<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ueda, Jumpei; Tanabe, Setsuhisa; Nakanishi, Takayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of applied physics (2011), 110(5): 53102-531026</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-09-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/150456</td>
</tr>
<tr>
<td>Copyright</td>
<td>© 2011, American Institute of Physics</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement

Jumpei Ueda, Setsuhisa Tanabe, and Takayuki Nakanishi

Citation: J. Appl. Phys. 110, 053102 (2011); doi: 10.1063/1.3632069
View online: http://dx.doi.org/10.1063/1.3632069
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v110/i5
Published by the American Institute of Physics.

Related Articles
Microcavity effects in SiGe/Si heterogeneous nanostructures prepared by electrochemical anodization of SiGe/Si multiple quantum wells
J. Appl. Phys. 110, 103101 (2011)

Microstructure, optical property, and electronic band structure of cuprous oxide thin films
J. Appl. Phys. 110, 103503 (2011)

Suppression of luminescence quenching at the nanometer scale in Gd2O3 doped with Eu3+ or Tb3+: Systematic comparison between nanometric and macroscopic samples of life-time, quantum yield, radiative and non-radiative decay rates
J. Appl. Phys. 110, 094317 (2011)

Influence of local atomic configuration in AlGdN phosphor thin films on deep ultra-violet luminescence intensity
J. Appl. Phys. 110, 093108 (2011)

Comparative investigation on the 2.7m emission in Er3+/Ho3+ codoped fluorophosphate glass
J. Appl. Phys. 110, 093106 (2011)

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT
Analysis of Ce$^{3+}$ luminescence quenching in solid solutions between Y$_3$Al$_5$O$_{12}$ and Y$_3$Ga$_5$O$_{12}$ by temperature dependence of photoconductivity measurement

Jumpei Ueda, Setsuhisa Tanabe, and Takayuki Nakanishi

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
Japan Science and Technology Agency - Precursory Research for Embryonic Science and Technology, JST-PRESTO, Tokyo 102-0075, Japan
Faculty and Graduate School of Engineering, Hokkaido University, Hokkaido 060-8628, Japan

(Received 23 June 2011; accepted 2 August 2011; published online 7 September 2011)

Photocurrent excitation spectra were measured to investigate the quenching in the garnet solid solutions. Intense photocurrent excitation bands attributed to the lowest 5d$_1$ and second lowest 5d$_2$ levels were observed in the Ce-doped Y$_3$Al$_5$Ga$_3$O$_{12}$ (Ce:YAGG) and Y$_3$Ga$_5$O$_{12}$ (Ce:YG). Based on the results of temperature dependence of photoconductivity, the 5d$_1$ and 5d$_2$ levels in the Ce:YAGG are found to be located below and within the conduction band, respectively, while both levels in the Ce:YG are found to be located within its conduction band located at lower energy levels. In addition, the threshold of photoionization from the 4f level of Ce$^{3+}$ to the conduction band in the Ce:YAGG and Ce:YG were estimated to be 3.2, and 2.8 eV, respectively. We conclude that the main quenching process in the Ce:YAGG is caused by the thermally stimulated ionization process with activation energy of 90 meV from the 5d$_1$ to the conduction band, and that in the Ce:YG is caused by the direct ionization process from the 5d levels to the conduction band.

I. INTRODUCTION

Recently, the Ce$^{3+}$-doped garnet phosphors are attracting a great deal of attention in the application for white light emitting diodes (LEDs). Most white LEDs are composed of blue LEDs and yellow phosphors (Ce$^{3+}$:Y$_3$Al$_5$O$_{12}$), which have many advantages such as strong absorption at the blue LED wavelength (~450 nm), broad yellow luminescence, and high quantum efficiency (~90%). The garnet crystals can be formed in wide ranges of solid solutions with various crystal field strengths of Ce$^{3+}$ ion. Therefore, tuning of 5d energy levels of Ce$^{3+}$ ion by tailoring the host garnet crystals is possible. However, some garnet phosphors doped with Ce$^{3+}$ show low quantum efficiency and large thermal quenching.

