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Abstract 

In recent years, as general purpose computers like personal computers spread into 

control systems in manufacturing fields, the control systems are expected to be 

integrated with business systems such as quality management systems, cost man­

agement systems and ERP(Enterprise Resource Planning) systems. This integra­

tion makes it possible to deliver data rapidly between control systems and business 

systems, compared with traditional methods like manual inputs and batch based 

transferring, and is considered to optimize production activities by dissolving in­

formation delay and improving data accuracy. 

To achieve this integration, frameworks for cooperation and data exchange 

among applications like COM (Component Object Model) by Microsoft and XML 

(eXtensible Markup Language) are not enough. In control systems, sensor data 

are sequenced by the time stamp order for each facility or each equipment, and 

these data are meaningless as themselves in business systems. That is, a new 

contrivance is required to reform the sensor data in control systems to useful data 

in business systems. 

For the purpose of effective management of product quality and cost, it is re­

quired to provide useful information which is tightly connected with object flow, 

such as "where this object was passed and how was its status" and "what object 

is (was) existing in which processes and how was its status." To realize this re­

quirement, the following characteristics of data in manufacturing systems should 



be handled. The first one is the temporal property. Although temporal database 

languages like TSQL and TQuel have the ability to deal with temporal aspects, 

an object itself has a temporal aspect in manufacturing systems. For example, 

the value field in a sensor object should have a valid value when accessed by an 

application. The second one is the change of identity and form of objects. Work­

flow models and some geographical data models handle the change of the object 

identity. These models, however, cannot handle the change of object fonn. A 

manufactured object may exist in one manufacturing process as a point or in some 

manufacturing processes as a line. The last one is multi-dimensionality of man­

ufacturing result data. Since the concepts of views in object-oriented databases 

mainly focus on restructuring class hierarchies, they cannot represent the aspects 

of data in manufacturing systems focusing on one of the time, a manufacturing 

process and a manufactured object. 

In this thesis, the data management models for manufacturing systems are 

presented. First of all, a temporal object model based on temporal validity is 

proposed. The model defines the concept of temporal validity to assure the cor­

rectness of temporal objects. Secondly, a multidimensional data utilization model 

for manufacturing management is proposed. The model has the ability of re­

forming sensor values to multidimensional aspects of the entire plant, each of 

manufacturing processes and histories of manufactured products. Thirdly, the 

Time/Place/Object model to represent the organization and the behavior of a man­

ufacturing line is presented. This model enables the integration of the monitoring 

function and the control function by the ECA mechanism. 

These models are incorporated with database middlewares and applied to real 

plants. The implementation issues are also introduced. 
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Chapter 1 

Introduction 

1.1 Recent Trends of Data Management in Manu­

facturing Systems 

Today's manufacturing plants cannot be constructed without the help of computer 

technologies. The main purpose of introducing computers in manufacturing plants 

has been to automate the operation of machinery, increase the quality of control 

and reduce human burdens. In the times, connections between human operators 

and manufacturing computers were not so tight. However recent social require­

ments to products such as high quality, low cost and environmental consideration 

have begun to bring the traditional framework of manufacturing systems to the 

limit of evolution. 

To meet the severe requirements of current society, it is needed to take human 

roles into the framework of the system. The system should provide manufacturing 

data to help making decisions by plant operators and enterprise managers. This 

means that the purpose of plant data changes from the traditional manufacturing 

systems. That is, although plant data has been utilized only for control and pro-



ducti on records, today's systems are required to have the ability of more effective 

utilization of plant data. 

The key issue for effective utilization of manufacturing data is how to retrieve 

useful data from production records. Production records include sensed process 

values such as temperature, humidity and density. These data can be acquired 

to computers through process 110 units periodically and stored to databases after 

some operations. 

Traditional manufacturing management systems are built on proprietary plat­

forms based on vendor's specific technologies. However, manufacturing systems 

are organized by some layers ranging from field equipment to enterprise business 

management and each vendor has both of good part and poor part. As a result, 

layers of a manufacturing system have been built by many proprietary platforms 

and this led to disconnectivity between different layers. 

This situation began to change in early '90s. Small desktop workstations based 

on UNIX and even personal computers with Microsoft Windows began to be in­

troduced to manufacturing systems. These platforms have standard interfaces to 

interact with other parts of a system. So the requirement of integrating system 

layers were increasing slowly. 

This requirement blowed up in late '90s along with the spread of the Internet 

environment. Scalability of the Internet makes it possible to communicate be­

tween enterprise level systems and manufacturing field systems. In recent years, 

especially, ERP (Enterprise Resource Planning) systems[ IS] has begun to be inte­

grated with manufacturing field systems. By this integration, the speed of commu­

nication from manufacturing fields to enterprise decision makers becomes rapid, 

compared with conventional batch reporting or manual inputs. It is considered 

that this integration improves the efficiency of production activities. 
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1.2 Requirements from Practical Usage 

1.2.1 Difference of Data Utilization in System Layers 

In recent years, many frameworks to integrate system components has been pro­

posed. COM (Component Object Model) makes it possible to communicate among 

objects consisting of different applications. XML (eXtensible Markup Language) 

is a framework of flexible data exchange between system components, based on 

the concept of semi-structured data. These frameworks, however, provide only a 

mechanism for integrating system components. It is not enough to integrate sys­

tem layers of a manufacturing line, because the way of data utilization is different 

at each level of the system. For example, raw sensor values for each of manu­

facturing processes or their aggregated data are meaningless for enterprise level 

systems. That is, it is required to provide a model and a mechanism to change the 

form of data from raw sensor values in manufacturing fields to useful information 

for business level systems. 

For the purpose of effective management of product quality and cost, it is 

required to provide useful information which is tightly connected with object flow, 

such as "where this object was passed and how was its status" and "what object 

is (was) existing in which processes and how was its status." It is a very time 

consuming task for operators to retrieve this kind of information from raw sensor 

values. 

1.2.2 Traceability of Production Records 

In manufacturing systems, two kinds of data are acquired. One is sensor values 

which are acquired periodically. The other is trace histories of manufactured ob­

jects which are acquired eventually. Sensor values can be stored in a database 

as a tuple of values and an acquired time stamp. An object trace history can be 
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represented by time stamps when the object enters and leaves each manufacturing 

process. 

When a defect is found in a product, its cause needs to be detected for quality 

assurance. The cause may be abnormality of temperature caused by a problem of 

production parameter settings for a certain process. In this case, two types of data 

presented above should be provided in the integrated form . That is, sensor values 

for each of processes which the product passed through need to be retrieved. In 

order to realize this functionality, a database system must have the ability of han­

dling temporal aspects of data, reforming stored data according to the requirement 

of data utilization and tracing manufactured objects. 

1.2.3 Integration with Control Activity 

Manufacturing management systems have to be connected with control systems 

of a real target plant. Short period feedback controls are performed by the con­

trollers layer, but parameters for controls need to be issued from the manufactur­

ing management system layer. This means that appropriate commands have to 

be transferred to controllers according to the plant status such that which lot of 

product is existing in which manufacturing process. 

Product manufacturing is achieved according to production recipes which are 

planned based on production requirements such as order reception and demand es­

timation. Production recipes include production specifications such as the amount 

of raw materials, calor and size of final products. Manufacturing management 

systems have to issue these specifications to controllers. 
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1.3 Conventional Database Approaches 

In this section, several approaches on database technologies are discussed for re­

alizing manufacturing management systems. 

1.3.1 Temporal Databases 

In order to deal with the change of the state of manufactured objects, the concept 

of time should be introduced to a database system. Basically, a temporal database 

is a kind of the relational database extended to have time attributes representing 

the valid time interval of each tuple. In traditional relational databases, a tuple is 

overwritten when updated. In temporal databases, a tuple is not overwritten when 

it is updated, but a new tuple is inserted after marking the valid time interval to the 

updated old tuple. Users can retrieve the past tuple by specifying a time clause in 

a query. Several languages like TSQL and TQuel extending the SQL for relational 

databases have been proposed[26][27][32]. For example, TSQL has the 'WHEN' 

clause which can be used as the following query. 

SELECT salr 

FROM S, M 

WHERE S.eno M.eno AND M.eno = 125 

AND M.mgr = 'Smith' 

WHEN S.INTERVAL OVERLAP M.INTERVAL 

This query finds the salary of employee 125 when Smith was his manager. 

These frameworks, however, are not enough for manufacturing information 

management, because of the following reasons. 

• In a relational temporal model, each tuple represents a fact which is valid 

during the time interval of the tuple. An example of attributes of a tuple 
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can be a person's name and the person's salary with a valid time interval. 

It is not appropriate to represent a history of a manufactured object by a 

sequence of facts, because the fact cannot handle the identity of objects. 

• The identity of manufactured objects changes during a manufacturing pro­

cess. One object may be split into multiple objects. The relational temporal 

model cannot handle the change of the identity. 

Several object-oriented temporal databases are also proposed. But these mod­

els only handle the versions of objects. The change of identity of manufactured 

objects is different from the change of versions in the following points. 

• Even if an object branches to two versions of the object, the class of the two 

objects is identical. On the contrary, if a manufactured object is split into 

two objects, the class of one object can be different from the class of the 

other object. 

• When merging two versions of objects, the class of the two objects is also 

identical. On the other hand, the class of merged two manufactured objects 

can be the same or different from each other. 

1.3.2 Views in Object-Oriented Databases 

Views in databases are aimed to make the structure of a database independent from 

application usage. Data structure in relational databases is designed considering 

the elimination of data redundancy. Applications can re-structure the stored data 

for satisfying application specific usage by utilizing relational operations such as 

projection, selection, join and aggregation. 

