do not own, and we can buy and sell any number (not necessarily an integer) of
the asset.

Let V (S, t) denote the option price when the asset price is S and the time is t. Then we can
derive the following partial differential equation that V (S, t) satisfies:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.4)
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This is called the Black-Scholes partial differential equation.
In the remainder of this section, we describe the linear complementarity model for pricing

American options, as formulated by Huang and Pang [16]. Since we can exercise American
options at any time during the life of the option, we have to determine not only option prices
but also, for each value of S, whether or not it should be exercised. This is what is known
as a free boundary problem. Since it is difficult to deal with free boundary, we reformulate
the problem in such a way as to eliminate any explicit dependence on the free boundary. We
describe a linear complementarity formulation for American option pricing.

Since a holder of American options may miss the optimal exercise price, there are cases
where the portfolio consisting of American options cannot bring as high profit as the money
invested in a bank. Moreover, by the assumption of no arbitrage possibilities, we cannot make
a guaranteed riskless profit by borrowing money from the bank and investing in the portfolio.
These observations yield, instead of the Black-Scholes partial differential equation, the following
Black-Scholes partial differential inequality:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0. (2.5)

Let Λ(S, t) denote the payoff function when the asset price is S and the time is t. Payoff
means the amount of money earned by exercising the right of options. For a call option, the
payoff function is given by Λ(S, t) = max(S(t) − E, 0), where E is the strike price. For a put
option, the payoff function is given by Λ(S, t) = max(E − S(t), 0). If the price of an American
option is less than the payoff, then an investor can earn the riskless profit by buying the option
and immediately exercising it. Therefore, we must have

V (S, t) ≥ Λ(S, t). (2.6)

In addition, we have two choices for American options; we exercise the right of options or not. If
we exercise, the price of an American option is equal to the payoff. If not, American options are
essentially the same as European options. This means that the Black-Scholes partial differential
equation (2.4) is valid. Thus, we obtain

(
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)
(V (S, t)− Λ(S, t)) = 0. (2.7)

Putting (2.5), (2.6) and (2.7) together, we conclude that the prices of American options satisfy
the partial differential complementarity condition:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0

V (S, t)− Λ(S, t) ≥ 0(
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)
(V (S, t)− Λ(S, t)) = 0.

(2.8)

Now we derive the (finite-dimensional) linear complementarity problem by discretizing the
asset price and time. We divide the time interval [0, T ] into L subintervals of equal length and
denote

tl = lδt, l = 0, 1, 2, · · · , L; δt =
T

L
, (2.9)
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where T is the expiration date. Assumng that the asset price does not exceed a large positive
number Smax, we divide the range of asset price [0, Smax] into N subintervals of equal length
and denote

Sn = nδS, n = 1, 2, · · · , N ; δS =
Smax

N
. (2.10)

We write the discretized option prices and payoff values as follows:
{

V l
n ≡ V (Sn, tl)

Λl
n ≡ Λ(Sn, tl)

1 ≤ n ≤ N, 0 ≤ l ≤ L. (2.11)

The partial differential complementarity problem (2.8) is then approximated on a regular
grid with step-sizes δt and δS. For the first partial derivative with respect to the time, we use
the following forward difference approximation:

∂V

∂t
=

V (S, t + δt)− V (S, t)
δt

+ O(δt). (2.12)

For the first partial derivative with respect to the asset price, we use the following θ1-weighted
central difference approximation:

∂V

∂S
= θ1

V (S + δS, t)− V (S − δS, t)
2δS

+ (1− θ1)
V (S + δS, t + δt)− V (S − δS, t + δt)

2δS
+ O(δS2),

(2.13)

where θ1 ∈ [0, 1] is a given parameter. When θ1 = 0, this approximation is called an explicit
method. When θ1 = 1, this approximation is called an implicit method. When θ1 = 1/2,
this approximation is called the Crank-Nicolson method. For the second partial derivative with
respect to the asset price, we use the following θ2-weighted central difference approximation:

∂2V

∂S2
= θ2

V (S + δS, t)− 2V (S, t) + V (S − δS, t)
(δS)2

+ (1− θ2)
V (S + δS, t + δt)− 2V (S, t + δt) + V (S − δS, t + δt)

(δS)2
+ O(δS2),

(2.14)

where θ2 ∈ [0, 1] is a given parameter whose role is similar to that of θ1.
Using the difference approximations (2.12), (2.13) and (2.14), the left-hand side of the Black-

Scholes partial differential inequality can be approximated as follows:

−∂V

∂t
− rS

∂V

∂S
+ rV − 1

2
σ2S2 ∂2V

∂S2
≈ V (S + δS, t)

(
−rSθ1

1
2δS

− 1
2
σ2S2θ2

1
(δS)2

)

+ V (S, t)
(

1
δt

+ r + σ2S2θ2
1

(δS)2

)

+ V (S − δS, t)
(
−1

2
σ2S2θ2

1
(δS)2

+ rSθ1
1

2δS

)

+ V (S + δS, t + δt)
(
−rS(1− θ1)

1
2δS

− 1
2
σ2S2(1− θ2)

1
(δS)2

)

+ V (S, t + δt)
(
− 1

δt
+ σ2S2(1− θ2)

1
(δS)2

)

+ V (S − δS, t + δt)
(
−1

2
σ2S2(1− θ2)

1
(δS)2

+ rS(1− θ1)
1

2δS

)
.
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With the above finite difference approximations, the system (2.8) leads to the following finite-
dimensional linear complementarity problem:

0 ≤ (Vl −Λl) ⊥ (MVl + M′Vl+1) ≥ 0, l = L− 1, L− 2, · · · , 1, 0, (2.15)

where the perp symbol ⊥ denotes the orthogonality of two vectors, i.e., x ⊥ y means xT y = 0,
Vl and Λl are N -vectors defined by

Vl ≡




V l
1
...