For instance, Ce$^{3+}$:Gd$_3$Al$_5$O$_{12}$ (Ce:GAG) is a good candidate of orange phosphors for warm white LEDs. However, the thermal quenching of the Ce:GAG is much higher than that of the Ce$^{3+}$:Y$_3$Al$_5$O$_{12}$ (Ce:YAG). Chiang et al. investigated the differences in the thermal quenching in the Ce:YAG, Ce:Tb$_3$Al$_5$O$_{12}$ (Ce:TAG), and Ce:GAG. They explained that the strong thermal quenching is caused by the difference of activation energies in the nonradiative relaxation process from the excited 5d level to the ground 4f level. Because the excited 5d states have largely extended orbitals, the offset of the potential curve of the 5d excited state (U_e) is shifted from the bottom of 4f ground state (U_g) in the configuration coordinate diagram as shown in Fig. 1. The electrons in the excited 5d levels are thermally activated from the lowest position of 5d level to the crossing point at the intersection of U_e and U_g, where the excited electron and ground states are intermixed. The thermal quenching can be promoted with decreasing energy gap (ΔE) between the bottom of the excited 5d level and the cross point of U_e and U_g. In general, the 5d energy level of Ce$^{3+}$ is red shifted with increasing crystal field in garnet crystals, such as Y$_3$Al$_5$O$_{12}$ ($\lambda_{em} \approx 540$ nm), Tb$_3$Al$_5$O$_{12}$ ($\lambda_{em} \approx 555$ nm), and Gd$_3$Al$_5$O$_{12}$ ($\lambda_{em} \approx 560$ nm), and thus the activation energy decreases in the order of $\Delta E_{YAG} > \Delta E_{TAG} > \Delta E_{GAG}$. Therefore, the thermal quenching of Ce:GAG is the strongest among these garnet phosphors.

It is known that Ce$^{3+}$:Y$_3$Ga$_5$O$_{12}$ (Ce:YG) shows no luminescence from the 5d to the 4f level at room temperature. Hansel et al. explained the quenching in the Ce:YG by the nonradiative relaxation process from the 5d excited state to the 4f ground state using a configuration coordinate diagram. However, the 5d state of Ce$^{3+}$ in the Ce:YG has higher energy compared with that in the Ce:YAG. The nonradiative relaxation through the cross points between 5d and 4f levels are usually suppressed with increasing 5d energy levels as shown in Fig. 1. Therefore, it is not conceivable to explain the quenching in the Ce:YG by the nonradiative relaxation process through the cross point.

Generally, quenching of Ce$^{3+}$ in Ce:Lu$_2$O$_3$ and Ce:Y$_2$O$_3$, which are known as nonluminescent materials, are explained by the photoionization process from the 5d level to the conduction band. It is possible that the quenching of the Ce:YG is also a result of the photoionization. In this study, therefore, solid solutions between the Ce:YAG and the Ce:YG were prepared, and the photoluminescence (PL), photoluminescence excitation (PLE) spectra, and photocurrent excitation (PCE) spectra were measured to investigate the quenching process.
II. EXPERIMENTAL METHODS