Views in object-oriented database[3][24] are mainly based on re-structuring 

class hierarchies. A new class can be defined by projecting and hiding some at-
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tributes from some classes, or selecting some instances satisfying specified condi­

tions . For example, a new class Adult can be defined by selecting instances such 

that their Age attribute value is over 21, as the following manner. 

class Adult includes 

(select P from Person where P.Age >= 21) 

For the purpose of tracking manufacturing histories of a product, these view 

mechanisms are not enough. Since a manufactured object changes the identity 

during a manufacturing process, a history of production is the combination of 

some objects which are linked each other. A mechanism for generating views for 

some objects which are linked each other should be provided. 

In addition, the object-oriented data model cannot deal with the object life 

cycles of the real world. In object-oriented databases, objects are persistent, so 

all data in databases are regarded as alive. When applying to manufacturing sys­

tems, another aspect of object life should be considered. That is, the life of an 

object starts when it enters a manufacturing line and ends when it leaves, but the 

object including production records is not deleted from a database after leaving a 

manufacturing line. 

For the above reasons, a new concept of view and life cycle needs to be con­

sidered for manufacturing data management. 

1.3.3 Workftow Models 

A manufacturing line involves a kind of work flow like business document process­

ing. A pioneering work for workftow management of documents can be found in 

[12]. This model can handle branching and merging of documents. Other work­

flow models like [4][14][19][23] also aim to flexible management of processed 

work units. 
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These models, however, are focused on the business workftow, so there are 

some insufficient points for manufacturing management. The most decisive point 

is the ability of control to the real world. The workftow systems mainly contribute 

to monitoring the flow of work units, while it is required to control manufacturing 

machines in manufacturing lines. That is, control functions to issue appropriate 

control commands to a real world are required as well as monitoring functions to 

trace manufactured objects. 

Another different point is the change of identity of work units. When a work 

unit branches, some different kinds of works are issued in workftow systems. But 

in a manufacturing line, some objects of the same kind may be produced. For 

example, a unit of liquid in a tank may be divided into some subdivided units for 

smaller tanks. That is, objects divided from an object may be processed in the 

same processes afterwards. This kind of branching may not happen and cannot be 

handled in the business workftow model. 

1.3.4 Other Related Works 

In the geographical information system field, a model to manage the change of 

object identity is proposed in [ 11 ]. This model defines various operations to rep­

resent the change of identity of geographical objects such as states, cities and 

countries. The operations defined in this model are very powerful, so change of 

the identity of objects in a manufacturing line can be represented. However, this 

model cannot handle the movement of objects, which is indispensable for manu­

facturing management. In geographical information management, the identity of 

objects may change but an object itself don't move. On the contrary, the change 

of object identity is involved with the movement of objects. 

The multi-dimensional databases[9][ 1 0] and OLAP (OnLine Analytical Pro­

cessing) systems[5][20] deal with various aspects of stored data and very useful 
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for analytical usage. The multi-dimensional operation is based on aggregating 

values focusing on one attribute. For the manufacturing management, however, 

a production history cannot be obtained by aggregating sensor values and object 

movements. Sensor values have to be retrieved according to the time interval 

when the object existed in the target process. 

1.4 Approaches for Effective Manufacturing Infor­

mation Management 

Based on the above discussions, the author has been tried to build a data manage­

ment model by the following approaches for effective manufacturing information 

management. The positioning of each approach is shown in Fig.l.l. 

Figure 1.1 : Positioning of the Approaches 

1.4.1 An Object Model for Handling the Temporal Property 

In a plant monitoring and control system, an object should correspond to a physi­

cal target like a sensor rather than each sensed value. For example, it is useful for 
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an application to be accessible to sensed values by reading a value field of a sensor 

object, including other static sensor information such as a photograph and a type 

number. This enables to integrate the process control information with facility 

information. 

To provide such an object which integrates the control information with facil­

ity information, it is required to deal with the temporal aspects of the object. The 

value field of the object changes as time goes on. The status of the value field 

should be valid when an application reads the contents of it. 

This requirement can be replaced with how to define the semantics of validity 

of an object with the temporal property. A temporal object model based on the 

temporal validity presented in Chapter 3 defines a valid interval to represent the 

semantics of validity. Each temporal object has its valid interval and the validity of 

a value of the temporal field is evaluated by the valid interval. Evaluation methods 

are different depending on the temporal properties. The model categorizes the 

temporal properties into three types: real-time objects, trend objects and event 

objects. 

1.4.2 Multidimensional Data Utilization Model 

Acquired data from a manufacturing line should be utilized in various aspects for 

different purposes. For example, the result of entire flow of products is useful 

for production scheduling. Sequence of sensed values of each production unit 

for a certain manufacturing unit can be utilized to analyze the cause of parameter 

setting and result of products. Sequence of sensed values for each of processes 

which a production unit passed through helps the detection of the cause of defect 

in a product. 

To support the data utilization by these aspects, multidimensional data utiliza­

tion model should be defined and a mechanism to realize this function has to be 
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designed. The multidimensional view model presented in Chapter 4 defines three 

aspects of data: the plant view, the unit view and the batch view. 

1.4.3 A Tracking and History Management Model 

In order to achieve manufacturing execution, each production unit needs to be 

traced in a plant and appropriate commands are required to be transferred to set 

the manufacturing process. For example, before a steel plate enters a mi11 stand, 

rolling thickness needs to be set, according to a production recipe. 

To realize this function, the organization of a manufacturing line and the be­

havior of materials need to be represented and a system has to trace a manufac­

tured object based on the definition and send appropriate commands to controllers. 

The Time/Place/Object model presented in Chapter 5 defines a framework of 

representing the organization of a manufacturing line and the behavior of mate­

rials. In order to handle the change of object identity, five primitives of places 

are defined according to their functions. Three models of object forms are also 

defined to represent the difference of movement patterns. 

In addition, the multidimensional view model is generalized based on the map­

ping operations among aspects of time, place and object. 

1.4.4 Database Middlewares 

The above models should be incorporated with basic database functions. For 

manufacturing management systems, both of solidity and high functionality are 

required. In particular, high functionality cannot interfere real-time processing 

capability. 

In order to satisfy these two characteristics, database management systems 

with a reduced set of functions in commercial business database systems are ex-

I I 



pected. Furthermore, an appropriate architecture for manufacturing management 

databases should be designed. 
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Chapter 2 

Backgrounds 

2.1 Structure of Plant Monitoring and Control Sys­

tems 

First of all, a physical structure of plant monitoring and control systems is de­

scribed. Fig. 2.1 shows a typical example. In the bottom level, a lot of sensors and 

actuators are equipped in plant facilities. Signals sensed by sensors and driving 

actuators are handled by process 110 units equipped with controllers. Each con­

troller issues drive signals to actuators according to sensed signals and operations 

taken by plant operators on operator stations. Controllers and operator stations are 

connected by a control network. A control network guarantees real-time commu­

nication among connected components by the token ring and distributed shared 

memory mechanism. 

Industrial computers perform the tasks of database management for operator 

stations and business management systems. Operator stations need to provide not 

only the present status of the plant, but also trend histories. In order to provide the 

histories, the industrial computer acquires sensed values from the control network 
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and stores them in a database. 

Furthermore, the industrial computer needs to manage production recipes is­

sued by business management systems. The business management system sched­

ules the production for each lot according to several conditions such as market 

demand or available resource status. After the planned schedules are committed, 

production recipes consisting of production parameters such as the amount of raw 

materials and equipment settings are down loaded to the industrial computers. The 

industrial computer traces each lot in the plant according to events detected by 

controllers and issues appropriate parameters to controllers. 

Controller 

Sensors 
Actuators 

Controller 

Sensors 
Actuators 

Operators 
Stations 

Figure 2.1: A Typical Structure of Plant Monitoring and Control Systems 

As described above, the industrial computers have to provide database man­

agement functionalities with operator stations and business management systems. 

In order to build database management functions, an appropriate data model for 

plant monitoring and control applications is required. In the next section, the 

characteristics of manufacturing processes is described. 
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2.2 Characteristics of Manufacturing Processes 

2.2.1 Classification of Manufacturing Processes 

In the standard on batch control (ANSI/ISA-S88.01-1995)[1], industrial manu­

facturing processes are classified into the following three categories depending on 

how the output from the process appears. 

Continuous processes Materials passes in a continuous flow through processing 

equipment. 

Discrete parts manufacturing processes A specified quantity of product moves 

as a unit between workstations, and each part maintains its unique identity. 

Batch processes Finite quantities of materials (batches) are produced by subject­

ing quantities of input materials to a defined order of processing actions 

using one or more pieces of equipment. 

Continuous processes include gas, oil or water treatment plants, while discrete 

parts manufacturing processes include electronics assembling and car manufac­

turing lines. Batch processes have characteristics of both. For example, in beer 

plants, material flow from a tank to another tank is continuous, but a material 

moves as an identical lot. In other words, batch processes can be seen as contin­

uous processes from micro view, but they can be seen as discrete processes from 

macro view. 

2.2.2 Production Information Management of Manufacturing 

Processes 

In continuous processes, produced materials have no identity since they flow con­

tinuously. Therefore, production information can be obtained from sensed values 
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of sensors equipped with plant facilities. These values are acquired periodically. 

For example, the amount of liquid flow on a pipe is measured by a flow meter and 

acquired every I 0 seconds. Other acquired values can be temperature, humidity, 

liquid level on a tank and so on. 

In discrete parts manufacturing processes, all materials have an identity such 

as a lot number. Production information focuses on parts and their combinations 

rather than manufacturing processes. Identity of materials branches and merges 

as production goes on. 

In batch processes, it is needed to handle both of produced materials and man­

ufacturing processes. Produced materials have their identities like discrete parts 

manufacturing processes, while production information is obtained from sensed 

values. This means that periodically acquired sensed values have to be managed 

integratedly with identities of produced materials. 