V l
N


 , Λl ≡




Λl
1
...

Λl
N


 ,

M is the N ×N matrix

M ≡




b1 c1 0 0 0 0 · · · 0
a2 b2 c2 0 0 0 · · · 0
0 a3 b3 c3 0 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 0 aN−1 bN−1 cN−1

0 0 · · · 0 0 0 aN bN




with entries given by

an = −1
2
σ2n2θ2 +

rnθ1

2
, n = 2, · · · , N

bn = r +
1
δt

+ σ2n2θ2, n = 1, · · · , N

cn = −rnθ1

2
− 1

2
σ2n2θ2, n = 1, · · · , N − 1,

and M′ is the N ×N matrix, formed in the same way as M, with entries given by

a′n = −1
2
σ2n2(1− θ2) +

rn(1− θ1)
2

, n = 2, · · · , N

b′n = − 1
δt

+ σ2n2(1− θ2), n = 1, · · · , N

c′n = −rn(1− θ1)
2

− 1
2
σ2n2(1− θ2), n = 1, · · · , N − 1.

On the expiration date, we cannot hold American options any more. So we have to exercise
the right of options or discard it. This means that, on the expiration date, the price of an
American option is equal to the payoff value, that is to say, VL = ΛL. Since VL is known,
we can solve the linear complementarity problems (2.15) for l = L − 1, L − 2, · · · , 1, 0, by
proceeding backward in time. Thus, we can obtain a set of discrete option prices at t = 0 as
V 0

n , n = 1, · · · , N .

3 Deterministic formulations for the stochastic complementar-
ity problem

In this section, we consider the general stochastic complementarity problem and describe the
expected value method [13] and the expected residual minimization method [6] which give de-
terministic formulations for the stochastic complementarity problem.
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The stochastic complementarity problem in standard form is to find a vector x ∈ <n
+ such

that
0 ≤ x ⊥ F (x, ω) ≥ 0, ω ∈ Ω, (3.1)

where F : <n×Ω → <n is a vector-valued function, (Ω,F , P ) is a probability space with Ω ⊆ <m.
In general, there is no vector x ∈ <n

+ satisfying (3.1) for all ω ∈ Ω simultaneously. Therefore, it
is necessary to consider a deterministic formulation for (3.1) which provides an optimal solution
of the stochastic complementarity problem in some sense.

3.1 Expected value method

The expected value method [13] considers the deterministic formulation which is to find a vector
x ∈ <n

+ such that
0 ≤ x ⊥ F∞(x) ≥ 0, (3.2)

where F∞(x) := E[F (x, ω)] is the expectation function of the random function F (x, ω). Since it
is usually difficult to evaluate the expectation function F∞(x) exactly, we use a finite number
of samples {ωj , j = 1, · · · , k} and construct an approximating function Fk(x) as

Fk(x) :=
1
k

k∑

j=1

F (x, ωj).

By using the function Fk(x), the complementarity problem (3.2) is approximated by

0 ≤ x ⊥ Fk(x) ≥ 0. (3.3)

3.2 Expected residual minimization method

We consider a function ψ : <2 → <, called an NCP function, which satisfies

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

There are various NCP functions for solving complementarity problems [12]. In this paper we
concentrate on two popular NCP functions; the min function

ψ(a, b) = min(a, νb) (3.4)

and the Fischer-Burmeister (FB) function

ψ(a, b) = a + νb−
√

a2 + (νb)2, (3.5)

where ν is a positive parameter. Then, we can easily verify that (3.1) is equivalent to the
following equation:

Ψ(x, ω) = 0, ω ∈ Ω, (3.6)

where Ψ : <n × Ω → <n is defined by

Ψ(x, ω) :=




ψ(F1(x, ω), x1)
...

ψ(Fn(x, ω), xn)


 .

7



As mentioned above, there is usually no x ∈ <n
+ satisfying (3.6) for all ω ∈ Ω simultaneously. In

[6], the expected residual minimization method is proposed to give the following deterministic
formulation for the stochastic complementarity problem:

min
x

E
[||Ψ(x, ω)||2]

s.t. x ∈ <n
+,

(3.7)

where ‖ ·‖ denotes the Euclidean norm. Like the expected value method, it is usually difficult to
evaluate the expectation E

[||Ψ(x, ω)||2] exactly. So we use a finite number of samples {ωj , j =
1, · · · , k} and construct an approximating function of E

[||Ψ(x, ω)||2] as

fk(x) :=
1
k

k∑

j=1

||Ψ(x, ωj)||2.

By using the function, problem (3.7) is approximated by

min
x

fk(x)

s.t. x ∈ <n
+.

(3.8)

This approach may be regarded as an extension of the least-squares method for an overdeter-
mined system of equations.