Polycrystalline ceramics of \((Y_{0.995}Ce_{0.005})_3Al_5O_{12}\) (Ce:YAG), \((Y_{0.995}Ce_{0.005})_3Al_2Ga_3O_{12}\) (Ce:YAGG), and \((Y_{0.995}Ce_{0.005})_3Ga_5O_{12}\) (Ce:YGG) were synthesized by the solid-state reaction. Commercial powders of \(Y_2O_3\) (99.99%), \(Al_2O_3\) (99.99%), \(Ga_2O_3\) (99.99%), and \(CeO_2\) (99.99%) were used as starting materials. The powders were mixed, grained, and pressed into a pellet of 10-mm diameter and sintered at 1400°C–1600°C for 6 h in air. The grinding and sintering processes were performed 2–3 times to obtain a single phase of the garnet crystal. PL and PLE spectra were measured by using a fluorescence spectrophotometer (Shimadzu, RF-5000). For the photoconductivity measurement, gold electrodes were deposited on the sample, which was partially masked by a tape of 1-mm width to separate the electrodes. The sample connected with two copper wires was mounted into a cryostat (Iwatani industrial gases Co., Mininstat) to control the sample temperature between 20 K and 300 K. In addition, a sample chamber was always kept in a vacuum to suppress surface current of the sample. The sample was excited by a combination of a 300-W Xe lamp (Asahi Spectra Co., Ltd, MAX-302) and a monochromator (Nikon, G250). Direct voltage of 300 V was applied to the sample, and photocurrents were measured with a digital electrometer (ADVANTEST, 8240).

III. RESULTS AND DISCUSSION

A. XRD of Ce\(^{3+}\)-doped garnet crystals

Figure 2 shows XRD patterns of the Ce:YAG, Ce:YAGG, and Ce:YGG ceramics. Each XRD pattern of the Ce:YAG, Ce:YAGG, and Ce:YGG ceramic corresponds to that in reference data ICSD No. 082-05756, 089-6660, and 073-1374, respectively. All samples are identified as a single phase of the garnet crystals. From the obtained peak in XRD patterns, a lattice constant of the garnet crystal was estimated by using a formula of

\[
a = \frac{\lambda \sqrt{h^2 + k^2 + l^2}}{2 \sin \theta},
\]

where \(\lambda\) is Cu K\(_x\) x-ray wavelength; \(h, k,\) and \(l\) are Miller’s indices; and \(\theta\) is the diffraction angle. The calculated lattice constant of garnet crystals are 12.00 Å for Ce:YAG, 12.19 Å for Ce:YAGG, and 12.27 Å for Ce:YGG, following the Vegard’s law against Ga content.

B. Variation of PL and PLE of Ce\(^{3+}\) luminescence in garnet crystals with Ga content

Figure 3 shows PLE spectra monitoring at 550 nm and PL spectra by 440 nm excitation in the Ce:YAG and Ce:YAGG. No luminescence was observed in Ce:YGG at room temperature, so that the PL and PLE spectra are not shown in Fig. 3. PLE bands at around 450 nm and 350 nm were observed in the Ce:YAG and Ce:YAGG. The longer wavelength band and the shorter wavelength band are ascribed to the transitions from the ground 4f level to the 5d\(_1\) and 5d\(_2\), which are the lowest and the second lowest 5d levels, respectively. In addition, a broad PL band at around 550 nm was observed in the Ce:YAG and Ce:YAGG. This band is attributed to the 5d\(_1\)→4f transition. The peak wavelengths of the PL (5d\(_1\)→4f) and PLE (4f→5d\(_1\)) bands in the Ce:YAGG were blue-shifted compared with that in the Ce:YAG, while the peak wavelength of the PLE (4f→5d\(_2\)) was red-shifted. This is because the crystal field of Ce\(^{3+}\) in the YAGG crystal is weaker than that in the YAG crystal. The energy level of the 5d\(_1\) level and 5d\(_2\) level of Ce\(^{3+}\) increase and decrease,
respectively, with increasing ionic radius in the octahedral and tetrahedral sites in the garnet crystals. In addition, the PL and PLE intensity decreased with increasing Ga concentration. We also observed the quenching of Ce$^{3+}$ luminescence caused by Ga-substitution for Al in the garnet crystals.