The most important issue in batch manufacturing infonnation management is 

the traceability of batches and materials. Fig. 2.2 illustrates this issue. Materials 

and batches are processes by ordered pieces of equipment. Movement of batches 

are not straight forward. A batch may be divided into several batches or some 

batches may be mixed. If a defect is detected in a product, causes of the defect 

should be found and eliminated. 

Which process was wrong? 

Figure 2.2: Traceability of Materials and Batches 

In addition to the above issue, production recipes need to be managed. A 
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recipe includes the necessary information to execute the production, such as the 

amount of ingredients, process values such as temperature and density. Each 

recipe corresponds to each manufactured unit. As production goes on, control 

commands have to be transfered to controllers according to the contents of the 

corresponding recipe. 

2.3 Integration of Control Systems with Enterprise 

Systems 

The standard on enterprise and control integration model, ISA SP95[2], defines a 

system hierarchy of manufacturing systems as illustrated in Fig.2.3. 

Level4 

Level 3 

Business Logistics Systems 
Plant Production Scheduling 

and Operational Management 

Figure 2.3: System Hierarchy of a Manufacturing System 

The standard defines the interface to interact between the business logistics 

systems (level4) and manufacturing control systems (level 3), while the industrial 

computer takes a role of the level 3 and level 2. Each level of the layer performs 

the following activities. 

• Level4 
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- Production scheduling for a long span. 

- Plant coordination and operational data reporting for a plant leveL 

• Level 3 

- Production scheduling for a short span according to the schedule es­

tablished by the level 4 activities. 

- System coordination and operational data reporting for a line level. 

• Level 2 

- Execution of manufacturing based on the schedule established by the 

level 3 activities. 

- Macro level (process level) tracking of materials. 

- Production data reporting for each production unit. 

• Level 1 

- Feedback loop controls for sensors and actuators. 

- Micro level (sequence level) tracking of materials. 

• Level 0 

- Control tasks taken by sensors and actuators with some intelligence. 

In order to realize the level 3 and level 2 functions, database functions for 

reforming the data between enterprise level and control level as well as storing 

recipes and production results are required. 
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2.4 Basic Models for Handling Temporal Data 

2.4.1 Temporal Consistency 

In temporal databases, temporal consistency has to be satisfied in addition to the 

logical consistency. Logical consistency can be satisfied by scheduling the execu­

tion of concurrent transactions to satisfy the serializability. Temporal consistency 

requires the validity of data on the time axis. In [22], temporal consistency is 

defined as follows. 

Absolute consistency Let CT be the current time. For data d whose time stamp 

is dvt and absolute time interval is a vi( d), the data d satisfies absolute con­

sistency if and only if: 

(CT- dvt) ~ avi(d) 

Relative consistency For a data set R, the retrieved data from R satisfies relative 

consistency if and only if: 

v d, d' E R, ldvd- d~dl ~ rvi(R) 

where dvd is a time stamp of data d and rvi(R) is relative valid interval of a 

data set R. 

The absolute consistency means that the data should be fresh enough. The 

freshness for data d is represented by avi( d). On the other hand, the relative 

consistency means that when data is derived from a set of data, deriving data in 

the set should be similar age. The similarity of a data set R is represented by 

rvi( d). 
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2.4.2 Semantics of a Time Stamp 

Semantics of a time stamp is generally discussed in the studies [21]. There are 

two types of meaning defined as follows. 

Valid time: The time stamp is regarded as the time when the fact gets true in the 

real world. 

Transaction time: The time stamp is regarded as the time when the fact is ac­

quired in the system. 

In general database applications, these two types have a significant difference. 

But in manufacturing management systems, the time stamp based on the valid 

time is difficult to realize, because sensors have no clock to associate values with 

a time stamp. Therefore transaction time is regarded as valid time by assuming 

that sensor values on a control network are current and acquired data is stored in 

a database in an enough short period. 

2.4.3 Semantics of Now 

In temporal databases, the variable "Now" is used to represent the current time, 

but this includes a lot of ambiguity. The semantics of "Now" is discussed in [28] 

in detail. The ambiguity originates in using the variable "Now" in the valid time 

interval of a tuple. On the contrary, the variable "Now" is not stored in manu­

facturing management databases. Instead, the value is evaluated by the absolute 

consistency described above. 
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Chapter 3 

A Temporal Object Model Based on 

Temporal Validity 

3.1 Temporal Properties of Objects in Plant Control 

Systems 

In a plant control system, there are two types of data to be handled. One type of 

data is static data whose value doesn't change so frequently, such as equipment 

information. The other type of data is dynamic data whose value changes depend­

ing on the status of the plant. An example of the latter type is a sensed value of 

water temperature in a tank. Although there is such a difference, these two types 

of data are in connection with each other. For example, information about a tank 

such as a name and the location can be the static data, while temperature or level 

of water in the tank can be the dynamic data. In order to build a plant monitoring 

application which has the capability such that when an user clicks a tank in a plant 

map then the graph of temperature and level of water in the tank will be shown, 

these two types of data need to be managed integratedly. 
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Basically, dynamically changing data is acquired through a sensor and stored 

to a database periodical1y. A schema for storing the data is a relation including a 

time stamp attribute and values for data items, as shown in Fig. 3.1. Every time the 

data is acquired, a new tuple is inserted to the relation. In usual implementations, 

the maximum number of tuples are fixed and the oldest tuple is deleted before a 

new tuple is inserted, since a plant is operating all of the day and the size of the 

table monotonously increases. 

Time stam_Q item I 

2000/09/19 14:1 0:00 121 
2000/09/19 14:10:05 125 
2000/09/19 14:10:10 127 
2000/09119 14:10: 15 129 

item 2 

65 
63 
60 
62 

item 3 

75 
78 
74 
72 

item 8 

218 
220 
217 
220 

Figure 3.1: A Schema Representing Dynamically Changing Data 

As described above, this kind of dynamically changing data needs to be man­

aged integratedly with the static data. To achieve this requirement, there are two 

technical issues to be solved. The first one is on the architecture to integrate the 

dynamic data handling with static data handling. Since dynamic data handling re­

quires real-time capability, it should not be interfered by other heavy tasks in static 

data handling. The second one is on an object model which has the capability of 

representing dynamically changing data as an object. 

In the succeeding sections, these two issues are discussed. 
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3.2 A Database Architecture to Integrate Control 

Systems and Management Systems 

A plant system is organized by a control system and a management system. In a 

control system, computers, controllers, sensors and actuators are connected each 

other by a real-time network. A real-time network is realized by a kind of a dis­

tributed shared memory called the reflective memory in order to assure real-time 

communication. Each node connected to the reflective memory has a memory 

representing the network space and the write access to a memory of a node is re­

flected to the memories of all other nodes by a hardware mechanism. On the other 

hand, in a management system, business applications such as production man­

agement, quality management and operation management are realized in work­

stations, personal computers and mainframes. These systems are connected by a 

general purpose network like the Ethernet. In current plant systems, computers 

and controllers in a control system are also connected to the network in a manage­

ment system to communicate each other. 

A Database system in a plant system has two roles. One is data acquisition and 

the other is data provision. The function of data acquisition has to read the con­

tents of the reflected memory and store them to disks with real-time constraints. 

Real-time constraints mean that tasks should be completed by a deadline. On the 

other hand, the function of data provision has to re-organize the acquired data in 

order to provide comprehensible representation with plant operators. It is difficult 

to realize these two functions in one database system because data provision tasks 

may interfere the real-time tasks of data acquisition. For this reason, data trans­

fer between a control system and a management system has been achieved by a 

gateway which performs batch based communication. As a result, a management 

system cannot use 'fresh' data in a control system. Furthermore, data transferring 

23 



mechanism should be realized independently in both systems for each application. 

In order to solve the problems above, a database system architecture to inte­

grate a control system and a management system should be considered. Data in 

both systems can be accessed by the same model in the integrated architecture. In 

addition, a management system can access 'fresh' data in a control system using 

this architecture. 

3.2.1 Two Layered Architecture 

In order to integrate these two systems, a two layered architecture is proposed 

as shown in Fig. 3.2. To prevent the business application tasks from interfering 

time-critical data acquisition, a kind of buffers is required. The two layered ar­

chitecture is realized by 'Real-Time Data Server (RTDS)' which acquires plant 

data and 'Real-Time View Server (RTVS)' which provides the acquired data with 

applications. These two servers are interconnected by the ring buffer mechanism 

and temporal objects with temporal validity. 

Structures and functions of these servers are described below. 

3.2.2 Real-Time Data Server 

Since the detail structure and functions of the RTDS[29][30][31] are out of scope 

of this thesis, only an outline is presented. The RTDS has the following data 

provision functions. 

• Periodically transferring the latest acquired data. The data has a time stamp 

which represents the time when the data is acquired. 

• Retrieving stored data according to a specified time interval. 

• Reporting events detected from acquired data. 
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Application 

Real-Time 
View Server 

Client Cache 

-------------------------------------H---

1 Server Cache I Event 
Queue 

Application 

Client Cache 

PCs 
Workstations 

Information Network 

Real-Time 
Data Server 

Control Network 

Sensors, Actuators 

Figure 3.2: Two Layered Architecture for Plant Monitoring Database Systems 

The RTDS is realized by the multi-processes and multi-threads architecture on 

a kind of UNIX with real-time extension. There are the following two major 

processes in the RTDS. 

Acquisition Process One thread of the acquisition process periodically reads a 

set of data from the control network, gives a present time stamp and writes 

them to a ring buffer on a main memory. It also checks the contents of ac­

quired data based on pre-defined conditions and detects the events. Another 
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thread of the acquisition process stores data on the ring buffer to a tempo­

ral data storage on a disk. The acquisition process exists for each of data 

acquisition periods. 

Provision Process There are two threads in the provision process. One trans­

fers to clients the latest acquired data periodicaJly or the detected events. 

The other receives requests of retrieving data from clients and provides the 

retrieval results. 