We note that, if Ω has only one realization, then we get the same solution by using the
expected value method (3.2) and the expected residual minimization method (3.7) as long as
the original complementarity problem has a solution, and the solubility of the expected residual
minimization method (3.7) does not depend on the choice of NCP functions. It should be
noted, however, that we usually get different solutions by using the expected value method and
the expected residual minimization method if Ω has more than one realization. Moreover, the
solubility of the expected residual minimization method (3.7) is dependent on the choice of NCP
functions [6]. In other words, a solution of the stochastic complementarity problem depends on
the choice of deterministic formulations. Besides, there are cases where the solution set is empty
or there are many solutions. In Section 5, we discuss conditions that ensure the existence of a
solution in deterministic formulations for the stochastic linear complementarity problem derived
from the model for pricing American options.

4 Pricing American options with uncertain volatility

In this section, we present two deterministic formulations for pricing American options with
uncertain volatility, which are based on the expected value method and the expected residual
minimization method for the stochastic complementarity problem discussed in Section 3. Since
the entries of the matrices M and M′ defined in Section 2 are dependent on the volatility σ, we
write M(σ) and M′(σ).

If we regard the volatility σ as a random variable, pricing American options with uncertain
volatility is formulated as the following stochastic linear complementarity problem:

0 ≤ (Vl −Λl) ⊥
(
M(σ)Vl + M′(σ)Vl+1

)
≥ 0, l = L− 1, L− 2, · · · , 1, 0. (4.1)

As mentioned in Section 3, there are usually no V l, l = 0, 1, · · · , L− 1 satisfying (4.1) for all σ

simultaneously. So we apply the expected value method and the expected residual minimization
method to the stochastic linear complementarity problem (4.1).
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First, we give the formulation based on the expected value method. In the expected value
method, we substitute the expected values E[M(σ)] and E[M′(σ)] for M(σ) and M′(σ), respec-
tively. Then we have the following linear complementarity problem:

0 ≤ (Vl −Λl) ⊥
(
E [M(σ)]Vl + E

[
M′(σ)

]
Vl+1

)
≥ 0, l = L− 1, L− 2, · · · , 1, 0. (4.2)

Using discrete samples {σj , j = 1, · · · , k}, the expected values E[M(σ)] and E[M′(σ)] can be

approximated by 1
k

k∑
j=1

M(σj) and 1
k

k∑
j=1

M′(σj), respectively. Thus (4.2) yields

0 ≤ (Vl −Λl) ⊥

1

k

k∑

j=1

M(σj)Vl +
1
k

k∑

j=1

M′(σj)Vl+1


 ≥ 0, l = L− 1, L− 2, · · · , 1, 0. (4.3)

Like pricing American options with constant volatility, the price of an option on the expira-
tion date is equal to the payoff value, that is VL = ΛL. By solving (4.3) backward in time, we
can obtain a set of discrete option prices at t = 0 as V 0

n , n = 1, · · · , N .
Next, we give the formulation based on the expected residual minimization method. Using

the equality VL = ΛL, the stochastic linear complementarity problem (4.1) can be rewritten as
the following stochastic linear complementarity problem:

0 ≤




V0 −Λ0

V1 −Λ1

...

VL−2 −ΛL−2

VL−1 −ΛL−1




⊥




M(σ) M′(σ) 0 0 · · · 0
0 M(σ) M′(σ) 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 M(σ) M′(σ)
0 0 · · · 0 0 M(σ)







V0

V1

...

VL−2

VL−1




+




0
0

...

0
M′(σ)ΛL




≥ 0,

(4.4)
where Vl, l = 0, 1, · · · , L− 1 are the variables. We define V and Ψ(V, σ) as

V =




V0

V1

...

VL−2

VL−1




, Ψ(V, σ) =




ψ
(
V 0

1 − Λ0
1,

(
M(σ)V0 + M′(σ)V1

)
1

)
...

ψ
(
V 0

N − Λ0
N ,

(
M(σ)V0 + M′(σ)V1

)
N

)
ψ

(
V 1

1 − Λ1
1,

(
M(σ)V1 + M′(σ)V2

)
1

)
...

ψ
(
V 1

N − Λ1
N ,

(
M(σ)V1 + M′(σ)V2

)
N

)

...

ψ
(
V L−1

1 − ΛL−1
1 ,

(
M(σ)VL−1 + M′(σ)VL

)
1

)

...
ψ

(
V L−1

N − ΛL−1
N ,

(
M(σ)VL−1 + M′(σ)VL

)
N

)




,

where ψ is an NCP function and
(
M(σ)Vl + M′(σ)Vl+1

)
n

denotes the nth component of the
vector M(σ)Vl + M′(σ)Vl+1.
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Using the expected residual minimization method, pricing American options with uncertain
volatility is formulated as the following optimization problem:

min
V

E
[||Ψ(V, σ)||2]

s.t. Vl ≥ Λl, l = 0, 1, · · · , L− 1,

VL = ΛL.

(4.5)

Adopting the min function as the NCP function ψ, (4.5) can be rewritten as

min
V

E

[
L−1∑

l=0

N∑

n=1

{
min

(
V l

n − Λl
n, ν

(
M(σ)Vl + M′(σ)Vl+1

)
n

)}2
]

s.t. Vl ≥ Λl, l = 0, 1, · · · , L− 1,

VL = ΛL.