C. Photoconductivity of Ce$^{3+}$ in garnet crystals

No photocurrent was observed in the Ce:YAG, whereas intense photocurrent excitation bands were observed at around 420 and 350 nm in the Ce:YGG and Ce:YAGG at 300 K as shown in Fig. 4. Peak wavelengths of these two bands correspond to the results in the PLE spectra in the Ce:YAGG and the absorption spectra reported elsewhere for Ce:YAGG and Ce:YGG. Therefore, the PCE bands at around 420 and 350 nm are identified as the 4f–5d$_1$ and 4f–5d$_2$ transitions. These results of the photocurrent excitation spectra show that the excited 5d$_1$ and 5d$_2$ levels promote carriers into the conduction band. In addition, the PCE intensity increased with increasing Ga concentration. This is completely in contrast to the results of Ga concentration dependence of PL and PLE intensities. Therefore, the photocurrent from the 5d levels to the conduction bands is strongly correlated to cause of the luminescence quenching of Ce$^{3+}$ in the Ga-substituted garnet crystals.

D. Location of 5d levels in garnet crystals

Figures 5 and 6 show temperature variation of the PCE spectra in the Ce:YAGG and Ce:YGG. In the Ce:YAGG, at low temperature, photocurrent was observed only by the 5d$_2$ excitation at low temperature, but not by the 5d$_1$ excitation. However, the excited 5d$_1$ level of Ce$^{3+}$ gradually induced the photocurrent with increasing temperature. On the other hand, in the Ce:YGG, a significant photocurrent was observed by both 5d$_1$ and 5d$_2$ excitations even at low temperature. These phenomena can be understood on the basis of the relative position between the 5d levels and the conduction band. The 5d$_1$ level in the Ce:YAGG can be located just below the bottom of the conduction band, so that the photocconductivity from the 5d$_1$ level to the conduction band can be induced by a thermally stimulated process. The fact that the PCE band of the 5d$_2$ level in the Ce:YAGG was observed at low temperature shows that the 5d$_2$ level is located within

[FIGURES 3, 4, 5, 6]
the conduction band and can cause the photoconductivity directly. On the other hand, the peak intensity ratio of the PCE bands of 5d_{1} and 5d_{2} were not changed in the Ce:YGG at various temperatures. This is because both of the 5d_{1} and 5d_{2} levels in the Ce:YGG are located within the conduction band and the photocurrent occurs directly from the 5d levels to the conduction band.

Based on these energy relationships between the 5d state and the conduction band, the threshold energy of photoionization \(E_{\text{PI}} \) from the 4f ground state of Ce^{3+} to the conduction band is estimated. Table I shows the lattice constant, band gap energy, and threshold energy of photoionization in Ce^{3+}-doped garnet crystals.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Measured lattice constant (Å)</th>
<th>Band gap energy, (E_g) (eV)</th>
<th>Threshold energy of photoionization, (E_{\text{PI}}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce:Y_{3}Al_{2}O_{12}</td>
<td>12.00</td>
<td>6.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Ce:Y_{3}Al_{5}Ga_{3}O_{12}</td>
<td>12.19</td>
<td>5.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Ce:Y_{3}Ga_{5}O_{12}</td>
<td>12.27</td>
<td>5.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

FIG. 7. (Color online) Temperature dependence of the integrated area of the individual photocurrent bands in Ce:YAGG.

The temperature dependences are not linear and not fitted by the Arrhenius equation. The similar temperature dependence of the photocurrent to that in the present Ce:YAGG have been reported in the Ce^{3+}-doped Lu_{2}SiO_{5}.\(^{16,17}\) In that material, the lowest 5d level of Ce^{3+} is located within the bandgap and the second and third lowest 5d levels are located within the conduction band. According to these reports, temperature dependence of the PCE band (5d_{1}), which is located within bandgap, is described by

\[I = C_1 + C_2 \exp\left(\frac{-\Delta E_1}{kT}\right) \] \((1) \)

where \(C_1 \) is a temperature-independent contribution by an electron-tunneling process to adjacent Ce^{3+} and the exponential term \(C_2 \exp(-\Delta E_1/kT) \) is a result of a thermally stimulated ionization process from the 5d_{1} to conduction band.\(^{16,17}\) From fitting of the data of 5d_{1} in the Ce:YAGG, the activation energy was estimated to be \(\Delta E_1 = 90 \text{ meV} \). This activation energy corresponds to the energy gap from the 5d_{1} level to the conduction band.