Execution of these processes and threads are scheduled based on the "Rate Mono­

tonic Scheduling Analysis"[l8] which assigns higher priority to tasks of shorter 

execution periods. In addition, although the ring buffers are shared by the acqui­

sition process and the provision process, the mutual exclusion among these pro­

cesses are achieved by the priority inheritance protocol. By these mechanisms, 

the real-time processing of the RTDS is assured. 

3.2.3 Real-Time View Server 

The RTVS is a database server which has the capabilities of handling plant data 

with temporal aspects in the RTDS as objects virtually, in addition to the general 

persistent object management. In this thesis, this virtual object for handling plant 

data is called a 'temporal object.' The RTVS is realized by the multi-process 

architecture on a standard UNIX operating system. The RTVS has the following 

functions and mechanisms. 

• The RTVS has a disk which stores persistent objects and meta-data such as 

class definitions. The contents of temporal objects are not stored in the disk 

of the RTVS and only the type definition is managed, because the contents 

are transfered from the RTDS. In the RTVS, temporal objects are held in 

the server cache and the client cache described later. 
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• The RTVS has the server cache where the recently accessed persistent ob­

jects and temporal objects are placed. The RTVS has also the c1ient cache 

which improves the performance of multiple accesses to the same objects 

in one transaction. Applications access to objects through the client cache. 

Objects copied to the client cache from the server cache are locked to as­

sure the serializability among multiple transactions. When a transaction 

commits, updated objects in the client cache are written to the server cache 

and all locks are released. 

• Temporal validity of temporal objects in the client cache is maintained by 

the concept of the valid interval. Details are presented in 3.3. 

• In addition to links among persistent objects, links to temporal objects are 

supported. A link to a temporal object is called a temporal link which has 

the parameters for temporal validation. Details are presented in 3.3.4. 

• The RTVS has the event queue to pass the detected events to applications. 

Transactions which are invoked according to the event types can be regis­

tered. Details are presented in 3.3.5. 

In this architecture, applications access to objects through the client cache. 

Therefore, objects in the client cache have to be in the valid status which applica­

tions expect. The status of objects in the client cache is managed by the concept 

of temporal validity proposed in the following section. 
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3.3 Definition of Temporal Objects and Their Tern-

poral Validity 

A temporal object is defined as an object which has the temporal property. A 

persistent object in conventional object-oriented database systems represents only 

the present status of the target defined as an object, therefore no temporal aspects 

exist. However, in case of representing an instrument in a plant as an object, the 

history of status changes of the object has significant meanings. 

In this thesis, temporal objects are classified into the following three types 

according to the characteristics of them. 

Real-time Object: The present status of a target. 

Trend Object: History of status of a target. 

Event Object: Event occurrence of a target. 

Concepts of each temporal object are shown in Fig.3.3. Temporal objects have to 

be in valid status from the view point of temporal requirements of applications. 

As described before, the RTVS obtains temporal data from the RTDS and 

provides them as encapsulated objects. Since the objects are placed on the client 

cache, the status of the cached objects has to be temporally valid. For example, 

if an object has an attribute representing a sensed temperature, the object has to 

hold the correct value of the present temperature. This correctness of an object 

is called temporal validity and the procedure for making the object valid status is 