(4.6)

Moreover, by using discrete samples {σj , j = 1, · · · , k}, (4.6) can be approximated as follows:

min
V

1
k

k∑

j=1

L−1∑

l=0

N∑

n=1

{
min

(
V l

n − Λl
n, ν

(
M(σj)Vl + M′(σj)Vl+1

)
n

)}2

s.t. Vl ≥ Λl, l = 0, 1, · · · , L− 1,

VL = ΛL.

(4.7)

5 Choice of step-size parameter and existence of a solution

In this section, we give conditions that ensure the existence of a solution in the formulation
by the expected value method (4.3) and the formulation by the expected residual minimization
method (4.3) for pricing American options with uncertain volatility. Recall that we can take the
step-size parameter δt arbitrarily for a certain positive integer L satisfying (2.9). So we mainly
examine conditions for the parameter δt that ensure the existence of a solution.

5.1 Existence of a solution in the expected value method

We denote the discrete samples of σ as {σj , j = 1, · · · , k}. Then, the coefficient matrix of the
linear complementarity problem in the expected value method (4.3) is written as

M̃ ≡




b̃1 c̃1 0 0 0 0 · · · 0
ã2 b̃2 c̃2 0 0 0 · · · 0
0 ã3 b̃3 c̃3 0 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 0 ãN−1 b̃N−1 c̃N−1

0 0 · · · 0 0 0 ãN b̃N



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with entries given by

ãn = −n2θ2

2k

k∑

j=1

σ2
j +

rnθ1

2
, n = 2, · · · , N

b̃n = r +
1
δt

+
n2θ2

k

k∑

j=1

σ2
j , n = 1, · · · , N

c̃n = −rnθ1

2
− n2θ2

2k

k∑

j=1

σ2
j , n = 1, · · · , N − 1.

For a square matrix A ∈ <n×n, the following result is well known [20].

Lemma 1. If a square matrix A is a strictly row diagonally dominant matrix with positive
diagonal elements, then A is a P-matrix.

Recall that A = (aij) is said to be strictly row diagonally dominant if

|aii| >
∑

j 6=i

|aij |, i = 1, · · · , n.

A square matrix is said to be a P-matrix if all its principal minors are positive. About a
P-matrix, the following results are known [9].

Lemma 2. Let A ∈ <n×n. Then the following statements are equivalent:

(a) A is a P-matrix.

(b) Matrix A reverses the sign of no vector, i.e.,

xi(Ax)i ≤ 0, ∀i ⇒ x = 0.

(c) the linear complementarity problem

0 ≤ x ⊥ Ax + q ≥ 0

has a unique solution for any vector q ∈ <n.

Concerning the choice of δt, we can establish the following proposition.

Proposition 1. If we choose δt such that

1
δt

>
kr2θ2

1

4θ2
∑k

j=1 σ2
j

− r, (5.1)

then the linear complementarity problem (4.3) in the expected value method has a unique solution.

Proof. Clearly, all diagonal elements of M̃ are positive. We will prove that M̃ is a strictly row
diagonally dominant matrix. Note that M̃ is a strictly row diagonally dominant if and only if

|b̃1| > |c̃1|,
|b̃n| > |ãn|+ |c̃n|, n = 2, · · · , N − 1,

|b̃N | > |ãN |.
(5.2)

11



Since b̃n, n = 1, · · · , N are positive and c̃n, n = 1, · · · , N − 1 are negative, we can write

|b̃1| − |c̃1| = r +
1
δt

+
θ2

k

k∑

j=1

σ2
j −

rθ1

2
− θ2

2k

k∑

j=1

σ2
j ,

|b̃n| − |ãn| − |c̃n| = r +
1
δt

+
n2θ2

k

k∑

j=1

σ2
j −

∣∣∣∣∣∣
−n2θ2

2k

k∑

j=1

σ2
j +

rnθ1

2

∣∣∣∣∣∣

− rnθ1

2
− n2θ2

2k

k∑

j=1

σ2
j , n = 2, · · · , N − 1,

|b̃N | − |ãN | = r +
1
δt

+
N2θ2

k

k∑

j=1

σ2
j −

∣∣∣∣∣∣
−N2θ2

2k

k∑

j=1

σ2
j +

rNθ1

2

∣∣∣∣∣∣
.

We only consider the cases of n = 2, · · · , N − 1, because the cases n = 1 and n = N can be
treated similarly. First, suppose an ≥ 0. Then we can write

|b̃n| − |ãn| − |c̃n| = r +
1
δt

+
n2θ2

k

k∑

j=1

σ2
j − rnθ1, n = 2, · · · , N − 1. (5.3)

Note that the right-hand of (5.3) can be rewritten as

θ2

k

k∑

j=1

σ2
j

(
n− krθ1

2θ2
∑k

j=1 σ2
j

)2

+
1
δt
− kr2θ2

1

4θ2
∑k

j=1 σ2
j

+ r, n = 2, · · · , N − 1. (5.4)

Hence if δt satisfies (5.1), we have (5.2).
Next, suppose an < 0. Then we can write

|b̃n| − |ãn| − |c̃n| = r +
1
δt

, n = 2, · · · , N − 1.