E. Activation energy from 5d state to conduction band

To estimate the activation energy from the 5d state to the conduction band, we plot a natural-logarithmic integrated PCE band intensity as a function of \(1/kT \), where \(k \) is Boltzmann constant and \(T \) is temperature as shown in Figs. 7 and 8. The photocurrent intensities of 5d_{1} and 5d_{2} decreased with decreasing temperature in both samples. However, the...
In addition, they also reported that the temperature dependence of the PCE band (5d₂), which is located within the conduction band can be fitted to

\[I = C_3 + C_2 \exp \left(\frac{-\Delta E_1}{kT} \right) + C_4 \exp \left(\frac{-\Delta E_2}{kT} \right), \]

(2)

where \(C_3 \) is also a temperature-independent contribution and equal to the sum of \(C_1 \) and \(C_1' \), which is a result of a direct ionization process from the 5d₂ to the conduction band; \(C_2 \exp(-\Delta E_1/kT) \) is the second thermally stimulated process.\(^{16,17}\) The excitation of the 5d₂ level results in the fast population of the lowest 5d level; thus, the photocurrent by the 5d₂ level excitation includes the contribution from the 5d₁ level by the thermally stimulated process. Therefore, Equation (2) includes the term \(C_2 \exp(-\Delta E_1/kT) \). From fitting to our present results, the small activation energy of \(\Delta E_2 \) was calculated to be 43 meV. This activation energy can be explained by a thermally stimulated process from electron traps, which can be either Ce-bound exciton, oxygen vacancies, or anti-site defects.\(^{16,18,19}\)

We consider the temperature dependence of the PCE bands (5d₁ and 5d₂) in the Ce:YGG. In this material, the 5d₁ and 5d₂ levels are located within the conduction band, where the electron in the 5d levels is transferred to the conduction band directly without any thermally activated passes. The observed temperature dependences of the PCE bands (5d₁ and 5d₂) can be caused by the thermally stimulated process from electron traps to the conduction band and fitted to

\[I = C_3 + C_4 \exp \left(\frac{-\Delta E_2}{kT} \right), \]

(3)

The activation energy from the 5d₁ and 5d₂ bands estimated by the temperature dependence of PCE spectra was 56 and 38 meV, respectively. These activation energies are similar to each other and also almost the same values in Ce:YAG. Therefore, the electrons are caught by the same electron traps upon both 5d₁ and 5d₂ excitations.

Based on these results, Fig. 9 summarizes a band model including the 5d state and the conduction band in three garnet crystals with different Ga concentration. With increasing Ga content in the solid solutions between the Ce:YAG and the Ce:YGG, the crystal field strength, the conduction band energy, and threshold of photoionization decreased, resulting in the change of the relative position between the 5d state of Ce\(^{3+}\) and the conduction band. The 5d₁ and 5d₂ levels in the Ce:YAGG are located below and within the conduction band, respectively, while both those levels in the Ce:YGG are located within the conduction band. Therefore, the main quenching process in the Ce:YAGG is caused by the thermally stimulated ionization process from the 5d₁ to the conduction band, and that in the Ce:YGG is caused by the direct ionization process from the 5d levels to the conduction band.

IV. CONCLUSION

The location of the 5d levels of Ce\(^{3+}\) relative to the energy bands and luminescence quenching mechanism was proposed based on the PL, PLE, and PCE spectra. The main quenching process in the Ce:YAGG is caused by the thermally stimulated ionization process from the 5d₁ to the conduction band whereas that in the Ce:YGG is caused by the direct ionization process from the 5d levels to the conduction band.

ACKNOWLEDGMENTS

This work is supported by JST-PRESTO, Grant-in-Aid for Scientific Research from JSPS Fellows (No. 22-2797), and Grant-in Aid for Scientific Research(B) (23350099).