called temporal validation. Definitions of temporal validity and descriptions of 

temporal validation for each type of temporal objects are presented below. 
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Temporal objecl model 

~~~ 

Time 

Figure 3.3: A Concept of the Temporal Objects 

3.3.1 Real-time Objects 

Real-time objects represent the present status of their targets such as temperature 

of a boiling tank. However, it is not realistic to assure that the state of the object 

strictly represents the present status of the target, because the state of the target 

changes continuously. In order to define the semantics of present state of the 

target, a concept of valid interval is introduced. 

Definition 3.1 Temporal validity of real-time objects 

A time stamp t and a valid interval tv are associated with each of real-time objects 

stored on the client cache. If present time stamp tP satisfies tP < t + tv, the real­

time object is temporally valid. 

The procedure for temporal validation is achieved when an application re­

quests a value of a real-time object. Temporal validation is achieved in the follow­

ing steps. 
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Step 1: Examine whether the real-time object is temporally valid or not, accord­

ing to the definition described above. 

Step 2: If the real-time object is temporally valid, exit the procedure. 

Step 3: If the real-time object is not temporally valid, the newest value is re­

quested to the server and the value of real-time object on the client cache is 

updated. 

3.3.2 Trend Objects 

A trend object represents a series of the status of the target for time points at even 

periods in a time interval, such as temperature values of a boiling tank from 12:00 

to 13:00 for every 1 minutes. 

Definition 3.2 Temporal validity of trend objects 

Start time point t 5 , end time point te, period p and valid interval tv are associated 

with each of trend objects. A trend object stores values for time points { t 5 , ts + 
p, t8 + 2p, ... , te}· When start time point tsv• end time point tev and Pv are specified 

as validation parameters, if each time point ti = t sv + i · Pv ( i = 0, 1, 2, · · · , l ( tev -

tsJ/Pv)J satisfies t 5 +i·p < ti < (ts+i·p)+tv, the temporal object is temporally 

valid. 

A temporal validation procedure for trend objects is achieved by the following 

steps when trend values are requested. 

Step 1: Examine if the trend object is temporally valid based on the above defi-

nition. 

Step 2: If valid, exit the procedure. 
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Step 3: If not valid, values for each time points specified by validation parameters 

are requested to the server. 

Examples of temporal validation parameters which does and doesn't satisfy 

the temporal validity are shown in Fig.3.4. Utilizing this mechanism, when trend 

values from 1 0:00:00 to 1 0: 10:00 for every 1 0 seconds with 5 seconds of valid 

interval are stored in the client cache, the trend object is temporaiJy valid for a 

request with validation parameters such as start time point 10:00:02, end time 

point 10: 10:02 and period 10 seconds. There is no need to communicate between 

a client and a server in this case. 

Temporally invalid [:~;~::::::::::::~~~*P.:~:.:::::!~~?-e:~~::::: ......... ~e~:i 
Temporally valid fi.~~;··I······(;;;+jj;:j····(.~;;:;.2p·~~-j-············--i~·:·j] 

. ..•................•................•................. ...•.. 

E E E _p_ 
ts ts+p ts+2p te Time 

Figure 3.4: Temporal Validity of the Trend Object 

3.3.3 Event Objects 

An event object reports the change of status of the target with associated data items 

such as a lot number of a thrown raw material. Event objects are also accessed via 

a client cache from applications. When an application accesses an event object, 

the application should be informed whether the event object includes a new event 

occurrence or not. Therefore an execution control mechanism is required to decide 

whether the application can read the contents of the event object or not. When 

an application is not permitted to read the event object, it should be blocked or 

informed an error. This is also handled by the temporal validity for event objects. 
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Definition 3.3 Temporal validity of event objects 

Let event object Oe handle a subset Es of a set of events E which occurs in a target 

plant. When an event e E Es exists in a event queue and e can be stored to an event 

object, the event object satisfies the temporal validity. If an event e E Es doesn't 

exist in an event queue, the event object doesn't satisfy the temporal validity. 

An event queue is a buffer to store events in the arrival order as shown in 

Fig.3.2. The temporal validation procedure for event objects is achieved by the 

following steps. 

Step 1: Examine if the event object is temporally valid based on the above defi­

nition. 

Step 2: If valid, exit the procedure. 

Step 3: If not valid, the procedure is blocked until the event object becomes valid 

or an error is returned to an application. Which way chosen can be specified 

by a parameter of the validation procedure according to application's policy. 

This mechanisms can be used to realize an event-driven application such as 

invocation of ECA rules. 

3.3.4 Temporal Link 

In general object-oriented database management systems, a link to an object is 

represented by an object identifier of the linked object. When a link is navigated, 

an object identifier associated with the linked object is evaluated and the linked 

object is retrieved. For temporal objects, a link to a temporal object can also be 

handled and the linked temporal object can be represented by an object identifier. 

However, when a link to a temporal object is navigated, the target temporal object 
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has to satisfy the temporal validity. Therefore the temporal validation procedure 

has to be included in a method for navigating links. 

To support the navigation function to temporal objects, the temporal link is 

provided. When the temporal link is navigated, a linked temporal object is vali­

dated to satisfy the temporal validity. 

The temporal link is classified into the following three types according to the 

type of a linked temporal object. 

• Real-time link 

Temporal link to a real-time object. 

• Trend link 

Temporal link to a trend object. The trend link has the following three 

parameters for the temporal validation procedure: the start time point tsv 

and the end time point tev of the time interval and the time period Pv. 

• Event link 

Temporal link to an event object. 

Utilizing the temporal link, informations such as product data or facility data 

represented by persistent objects can be linked with control informations such as 

process values. 

3.3.5 Active Mechanism 

In addition to the passive function for applications to read the status change in 

a plant, the event object has the capability of realizing the active mechanism to 

invoke the pre-registered methods according to the type of the status change. The 

active mechanism is also called the ECA mechanism, that is, when an 'event' 

occurs, if a 'condition' is satisfied, then an 'action' is taken[16]. 
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The active mechanism supported by this temporal object model corresponds 

to the following sequences. 

I. Interruption by the periodical timer for invoking data acquisition thread is 

regarded as an event. 

2. The acquired data is checked whether it satisfies an pre-defined inequality 

or not. The inequality is regarded as a condition. 

3. A transaction associated with an event is regarded as an action. 

Note that the execution model is categorized to the separate mode[8] and these 

transactions are executed on the different CPU s, since the triggering transaction 

corresponds to the data acquisition thread in the RTDS while the triggered trans­

action corresponds to an application method running on the RTVS. Although a 

transaction on the RTVS may request to start the data provision thread, the data 

provision process never interferes the data acquisition process by the benefit of 

the RTDS architecture. In this way, the non real-time transactions running on the 

RTVS don't affect the real-time tasks in the RTDS. In addition, the event queue 

for transferring events from the RTDS to the RTVS takes a role of a buffer, con­

sidering that execution of transactions on the RTVS may be delayed. 

3.4 Implementation of the Real-Time View Server 

3.4.1 Architecture of the RTVS 

In this section, implementation of the RTVS is described. The RTVS is imple­

mented on a POSIX compliant operating system. It uses the shared memory, 

semaphores and message queues which are supported by the operating system for 

inter-process communication. 
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The architecture of the RTVS is shown in Fig.3.5. The RTVS can serve mul­

tiple clients simultaneously by multi-process architecture. A child process of the 

RTVS is assigned to each client. Child processes share the server cache which 

stores recently accessed objects. The server cache is mutually excluded by the 

semaphore. The server cache is also shared by RTDS connection child processes. 

The RTDS connection child process receives present data from the RTDS com­

munication process and stores them to the server cache. The RTDS connection 

child process also receives event data and sends it to the message queue. 

Applications utilize the functions of the RTVS by the RTVS library functions. 

The RTVS library is linked with application program and runs in the same context 

as the application. An application accesses to objects on the client cache. Tem­

poral validity of objects on the client cache is maintained by the temporal object 

model described before. 

3.4.2 Persistent Object Management 

As well as ordinary object-oriented database management systems, the RTVS has 

functions for object persistence. Without object persistence, objects allocated by 

an application are discarded when the process of the application terminates. To 

make applications accessible to allocated objects across lifetimes of the applica­

tion process, contents of the objects have to be stored to in-volatile memory before 

the application process terminates and restored to the main memory when the ap­

plication accesses to the same objects on its next lifetime. An object persistency 

mechanism achieves these tasks. 

Prior to creating a new persistent object, schema for objects need to be defined. 

In the RTVS, a schemata is defined by specifying a schemata name and an ordered 

set of attributes. Each attribute is represented by a type and a name. The size of an 

attribute can be derived from the attribute type. The sum of sizes of all attributes 
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Figure 3.5: Architecture of the RTVS on a POSIX Compliant OS 

makes an object size. 

An application can create a persistent object by calling a library function with 

a schemata name. The RTVS allocates a required area in the server cache and 

the client cache according to the object size, assigns a new object identifier and 

returns a reference pointer to the application. Then the application can access to 

the object through the reference pointer. 

When an application issues a library function call for the commit request, 

the contents of a persistent object is stored to a disk at the time. Updates on 

the persistent object is done through the reference pointer in the client cache, so 

newest value of the object only resides in the client cache. When an application 

commits a transaction, contents of updated objects are transferred to the server 

cache and also written to a disk. 
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At the next lifetime of the application, persistent objects can be accessed by 

their object identifier. Object identifiers can be obtained by conditional search 

and link navigation. When an application requests to access to an object by its 

object identifier, the RTVS determines the location of the object in a disk, reads 

it and stores to the server cache. Then the contents of the object on the server 

cache are transferred to the client cache and the reference pointer is returned to 

the application. 

The RTVS also has an indexing mechanism by B-Tree. Conditional search for 

attributes with indices is achieved by B-Tree traversal. 

3.4.3 Temporal Object Management 

A temporal object in the RTVS is represented as an extension of a normal persis­

tent object. However, there are some limitations. First, a schemata of a temporal 

object has to consist of a time stamp attribute and value attributes. Intuitively, a 

schemata of a temporal object is like an example shown in Fig.3.1. Practically, a 

schemata of a temporal object is defined by choosing one of schema on the RTDS. 

Schema on the RTDS can be defined only in the form satisfying this limitation. 

Secondly, a temporal object has to be validated every time an application 

accesses, since an application accesses to an object on the client cache directly 

through a reference pointer. Validation is done by calling a library function. 

Thirdly, a temporal object cannot be updated. Update requests to a temporal 

object by an application fails with an error. 

Fig.3.6 shows a mechanism for temporal object management. An object has 

a header part and a body part. The header part includes internally used data for 

object handling, such as object identifier and cache control flags. A temporal 