Since r ≥ 0 and δt > 0, we have (5.2).
Therefore, if δt is chosen to satisfy (5.1), then M̃ is a strictly row diagonally dominant

matrix. By Lemma 1, this implies that M̃ is a P-matrix. Then the assertion of the proposition
follows from Lemma 2. ¥

5.2 Existence of a solution in the expected residual minimization method

Next, we examine conditions that ensure the existence of a solution in the expected residual
minimization method. We denote the discrete samples of σ as {σj , j = 1, · · · , k}. For each σj ,
the coefficient matrix (4.4) is written as

G(σj) =




M̂(σj) M̂
′
(σj) 0 0 · · · 0

0 M̂(σj) M̂
′
(σj) 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 M̂(σj) M̂
′
(σj)

0 0 · · · 0 0 M̂(σj)




, (5.5)
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where M̂(σj) is the N ×N matrix

M̂(σj) =




b̂1 ĉ1 0 0 0 0 · · · 0
â2 b̂2 ĉ2 0 0 0 · · · 0
0 â3 b̂3 ĉ3 0 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 0 âN−1 b̂N−1 ĉN−1

0 0 · · · 0 0 0 âN b̂N




with entries given by

ân = −1
2
σ2

j n
2θ2 +

rnθ1

2
, n = 2, · · · , N

b̂n = r +
1
δt

+ σ2
j n

2θ2, n = 1, · · · , N

ĉn = −rnθ1

2
− 1

2
σ2

j n
2θ2, n = 1, · · · , N − 1,

and M̂
′
(σj) is the N ×N matrix, formed in the same way as M̂(σj), with entries given by

â′n = −1
2
σ2

j n
2(1− θ2) +

rn(1− θ1)
2

, n = 2, · · · , N

b̂′n = − 1
δt

+ σ2
j n

2(1− θ2), n = 1, · · · , N

ĉ′n = −rn(1− θ1)
2

− 1
2
σ2

j n
2(1− θ2), n = 1, · · · , N − 1.

Recall that a square matrix A is called an R0 matrix if

xT Ax = 0, Ax ≥ 0, x ≥ 0 ⇒ x = 0.

In particular, any P-matrix is an R0 matrix [9]. The following existence result has been estab-
lished for the expected residual minimization method [6].

Lemma 3. If G(σj) is an R0 matrix for some j ∈ {1, · · · , k}, then the solution set of the
optimization problem (4.7) is nonempty and bounded.

Considering the choice of the parameter δt, we have the following proposition.

Proposition 2. If we choose δt such that

1
δt

>
r2θ2

1

4θ2σ2
j

− r, (5.6)

for some j ∈ {1, · · · , k}, then the solution set of the optimization problem (4.7) in the expected
residual minimization method is nonempty and bounded.

Proof. In a similar manner to the proof of Proposition 1, we can verify that all diagonal elements
of M̂(σj) are positive and M̂(σj) is a strictly row diagonally dominant matrix, whenever δt

satisfies (2). Therefore, M̂(σj) is a P-matrix. Below we will show that G(σj) ∈ <N2×N2
is a

P-matrix. From Lemma 2, G(σj) is a P-matrix if and only if, for any x ∈ <N2
,

xi (G(σj)x)i ≤ 0, ∀i ⇒ x = 0. (5.7)
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Let us denote

x =




x1

x2

...
xN


 ,

where xp ∈ <N , p = 1, 2, · · · , N . Then, we can write

G(σj)x =




M̂(σj)x1 + M̂
′
(σj)x2

M̂(σj)x2 + M̂
′
(σj)x3

...

M̂(σj)xN−1 + M̂
′
(σj)xN

M̂(σj)xN




. (5.8)

Assume
xi (G(σj)x)i ≤ 0, ∀i. (5.9)

First, we show xN = 0. By Lemma 2, since M̂(σj) is a P-matrix, we have

yi

(
M̂(σj)y

)
i
≤ 0, ∀i ⇒ y = 0 (5.10)

for any y ∈ <N . It then follows from (5.8), (5.9) and (5.10) that xN = 0.
Next, notice that the (N −1)th block of the vector G(σj)x equals M̂(σj)xN−1 since xN = 0.

Hence, by the same reasoning as above, we have xN−1 = 0. Repeating similar arguments,
we deduce xN−2 = xN−3 = · · · = x1 = 0, implying (5.7) hold. Thus, G(σj) is a P-matrix.
Since every P-matrix is an R0 matrix [9], it follows from Lemma 3 that the solution set of the
optimization problem (4.7) is nonempty and bounded. ¥

From Proposition 1 and Proposition 2, if we choose the step-size parameter δt small enough
to satisfy the conditions (5.1) and (5.6), respectively, then we can ensure that the linear com-
plementarity problem (4.3) in the expected value method and the optimization problem (4.7)
in the expected residual minimization method have a solution. However, when δt is small,
the size of problem (4.3) or (4.7) becomes large, which may make the problem more expensive
computationally.

6 Numerical experiments

In this section, we report and discuss numerical experiments. All computations were carried
out using Matlab on a PC. We use put options whose underlying asset is S&P100. S&P100 is a
market value weighted index consisting of 100 leading United States stocks. First, we state how
to set the parameters in the stochastic linear complementarity problem (4.1). Then, we describe
some criteria used to compare the results. Finally, we show and examine the computational
results.
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6.1 Parameter setting

In this subsection, we describe how to set the parameters to derive the stochastic complemen-
tarity problem (4.1).