object has an extensional header for temporal validity management in the client 

cache. A reference pointer passed to an application is an address of the body part. 
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The body part can be accessible based on a structure definition. 

Application Source Code 

typedef struct { 
TimePoint timestamp: 
int level; 
int temperature; 

} Tank; 

Tank* tank!; I 

Reference Pointer I 
Client Cache Server Cache 

/ '\ 
Temporal Object Temporal Object 

header of persistent object header of persistent object 
(object ID, cache control, etc.) (object ID, cache control, etc.) 

extensional header for a temporal object 
(valid time information) ----- body of a temporal object 

body of a temporal object 
~ 4 

- Transferred I 
• 
I 

fdates 
EventQueuA 

Event Reported 
I 

I I 
RTDS connection 

Figure 3.6: Temporal Object Management Structure 

Management methods for each temporal object type are different from each 

other. 

3.4.3.1 Real-Time Object 

As described before, a real-time object represents the present status of a target. 

The present data is sent from the RTDS to the RTDS connection periodically. The 

RTDS connection updates the corresponding body part on the server cache when 

receives the present data. By this mechanism, the server cache always holds the 
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newest data. 

On the client cache, the extensional header for a temporal object holds a valid 

intervaL When a real-time object is validated, a time stamp t of the real-time 

object in Definition 3.1 is regarded as a value of a time stamp attribute. Valid 

interval tv is held in the extensional header. When the evaluation result of a real­

time object is temporally invalid, the newest data is requested to the server and the 

contents of the server cache is transferred to the client cache. 

3.4.3.2 Trend Object 

A trend object represents a series of the status for a certain intervaL A schemata 

for a trend object represents a structure of a scene in a series. Therefore, the body 

part of a trend object is represented by an array of scenes composing a series . 

The start time point ts and the end time point te in Definition 3.2 corresponds 

to the value of the time stamp attribute of the first array element and the last array 

element, respectively. The period p corresponds to the difference of the value of 

the timestamp attribute of adjacent two scenes. Valid interval tv corresponds to 

the valid interval held in the extensional header. 

The start time point tsv, the end time point tev and the period Pv for validation 

arguments are specified by parameters of the validation library function. If a trend 

object doesn't satisfy the condition of temporal validity, the corresponding scenes 

are requested to the RTDS and the client cache is updated. Since the contents of 

a trend object is organized by an array, the size of a trend object varies depending 

on the number of scenes. 

3.4.3.3 Event Object 

Management of an event object is rather different from those of real-time and 

trend objects. As well as a real-time object, a reference pointer to access to an 
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event object points to the body part of an object in the client cache. When an 

application requests the temporal validation for an event object, the first element 

of the event queue is extracted and stored in the body part of an event object. If the 

event queue is empty, the execution of an application is controlled by application's 

specification. If blocking mode is specified, the validation procedure is blocked 

until an event is stored in the event queue. If non-blocking mode is specified, the 

validation procedure returns a notification. This mechanism is realized easily by 

utilizing the standard OS function for the message queue access. 

3.4.4 Link Management 

A link to another object can be realized by storing a reference of the target object. 

In normal programs, the reference of an object can be a pointer representing an 

address in the process memory space. For dealing with persistent objects, how­

ever, the pointer cannot be used because the address dynamically changes when 

the object is loaded from a disk to memory. Therefore, an object identifier is used 

to represent a reference of the object. 

Fig. 3. 7 shows a mechanism for realizing a temporal link. The RTVS provides 

a special type 'Link' to store the object identifier of a linked object. The object 

identifier is represented by a pair of a type name and a serial number of created 

objects. In the figure, a normal persistent object with object identifier 'Equip, 11' 

has a link to a real-time object 'Sensor, 12' . To get a linked object, the RTVS pro­

vides a library function 'navigateJink()'. In this function, an object identifier of 

'Link' attribute is evaluated and a target object is retrieved by the object identifier. 

40 

Normal persistent object 

Obj . ID: Equip, 11 
char name[8J ; 
char location[ I 6]; Real-time object 
Link sensor; 

navigate_link() 
Obj. ID : Sensor. 12 
Valid interval : lOsec 

int value; 

Figure 3. 7: Link Management 

3.5 Summary 

In this chapter, a temporal object model is proposed to deal with temporal data in 

plant monitoring systems. In this model , temporal objects are classified into three 

types depending on the temporal characteristics. To define the correct status of a 

temporal object, the temporal validity is defined based on the valid interval. 

A database management system with the proposed temporal object model is 

realized on a UNIX compliant OS. 
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Chapter 4 

A Batch Manufacturing Information 

Management System 

4.1 Manufacturing Information Management for Batch 

Processes 

In the previous chapter, the temporal object model for dealing with temporal as­

pects of plant targets has been proposed. The model has the ability of representing 

historical data of sensed values as an object. This feature enables the integration 

of dynamically changing sensor data with other kinds of data such as equipment 

information and product information. 

In this chapter, the application of the temporal object to batch manufacturing 

information management is presented with a novel model for effective utilization 

of production data. 

At first, required functions of manufacturing information management for 

batch processes are analyzed based on the standard of batch control described 

in [ 1 ]. 
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4.1.1 An Outline of Batch Processes 

A manufacturing process consists of a set of units of manufacturing equipment 

and produced products. A manufacturing process can be classified into three types 

according to its properties, as described in 2.2.1. From this classification, batch 

processes have characteristics of both of continuous processes and discrete parts 

manufacturing processes. 

In real batch processes, a batch is identified from another batch by a batch 

identifier such as a batch number. However, this batch identifier may change as the 

batch moves through a batch process. For example, the batch number is changed 

after mixing or dividing batches. Another aspect of batch processes is modifi­

able production procedures. Batch production sequence of units of equipment is 

subject to be changed according to batch kind or production results. 

For these characteristics of batch processes, high functionality is required in 

batch manufacturing information management systems compared with continuous 

processes or discrete parts manufacturing processes. 

4.1.2 Requirements for Batch Manufacturing Information Man­

agement 

Based on the characteristics of batch processes described above, the following 

functions are required for batch manufacturing information management systems. 

• Relationships between historical process values acquired from each unit of 

equipment and batches produced by some units of equipment should be 

retrieved easily. 

• Batch history such as the sequence of used units of equipment and opera­

tions of mixture or division of batches should be traced easily. 
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• Modification of production procedure or addition of some new pieces of 

equipment should be performed easily. 

To satisfy these requirements, a batch manufacturing information management 

model is proposed in the next section. 

4.2 Multidimensional Views 

As described before, relationships between historical process values periodically 

acquired from each unit of manufacturing equipment and batches produced by 

passing over some units of manufacturing equipment should be provided in com­

prehensible forms in batch manufacturing processes. The manufacturing informa­

tion management system described here approaches this requirement by generat­

ing multidimensional views from acquired data from a manufacturing process. 

Batch processes can be regarded that products move through multiple units of 

equipment as production goes on. Fig. 4.1 shows a concept of the multidimen­

sional views. Suppose that a batch process is in the cube. The batch process can 

be seen from the three sides. At first, when it is seen from the top side, overall 

batch movement through units of equipment can be observed. Secondly, when 

it is seen from the right side, production status of batches for a specific unit of 

equipment can be obtained. Thirdly, from the left side, production status for a 

specific batch moving through units of equipment can be traced. 

These primitives are orthogonal because a real plant is three dimensional and 

a cube can be seen from three sides (the opposite side of each side can be regarded 

as the same). Therefore, the following three views are provided in this system. 

• Plant View 

The overall status of a batch process is surveyed by representing "when, 

where and what." 
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Plant View 

1 

~~ 
~<> 

/ 
Batch View 

~ 
Unit View 

Figure 4.1: A Concept of the Multidimensional Views 

• Unit View 

This view focuses on one specific unit of equipment and represents "when, 

what and how." 

• Batch View 

This view focuses on one specific batch and represents "when, where and 

how." 

Using the Plant View, operators can make a production plan which lets a batch 

process run efficiently. Using the Unit View, influence to batches can be analyzed 

in case of faults of a specific unit of equipment. Using the Batch View, which unit 

of equipment has a problem can be detected when a defect is found in a certain 

batch of products. 

Hereafter, assuming that there are m units of equipment U = { u1, Uz, · · · , Urn} 

and n batches B = {b 1 , b2 , • • · , bn} have been produced, formal definitions for 

each view are described. 
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4.2.1 Plant View 

The Plant View represents batches which have been produced on each unit of 

equipment during a specified time interval. The Plant View is defined as follows. 

• Specified condition parameters for the Plant View are 

- a time interval [ts, te) 

- a period tP 

• Plant View PV is a set of plant view elements pvt; for the time ti. pvt; Is 

represented by PV = {pvt; lti = ts + (i- l)tp, 1 ~ i ~ f(te- ts)/tp l }. 

• Plant view element pvt; forti includes the following attributes: 

- a time stamp ti. 

- batches b~1 , b~2 , • • • , b~m which have been produced on equipment unit 

u 1, u2, · ··,Urn, respectively. 

4.2.2 Unit View 

The Unit View represents production status for each of batches which have been 

produced by a specific unit during a specified time interval. The Unit View is 

defined as follows. 

• Specified condition parameters for the Unit View are 

- a unit of equipment u E U 

- a time interval [ts, te) 

• Unit View UV is a set of k unit view elements uvb~u,ts.te l which are repre­

sented by UV = { uvb~u , t 5 .ted\ib;u,ts,te) E B(u,ts.te) }. B(u,ts,te) is a subset of B 
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such that it includes k batches which have been produced during the time 

interval [ts, te) on the unit u. 

• Unit view element uvb ~ u , t 5 ,t~ l (1 ~ i ~ k) includes the following attributes: 

- a batch identifier brD· 

- the start timet~ and the end timet~ of production of batch b~u ,ts, t e) on 

the unit u. 

- History of process values H~~ ,t ~ acquired from the unit u during time 

interval [t~ , t~). Time interval [t~ , t~) represents a period when batch 

b(u,ts.te) existed in unit u. 
t 

4.2.3 Batch View 

The Batch View represents production status for each of equipment units which a 

specified batch has moved through. The Batch View is defined as follows. In this 

definition, the term derived batch represents a batch which is recursively mixed 

or divided to the specified batch. 

• Specified condition parameter for the Batch View is 

- a batch bE B 

Generally, a batch specified here assumed to be a final product batch, not an 

intermediate batch before mixture or division. 

• Let k derived batches from the batch b be Bb = { b~ , b~ , · · · , b~}. 

• The Batch View BV is a set of l batch view elements bvu~ which is repre­

sented by BV = { bv
11

b lv u~ E Ub}. Ub is a set of units of equipment in which 
t 

at least one batch in Bb has been produced. 
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• The batch view element bv11b includes the following attributes: 
l 

- a unit identifier ur D· 

. . (b ub) (b u b) (b ub) 
- umt vtew elements uvb(b, u f l for each of h batches b1 ' l , b2 ' l , • • • ~ bh · l 

q 

which have been produced in u~ . 

4.3 A Manufacturing Management Data Model 

To generate the three types of views described above, batches need to be traced 

and histories of batch movement through several equipment units need to be stored 

by detecting the batch movement. Therefore, a flexible data model is required to 

represent the complex manufacturing process of batch processes. As described 

before, produced batches move through units of equipment as production goes 

on. In addition, batches may be mixed to one batch or a batch may be divided to 

multiple batches during the production process. To represent these special proper­

ties in a database, the object-oriented data model seems to be appropriate because 

it regards a target as an object and encapsulates the status and actions in the object. 

4.3.1 Object Classes 

The following object classes are defined for the batch tracing mechanism. 

• Trend Object 

This object handles the sensed physical values from a unit of equipment and 

represents a history of physical values for the unit of equipment. 

• Event Object 

This object handles status changes in a manufacturing process and repre­

sents batch movement in the manufacturing process. 
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• Batch Object 

An instance of this object class corresponds to one batch in a real manufac-

turing process. The following attributes are included in this object: 

- a batch identifier (such as a batch number). 

- the start time stamp and the end time for each of equipment units 

which represent the time when the batch enters and leaves, respec-

tively. 

- links to other batch objects of batches preceding this batch in mixture 

or division. 

• Unit Object 

An instance of this object class corresponds to one unit of equipment in a 

real manufacturing process. The following attributes are included in this 

object: 

- current batch 

A link to a batch object which is processed on this unit. 

- finished batches 

Link(s) to batch object(s) which have finished to be processed on this 

unit and are waiting for processing by the successive unit. 

- trend data 

A link to a trend object which represents a history of process values of 

this unit. 

4.3.2 A Data Structure 

Objects described above are organized as shown in Fig. 4.2. A unit object has a 

link to a batch object which is processed. An event object reports a batch move-
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ment event to a corresponding unit object. Links among batch objects are set when 

batch mixture or division occurs. 

~vent Object 

Unit Object (U 1) Unit Object (U2) 

Trend data -- Trend data --. 
Current Finished Current Finished 

Trend object 

Batches Batches Batches Batches ;;];j IU 
Batch object 

- Unit Object (U3) 

BatchNo: R981 011003 Trend data 

U l_start_time: Current Finished • 
Ul_end_time: Batches Batches 

Trend object 

;;];j U2_start_time: ~ 
U2_end_time: Batch object 

BatchNo: R981011002 
Trend object Ul_start_time: 

;;];j U l_end_time: 
U2_start_time: 
U2 end time: 

Figure 4.2: A Data Structure for the Batch Tracing Mechanism 

This data structure enables to virtually represent the real manufacturing status 

and trace the batch movement which is subject to be changed at production time. 

Furthennore, adding a new unit of equipment can be reflected by inserting a new 

instance of the unit object. Adding a new type of produced products can also 

be realized by defining a new derived class of the batch object. Therefore, the 

complex production process of batch processes can be represented flexibly in this 

data model. 
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4.4 Implementation of the View Generation Library 

4.4.1 Plant View 

Fig.4.3 shows the structure of the Plant View. A batch which has been produced 

at each time point is associated for each of units of equipment. 

Time Ul u2 u, 

t.,. bt I 
Ul 

bt I 
u2 

bt I 
um 

ts+ tp bt2 
Ul 

bt 2 
u2 

bt2 
um 

l,v + (i-1) tp bt i 
Ul 

bl; 
u2 

bt i 
um 

ts+(l-l) tp bt I 
UJ 

btl 
u2 

bt I 
um 

Figure 4.3: The structure of the Plant View 

For each time point ti = ts + (i- 1)tp (1 ::; i:::; f(te- ts)/tp l) which can be 

calculated based on specified parameters of the Plant View, a time interval [ts, te) 

and a period tp and each unit of equipment u1 ( 1 ::; j :::; m), a batch b~j which has 

been being produced by unit Uj at the time ti can be retrieved by the procedure 

shown in Fig.4.4. 

In the above procedure, b.u1_start and b.ui_end are the start time and the end 

time when the batch b has been produced by the unit uj. The Plant View can be 

obtained by performing this procedure for all ui and all ti. 
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bti =NULL 
Uj 

for (b = 61, b2 , · · ·, bn) { 

} 

if(b.ui_start:::; ti < b.u1_end) { 

bti = b 
UJ 

} 

Figure 4.4: An Algorithm for Obtaining a Cell of the Plant View 

4.4.2 Unit View 

Fig. 4.5 shows the structure of the Unit View. In the Unit View, for each batch 

which has been produced by the specified unit u during the specified time interval 

[ts, te), the batch object and the status history of u during the production of the 

batch are provided. 

.. 
Batch No.: b~b 

Unit View Element 
Unit u Start Time: ts(u,bi) 

uvbl !-- Status History 
Unit u End Time: te(u,bl) ~---

I I S (t (u,bl) t (u,hl)) I I 

uvbk 
tatus: St s , e __ 

u 

Batch No.: b:b 
Unit u Start Time: ts(u,bk) 

Unit u End Time: te(u,bk) 

Status History 

S (fiu,bk) 
1 

(u,bk)) 
tatus: St , e 

u 

Figure 4.5: The Structure of the Unit View 

A set of batches B (u.t s, t e ) which have been produced by unit u during time 

interval [ts , te) can be obtained by the procedure shown in Fig.4.6. 
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B (v. , J s ,tc) = cj; 

/for (b = b, , b2 , · · ·, bn) { 

I if (t 5 ~ b. Ui _start ~ te & ts ~ b. ui_end ~ te) 

add b to B (ui ,ts,te) 

} 

} 

Figure 4.6: An Algorithm for Obtaining the Unit View 

For each batch in B (u,t s, te ) obtained by the above procedure, the Unit View can 

be generated by assigning the batch identifier to bID of uv b(u ,ts ,te), the start time 
J 

and the end time at the unit u to t~ and t~ of uvb<.u ,ts.te J respectively and the status 
J 

history for the unit u during the time interval [t~, t~) to H~~ .t~ of uvb(u, ts ,tel · The 
J 

status history can be obtained from the Trend Object corresponding to the unit u. 

4.4.3 Batch View 

Fig. 4.7 shows the structure of the Batch View. The histories of process values 

for each of equipment units which a specified batch and its intennediate products 

have moved through are provided. 

For generating the Batch View, derived batches from batch b which is specified 

as a view generation parameter need to be obtained. As described before, since 

the batch object has links which associate the mixed or divided batches with it, 

this derivation can be perfonned by traversing the links from the final product to 

the raw materials. 

Another required processing for generating the Batch View is to obtain units 

of equipment which a specified batch has passed. Since a batch object has the 

attributes of time stamps which record the time when the batch has entered and 
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left each unit, whether a batch has passed a unit or not can be detected by checking 

whether the time stamp for the unit is recorded or not. 

Since derived batches from batch b can be obtained for each of units by the 

above procedure, the Batch View can be generated by organizing the unit view 

element for each unit. 
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Figure 4.7: The Structure of the Batch View 
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4.5 Batch Tracing Based on the Active Mechanism 

In the manufacturing management data model, batch objects need to be migrated 

through unit objects according to the production status of a real manufacturing 

process. Since links for generating the three types of views are organized at the 

time of batch production by realizing this mechanism, fast view generation can be 

performed. 

As a framework for starting an action in response to an event occurred in 

databases or physical world, the active mechanism[8] is well known. The active 

mechanism is also called the ECA mechanism. The mechanism works as follows: 

when an event (E) occurred, a corresponding condition (C) is evaluated. If the 

condition holds, an action (A) is started. Utilizing this mechanism, migration of a 

batch object can be performed as an action. 

Batches are traced by the active mechanism in the folJowing manner. 

• When starting of processing is detected in a unit of equipment, the unit 

object obtains the first batch object which is linked with finished batches of 

the preceding unit object, and links it to the current batch attribute. 

• When ending of processing is detected in a unit of equipment, the unit object 

removes the link from the current batch attribute and adds to the finished 

batches. 

In addition, units of equipment are classified into the following five types to 

manage the batch mixture and division as shown in Fig. 4.8. 

• Processing Unit 

This type of units receives one batch and sends one batch. 

• Mixing Unit 

This type of units receives batches of different types and sends one batch. 
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Figure 4.8: Process Primitives for the Batch Tracing Mechanism 

• Separating Unit 

This type of units receives one batch and sends batches of different types. 

• Accumulating Unit 

This type of units receives batches of the same type and sends one batch. 

• Dividing Unit 

This type of units receives one batch and sends batches of the same type. 

The unit object generates links among batch objects based on this classifi­

cation. Since batches can be traced backward by navigating these links without 

searching all batch objects, fast view generation can be perfonned. 

4.6 Example Application 

In this section, an example application is introduced to show how the batch manu­

facturing information management model is useful in a practical system. A plant 

model for the example application is a coffee making plant. 

In this application, a simulator produces a plant operational data. Fig.4.9 

shows a monitoring screen of the simulated coffee plant. Raw coffee beans are 

stocked in the beans silos located in the upper left corner. One of five kinds of raw 
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beans selected, a batch of coffee beans is taken out and thrown to the roaster. In 

the roaster, a batch of raw coffee beans is roasted. After that, the batch is trans­

ferred to the miller which grinds the beans. The milled coffee beans are stocked 

in the beans grinds silo located in the upper center of the screen. At this point, a 

batch becomes to be indistinguishable from other batches. 

From beans grinds silo, some kinds of beans are chosen and transferred to 

the blender which stirs beans grinds. After blended, hot water is poured into the 

dripper, cream and syrup are mixed in the mixer and stocked to coffee tanks. In 

the mixer, four batches are accumulated into one batch. 

a-;\~- IR95toztoo3-
.::: ~~ 

71-- :J!/- j0951021001-2 
t-" ')•J){-

~~"}"-1 

.:::~"1-2 

.;::~"}"-3 

Syrup Tank 

9112 9113 

Figure 4.9: A Monitor Screen of a Coffee Plant Simulator 

In this example plant, the following process values are acquired periodically 

and stored in the RTDS. 
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Roaster: temperature of heating plate 

Miller: the number of rounds of revolution per minute 

Blender: humidity of each of beans grinds silos 

Dripper: temperature of poured water 

Mixer: temperature of coffee liquid 

The Plant View is obtained by inputting a time interval to a dialog. An example 

is shown in Fig.4.1 0. In the chart, process units are arranged vertically and time 

axis is plotted horizontally. Each rectangle in the chart represents a batch. A batch 

identifier is shown in the center of the rectangle. 

' 1001 
' 'P-"J,!I-
~.-- .·.~: ,,y.o.;.;.:~-:~·:0:{{•:-:~·.,· 

' 1002 

~~­
' 1101 

.. !.~ .. ~!.: ... . 
' 1102 

:: 0950927002-3 

'EX:/!:.wt=~==t~m~~~==~========J ' -"-"'4t-l 
' 1112 

>-~~.! :,.: .... l----------------------"'1.· 
' 1113 
~~t-3 

Figure 4.1 0: An Example of the Plant View 

:·n \,:;: ·.· > -~.:;;._! 

-:: • . !· <::'"·-~·-;;: I 

By clicking a process unit in the Plant View window, the Unit View for the 

clicked process unit is displayed. Fig.4.11 shows an example of the Unit View for 

the dripper. In this example, three batches were processed at the dripper during 

the specified time interval. Each line of the graph represents the status history of 

each batch. 
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Figure 4. I 1: An Example of the Unit View 

•); 

By clicking a batch in the Plant View window, the batch view for the clicked 

batch is displayed. An example of the Batch View is shown in Fig.4.12. The 

selected batch is '0950927001 '. In the example, three windows corresponding to 

blender, dripper and mixer are shown. In the windows for blender and dripper, 

four lines are plotted in the graph because the specified batch are derived from 

four batches at the mixer. 

Utilizing the Plant View, an operator can optimize the operation rate of each 

process unit. Utilizing the Unit View, an operator can tune process parameters or 

analyze the relation of cause and effect for products. Utilizing the Batch View, an 

operator can trace back and make use of a production history for a certain batch 

and detect a cause of defect. 
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Figure 4.12: An Example of the Batch View 

4.7 Summary 

In this chapter, a batch manufacturing information management system based on 