We set the parameters in the finite difference approximation as θ1 = 1/2 and θ2 = 1/2. We
set L = 4 to divide the time interval [0, T ], where T is the expiration date. From (2.9), the
length of each subinterval is δt = T/4. We assume that the underlying asset does not exceed
Smax = 900. Then the interval [0, Smax] is divided into N subintervals of equal length, where
we set N = 30. From (2.10), the length of each subinterval is δS = Smax/N = 30. The payoff
Λ(S, t) is discretized for the asset price and the time. Since we consider put options, the elements
of Λl, l = 0, 1, · · · , L can be written as

Λl
n =

{
E − nδS 1 ≤ n ≤ E

δS

0 E
δS < n ≤ N ; 0 ≤ l ≤ L.

(6.1)

We obtained the data for the experiments from the Wall Street Journal’s homepage1. We use
the interest rate of 6 month U.S. government bond obtained from the same page as the risk-free
rate r. For detailed information about the data used in the experiments, see [14, Appendix].

From the data, we calculate the expiration date T by taking into account the fact that
the expiration date is the third Friday of the expiration month. We then calculate the payoff
Λl, l = 0, 1, · · · , L from (6.1) using the strike price E. For example, for the option whose
expiration month is January, 2010 and whose strike price is 360 on November 30, 2009, the
risk-free rate is r = 0.00242 and the expiration date is T = 46/365, since there are 46 days
from November 30 to January 15 (the third Friday of January, 2010). Since the strike price is
E = 360 and we set δS = 30, N = 30 and L = 4, we have E/δS = 360/30 = 12 and, from (6.1),
we have

Λl
n =

{
360− 30n 1 ≤ n ≤ 12
0 12 < n ≤ 30; 0 ≤ l ≤ 4.

Now we describe how to estimate the volatility of the rate of return of S&P100. From the
Yahoo! finance homepage2, we obtain the historical data S0, · · · , S180, where St is the asset
price observed t days ago. From the historical data, we calculate the continuously compounded
rates of return of S&P100 as

ut = ln
(

St−1

St

)
, t = 1, · · · , 180. (6.2)

Using the continuously compounded rates of return u1, · · · , u180, we obtain the average of the
continuously compounded rate of return in the most recent 60 days, the average rate of the
return in the next 60 days, and the average rate of the return in the remaining 60 days, denoted
as u1, u2 and u3, respectively, by the following formulas:

u1 =
1
60

60∑

t=1

ut, u2 =
1
60

120∑

t=61

ut, u3 =
1
60

180∑

t=121

ut.

1http://asia.wsj.com/home-page
2http://finance.yahoo.com
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Similarly, we compute the volatilities of the continuously compounded rate of return in the
above-mentioned three periods by

σ1 =

√√√√250
59

60∑

t=1

(
ut − u1

)2
, σ2 =

√√√√250
59

120∑

t=61

(
ut − u2

)2
, σ3 =

√√√√250
59

180∑

t=121

(
ut − u3

)2
. (6.3)

We regard these values as realizations of the volatility and set P{σ = σj} = 1/3, j = 1, 2, 3.
Since there are 250 business days in a year, the right-hand side of (6.3) contains the factor

√
250

to convert the day rate of the volatility into the annual rate of the volatility. Since we adopt the
unbiased variance, the right-hand side of (6.3) contains the factor 1/

√
59 rather than 1/

√
60.

We use these parameter values to calculate the coefficients in the stochastic linear comple-
mentarity problem (4.1). Then, we obtain the deterministic formulations based on the expected
value method (4.3) and the expected residual minimization method (4.7). We let VEV and
VERM denote the solutions obtained by the expected value method and the expected residual
minimization method, respectively. In the expected residual minimization method, we adopt
the min function (3.4) and the FB function (3.5) as an NCP function and set the parameter ν

in (3.4) and (3.5) as ν = 0.1, 1, 10. We use the PATH solver [11] to solve the linear complemen-
tarity problem (4.3) and use the fmincon solver in the Matlab Toolbox to solve the optimization
problem (4.7).

6.2 Criteria for comparing solutions

In this subsection, we describe two criteria used to compare solutions obtained by different
formulations. As a standard for comparison, we use two values. First is the the simple average
of the solutions Vj obtained by solving the linear complementarity problems (4.1) for σj , j =
1, · · · , k:

Vavg =
1
k

k∑

j=1

Vj . (6.4)

Second is the solutions obtained by solving the linear complementarity problems (4.1) for the
deterministic volatility. Here, we explain how to calculate the deterministic volatility. We
calculate the average of the continuously compounded rate of the return in the 180days (6.2) by
the following formulas:

u =
1

180

180∑

t=1

ut.

Then we compute the volatilities of the continuously compounded rate of return by

σdet =

√√√√250
179

180∑

t=1

(ut − u)2, (6.5)

and regard σdet as the deterministic valatility. We solve the linear complementarity problems
(4.1) for σdet and denote the solutions as Vdet.

6.2.1 Estimation error

One criterion is to analyze the prices obtained from each method against the prices observed in
the real market.
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First, we describe how the prices of options corresponding to the current asset price can
be estimated from the solutions VEV, VERM, Vavg and Vdet. Note that the vector V can be
written as

V =




V0

V1

...
Vl

...
VL−2

VL−1




with Vl =




V l
1
...

V l
n
...

V l
N




, l = 0, 1, · · · , L− 1.

From (2.11), V l
n is the price corresponding to time tl and asset price Sn, where tl and Sn are

given by (2.9) and (2.10), respectively. Recall that we want to obtain the prices of options
corresponding to the asset price “at present”, i.e., t = 0. We can get the prices of options at
t = 0 by taking the first block component of the solution V, i.e., V0.

Notice that the solution V gives us only the prices corresponding to N asset prices Sn, n =
1, · · · , N . We want to obtain the prices of options corresponding to the given asset price at
t = 0. This can be obtained by the following procedure: Suppose that the given asset price lies
in the interval [nδS, (n + 1)δS] for some integer n > 0, i.e., it is represented as nδS + a, where
a is a positive number such that 0 ≤ a < δS. Then we can obtain the corresponding price of
options by interpolating the value of the nth element of V0 and the (n + 1)th element of V0.
Specifically, we calculate the prices of options by the formula:(

1− a

δS

)
V 0

n +
a

δS
V 0

n+1.

For example, on November 30, 2009, the current asset price is $511. If we set δS = 30, then
511 is in between 510 (=17δS) and 540 (=18δS). So we use the values of V 0

17 and V 0
18 in the

solution V. Since we can write 511=17δS+1, we obtain the corresponding price of options by
computing (

1− 1
30

)
V 0

17 +
1
30

V 0
18.

Let Z be the number of options used for numerical experiments. Then, for the zth option
(z = 1, 2, · · · , Z), its prices corresponding to the given asset price at t = 0 obtained by the
expected value method, the expected residual minimization method, and the simple averaging
method as V z

EV, V z
ERM, V z

avg and Vdet, respectively. We get the price of the zth option observed
in the real market (see [14, Appendix]) and denote it as V z

mkt. For example, the price of the
option whose expiration date is January, 2010 and strike price is $360 on November 30, 2009 is
$0.35.

Using these values, we calculate the root mean squared error rate (RMSER)

RMSERi =

√√√√ 1
Z

Z∑

z=1

(
V z

i − V z
mkt

V z
mkt

)2

, i = det, avg, EV, ERM

in order to compare the preciseness of estimation. We also calculate the mean error rate (MER)

MERi =
1
Z

Z∑

z=1

(
V z

i − V z
mkt

V z
mkt

)
, i = det, avg, EV, ERM

in order to compare the bias of the price obtained by each method relative to the price observed
in the real market.
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6.2.2 Measures of feasibility and optimality

Another criterion is to compare the solutions obtained by each method in terms of some measures
of feasibility and optimality, as was done in [7]. For any ω ∈ Ω, the complementarity problem

0 ≤ x ⊥ F (x, ω) ≥ 0 (6.6)

is equivalent to the optimization problem

min xT F (x, ω)

s.t. x ≥ 0, F (x, ω) ≥ 0
(6.7)

in the sense that an optimal solution of (6.7) with zero objective value coincides with a solution
of (6.6). We denote the discrete samples of ω as {ωj , j = 1, · · · , k} and denote the solution
obtained by the expected value method (3.3) or the expected residual minimization method
(3.8) as x∗.

Using the ideas from the literature on stochastic programming [2, 18, 19], we evaluate the
violation of the inequality condition F (x, ω) ≥ 0 in problem (6.7) by

γfeas(x∗, ω) = ‖min(0, F (x∗, ω))‖, (6.8)

and evaluate the loss in the objective function of (6.7) by

γopt(x∗, ω) = x∗ T max (0, F (x∗, ω)) . (6.9)

Here min(0, F (x∗, ω)) and max(0, F (x∗, ω)) denote the vectors with components min(0, Fi(x∗, ω))
and max(0, Fi(x∗, ω)), respectively, where Fi(x∗, ω) is the ith element of F (x∗, ω). We apply
these measures to the stochastic linear complementarity problem (4.4) derived from the model
for pricing American options with uncertain volatility. As in Subsection 6.1, we denote the
solution from the expected value method (4.3), the expected residual minimization method, and
the simple averaging method as VEV, VERM, Vavg and Vdet, respectively. Then, (6.8) and (6.9)
are written as

γfeas(Vi, σ) =

√√√√
L−1∑

l=0

∥∥∥min
(
0,M(σ)Vl

i + M′(σ)Vl+1
i

)∥∥∥
2
, i = det, avg, EV, ERM,

γopt(Vi, σ) =
L−1∑

l=0

(
Vl

i −Λl
)T

max
(
0,M(σ)Vl

i + M′(σ)Vl+1
i

)
, i = det, avg, EV, ERM,

respectively. We denote the discrete samples of σ as {σj , j = 1, · · · , k}. For the zth option and
σ = σj , we denote the values of γfeas(Vi, σ) and γopt(Vi, σ) as γfeas(Vz

i , σj) and γopt(Vz
i , σj),

respectively. We calculate the average values of γfeas(Vz
i , σj) and γopt(Vz

i , σj) for σj , j = 1, · · · , k

and z = 1, · · · , Z by the following formulas:

Γfeas
i =

1
kZ

Z∑

z=1

k∑

j=1

γfeas(Vz
i , σj), i = det, avg, EV, ERM,

Γopt
i =

1
kZ

Z∑

z=1

k∑

j=1

γopt(Vz
i , σj), i = det, avg,EV,ERM,

where Z is the total number of options used for numerical experiments. We use Γfeas
i and Γopt

i

to compare solutions obtained by the different methods.
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6.3 Numerical results

In this subsection, we show the numerical results. First, we show the values of RMSER and
MER in Table 2 and Table 3, respectively. In both tables, we classify options into 4 categories
according to their moneyness [1] which is the asset price S divided by the strike price E, as shown
in Tables 1. The numbers of options used in the numerical experiments are 88 for DOTM, 148
for OTM, 66 for ATM, and 47 for ITM.

moneyness category
1.2 < S/E deep-out-of-the-money(DOTM)

1.04 < S/E ≤ 1.2 out-of-the-money(OTM)
0.98 ≤ S/E ≤ 1.04 at-the-money(ATM)

S/E < 0.98 in-the-money(ITM)

Table 1: The classification according to moneyness

In terms of RMSER, the most precise estimate of the prices of options observed in the real
market is given by the expected residual minimization method using the FB function (3.5) with
parameter ν = 1. If we focus on ATM and ITM, the expected residual minimization method
using the FB function (3.5) with parameter ν = 0.1 estimates most precisely the prices of options
observed in the real market. Regarding the positive parameter ν, the best choice to estimate
the prices observed in the real market is ν = 1 for both the min function and the FB function.
If we set ν = 10, the values of RMSER become large, that is to say, the method fails to estimate
the prices observed in the real market. So we may conclude that ν = 1 or even a smaller value is
an appropriate choice. In terms of MER, all the prices Vdet, Vavg, VEV and VERM, except those
obtained by the expected residual minimization method using the min function with parameter
ν = 10 and the FB function with parameter ν = 10, tend to be much lower than the prices
observed in the real market.

We show the values of Γfeas defined in Subsection 6.2.2 in Table 4. Table 5 shows the values
Γopt divided by 100. The solution VERM by the expected residual minimization method has
smaller Γfeas values and larger Γopt values than the other solutions. Recall that the inequality
(2.5) is derived from the no arbitrage assumption and Γfeas represents the violation of this
inequality. Thus, the expected residual minimization method (4.7) produces a solution which
tends to satisfy no arbitrage assumption, which is one of the most important assumptions in
the theory of options. Regarding the positive parameter ν in (3.4) and (3.5), the larger ν we
set, the smaller Γfeas values the solution has, that is to say, the stronger tendency to satisfy the
no arbitrage assumption the solution has. However, the formulation with a large ν may yield a
solution with a large Γopt value.
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ERM
det avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM 0.97 0.95 0.97 0.97 0.84 13.25 0.94 0.78 18.99
OTM 0.67 0.65 0.67 0.65 0.47 2.54 0.56 0.46 8.87
ATM 0.17 0.18 0.17 0.16 0.22 0.34 0.16 0.21 0.40
ITM 0.07 0.07 0.07 0.07 0.08 0.11 0.06 0.08 0.38
total 0.66 0.64 0.66 0.65 0.53 6.86 0.60 0.50 11.15

Table 2: Comparison of RMSER

ERM
det avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM -0.97 -0.95 -0.97 -0.97 -0.82 3.48 -0.94 -0.76 6.17
OTM -0.68 -0.67 -0.68 -0.66 -0.41 0.51 -0.55 -0.41 1.40
ATM -0.17 -0.18 -0.17 -0.13 0.08 0.15 -0.04 0.07 0.21
ITM -0.04 -0.04 -0.04 -0.03 0.03 0.04 -0.01 0.02 0.10
total -0.57 -0.56 -0.57 -0.56 -0.36 1.13 -0.48 -0.35 2.20

Table 3: Comparison of MER

ERM
det avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM 23.00 24.15 22.63 19.99 2.17 0.11 11.22 1.00 0.07
OTM 26.43 27.63 25.94 22.32 2.54 0.11 12.42 1.09 0.08
ATM 30.88 32.40 30.31 25.71 2.49 0.08 13.98 1.16 0.07
ITM 30.26 31.66 29.68 25.65 3.43 0.06 14.55 1.31 0.07
total 26.92 28.20 26.44 22.82 2.56 0.10 12.70 1.11 0.07

Table 4: Comparison of Γfeas

ERM
det avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM 2.76 2.39 2.85 3.45 11.50 267.84 5.84 10.95 170.07
OTM 3.50 3.07 3.63 4.47 14.76 344.31 7.45 13.00 392.87
ATM 4.41 3.86 4.57 5.76 18.29 116.77 9.61 16.28 111.62
ITM 4.88 4.26 5.02 6.17 21.92 49.42 10.10 18.79 346.91
total 3.67 3.21 3.80 4.69 15.57 242.29 7.81 13.88 277.31

Table 5: Comparison of Γopt
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7 Conclusion

In this paper, we have proposed two deterministic formulations for pricing American options with
uncertain volatility based on the expected value method and the expected residual minimization
method for stochastic linear complementarity problems. We have shown sufficient conditions
that guarantee the formulations by the expected value method and the expected residual min-
imization method to have solutions. The numerical results indicate that the expected residual
minimization method yield solutions that tend to satisfy the no arbitrage assumption than the
expected value method.
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