the multidimensional view has been presented. In order to deal with several as­

pects of manufacturing information, a data utilization model based on the multi­

dimensional view, i.e, Plant View, Unit View and Batch View has been proposed. 

In addition, a batch manufacturing information management system has been 

implemented on the RTVS based on the model. An example for a coffee manu­

facturing plant has also been illustrated. 
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Chapter 5 

The Time/Place/Object Model 

5.1 Backgrounds 

In the previous chapter, it is shown that how the production data can be utilized 

effectively for quality management or defect analysis. However, the application 

is only one way, i.e. plant floor to business systems. On the other hand, the batch 

tracing mechanism presented in the implementation section of the previous chap­

ter is powerful enough for tracking the manufactured products in a manufacturing 

line. For the next step, a model for supporting the opposite way, i.e business 

systems to plant floor is required. 

In this chapter, a framework for supporting both ways, incorporating with con­

trol tasks is proposed to realize advanced manufacturing management systems. 

5.1.1 System Organization 

Fig. 5.1 shows a typical organization of a manufacturing line control system. The 

system consists of three layers. 

Business system layer: Systems in this layer perform planning and management 
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tasks such as production scheduling, inventory management and equipment 

maintenance management. 

Process computer layer: This layer bridges between the business systems and 

control systems. This layer issues preset values to controllers according to 

production recipes from business systems and gathers production perfor­

mance from controllers. 

Controller layer: Controllers handle signals of connected actuators and sensors 

according to programmed sequence and control logic. 

Business Systems 
Layer 

Process Computer 
Layer 

Contoller Layer 

Production Recipe 0 0 Production Record 

Control Command 0 0 Process Event 
Process Value 

Sensors, Actuators 

Figure 5.1: A Typical System Organization 

5.1.2 Tracking and History Management Functions 

The Time/Place/Object model is intended to provide a fundamental model to de­

scribe the structure and the behavior of a manufacturing line and realize tracking 

and history management functions performed in the process computer layer. An 

example of a control function is depicted in Fig. 5.2. When "Lot #1" is thrown to 
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"Process N' in a plant field, a process value of a sensor equipped with "Process N' 

changes and a program in a controller detects the change. The detection triggers 

a program in the process computer via the control network. The triggered pro­

gram gets a pre-received corresponding production recipe which includes control 

parameters, then issues commands such as a preset value of the temperature to 

controllers. The program also updates the current tracking status in the process 

computer and reports it to the business systems. 

Business 
System 

: ::: Pr~~::::·· Material Throw ~~~~.,...,...,..~.r-·-
::t~p~~~>:: 

Controller 

Field 

Figure 5.2: An Example of a Control Function 

Main mechanisms to realize required functions in a process computer can be 

classified into two types: one is plant-wide material tracking and the other is 

history management of production performance data. The tracking mechanism 

gives a foundation for grasping which material exists in which production process 

and invoking appropriate actions such as issuing control commands to controllers. 

History management provides production performance data with business systems 

in appropriate viewpoints for each product or each production process. 
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5.2 The Time/Place/Object Model 

5.2.1 Basic Concepts 

Intuitively, a manufacturing line can be represented so that "manufactured ma­

terials move through manufacturing processes as production goes on." Based 

on this representation, the Time/Place/Object model provides three dimensions: 

time, place and object. A place corresponds to a physical unit of manufacturing 

equipment or a logical process of manufacturing steps. An object corresponds to 

a minimum production unit such as a batch in a batch manufacturing plant. An 

object is an instance of a certain class which defines the properties of the object. 

A place, i.e. a manufacturing process, not only updates object properties, but 

also changes the identity of the production material by combining several objects 

or splitting an object. In a canned coffee plant, a batch of coffee liquid is mixed up 

with a batch of cream at one place, while a batch of mixed liquid is divided into 

smal1 amount of batches to be canned. Five primitives for places are defined in 

order to represent the change of the production unit caused by object combination 

and splitting. 

In some manufacturing lines, an object exists in only one place at a time. In 

this case, an object can be regarded as a point. But in others, objects may have 

length, that is, an object can be regarded as a line and may exist in more than 

one places at a time. The model provides three types of object forms to represent 

consistency of relationships among objects and places. 

Object behavior in a manufacturing line can be represented as a collection of 

event-driven object movements between two places. The model represents the 

object movement such that "when an event occurs, an object is moved from one 

place to another with some involved actions." Actions to be performed corre­

sponding to an object movements in a real manufacturing line are represented by 
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ECA rules. 

Production performance data are gathered in several forms; some of them 

show sensor value acquired periodically, while others indicate results of on-demand 

inspections. These data should be materialized in some viewpoints when retrieved 

as production history. The model provides viewpoints of acquired data from the 

three dimensions, i.e. time, place and object. 

5.2.2 Basic Definitions 

5.2.2.1 Time/Place/Object 

In this paper, L time points, M places, N object classes, and Ni objects of the ith 

object class are described in the following notations. 

Time: A sequence of time points t 1 , t 2 , · · · , tL 

Place: Places P1, P2, · ··,PM 

Object: Object classes c1 , c2 , · · · , eN, ob1ects of a class c 0 c
1
; 0 c

2
; . . • 0c; 

J z ' ' ' N; 

5.2.2.2 Primitives of places 

Objects can be combined or split in a place. Places can be categorized into five 

primitives shown in Fig.5.3 to trace the combination or the split of objects. Each 

primitive has the following property. 

Processing: An object at the entrance side is identical with an object at the exit 

side. 

Accumulating: Some objects of a specific class are combined into one object. 

Dividing: An object is divided into some objects of a specific class. 
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Figure 5.3: Primitives of Places 

Mixing: Some objects of several classes enter a place and mixed into one object. 

Separating: An object is separated into some objects of several classes. 

These primitives are complete because 

1. relationships of the entrance side and exit side objects can be categorized 

1 : 1, 1 : n, and n : 1, 

2. if multiple objects enter or leave, these objects belong to either a specific 

class or several classes. 

5.2.2.3 Object Forms 

Objects are represented by the following object forms as shown in Fig. 5.4. 

Point Model I etC.=) I 
Dicrete Line Model El ~ 

Continuous Line Model F#MMf'P"ii:tsM 

Figure 5.4: Object Forms 
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Point model: An object can exist in only one place. 

Discrete line model: An object can exist in adjacent multiple places but isn't 

continuous with other objects. 

Continuous line model: An object can exist in adjacent multiple places and be 

continuous with a preceding object and a succeeding object. 

These forms are complete because 

1. an object can exist in either one place or multiple places, 

2. if an object can exist in multiple places, an object is either continuous with 

other objects or not. 

5.2.3 Object Movement 

5.2.3.1 Attributes Representing Object Movement 

As described before, movement of an object between two places can be repre­

sented such that "when an event occurs, an object is moved from one place to 

another." In the model, an object movement is represented by a tuple of the fol­

lowing five attributes. 

The meaning of each attribute is shown below. 

Movement Event: emove is an event which triggers an object movement. 

Origin Place: Ptrom is an origin place. 

Destination Place: Pto is a destination place. 
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As special cases, if PJrom is N ULL, this movement represents the creation of a 

new object at Pto. and if Pto is .NULL, this movement represents the discharge of 

an object from PJrom· 

Object Form: obj_form. is one of the object forms in Fig. 5.4. 

Behavior of object movement differs according to the models of the object form 

as shown in Fig. 5.5. Suppose that an event where PJrom is Pi and Pto is P i+ l 

occurs. For the point model, an object leaves Pi and enters Pi+l· For the discrete 

and continuous line model, an object enters Pi+ I, but doesn't leave Pi· Instead, 

for the discrete line model, an object leaves Pi when an event where PJrom is Pi 

and Pto is NULL occurs. For the continuous line model, an object existing in Pi 

leaves when a succeeding object enters Pi, that is, when an event where PJrom is 

Pi -1 and Pto is Pi occurs. 

p i-1 Pi P;+I p i-1 Pi P;+1 

Point 1•1 ,__. I I 1• 1 
Dis~~~tt:~ine r,,,,,,,,,,,,, "''*'''f ,,,,,, I I-+ I ''"''''''"'''''''l !;!1; ;i;i;!;!;!;l I 

Di~~;~:~ine E t +9 --+ E I I 9 
Continuous Line f,,,,;,,,,,,,,,,,,,,,,,*''l''''"'"''sssH --+ l ''''''' '~"''''''''''''''''''f ' ' ' '''' '' '' '' '''' ''''' '''' i ''f ''' ' ' ' ''9 

Before Movement After Movement 

Figure 5.5: Object Movement 

Next Object Class: Cnext specifies a class of an object after accumulating, split­

ting, mixing or separating. 

If p from is not the processing place, an object moved to Pto is not identical with 

an object existing at PJrom· An example in case of separating place is shown in 
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Fig. 5.6. Suppose that an object of class C1 is existing in separating place p1. For 

movement ( e1 , PI, P2, point model, C2), an object of class C2 is created in place 

P2 when event e 1 occurs. For movement ( e2 , p1 ~ p3 , point model, C3), an object of 

class C3 is created in place P3 when event e2 occurs. After separation, the object 

of class C\ in P1 leaves P1 when event e3 which is associated with movement 

(e3, PI , NULL , point model , N ULL ) occurs. 

r----a_n_o-,bjec~ ?f class C2 --an object_ of class C 1 

' , (Separating) 

(e! ,p1 ,p2,point model ,C2) 

Place p2 

r-__ a-.n:.-.o.:,bject of class CJ 

(e3,p1 ,NULL,point model,NULL) 
(e2,pl ,pJ,point model,CJ) 

Place p3 

Figure 5.6: Next Object Class Specification 

5.2.3.2 ECA rules 

When an object moves, some involved actions such as issuing control commands 

need to be performed to automate production. In the model, the ECA mechanism 

is used to describe a logic of an object movement and involved actions. 

In order to provide a general framework for invoking actions according to an 

object movement, four categories of ECA rules for the object movement event are 

defined. 

Pre-movement ECA rules: { emave, pre_Cl , pre_A 1} , { emove , pre_C2 , pre_A2 } , · · · 

An on-movement ECA rule: { emove, on_C: on_A} 
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Post-movement ECA rules: { emove: po.sLC1 , posLA 1} , { emove, posLC2 , posLA2}, · · · 

Invalid movement ECA rules: { emove, inv _Cl , inv_Al }, { emove, inv _C2 , inv_A2}, · · · 

These ECA rules are invoked by the following logic when a corresponding event 

occurs. 

if(pre_C1() ==true) pre_Al(); 

if(pre_C20 ==true) pre_A2(); 

if(on_C() ==true) { 

if(on_A(pfrom•Pt0 ,obj_form,Cnext) ==true) { 

if(posLC10 ==true) posLA1(); 

if(posLC2() ==true) posLA2(); 

} 

} else { 

} 

if(inv _C1 ()==true) inv_AI(); 

if(inv_C2 () ==true) inv_A2(); 

Each condition function, e.g pre_C1 () , is expected to return a true value if a 

corresponding condition satisfies, otherwise, return a false value. Object move­

ment function on_A() is expected to return a true value if the movement is suc­

cessfully performed. If consistency violation among places and objects, which is 

described later, is detected, on_A() returns a false value. 

In actual situations, this invocation logic works as follows . 
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• Pre-movement ECA rules such as collecting production performance data 

at origin place PJrom are processed prior to the object movement. 

• On-movement condition on_C (), such as confirming whether a reported 

event is reliable by re-examining a sensor value, is evaluated. If this sat­

isfies, object movement action on_A() is executed. 

• The object movement action on_A() moves an object from Ptrom to Pto ac­

cording to obj_form and Cnext· 

• If the object movement is successfully performed, post-movement ECA 

rules such as issuing control commands to Pto are processed. 

• If the object movement fails, invalid movement ECA rules such as modify­

ing tracking status or alarming to operators are executed. 

5.2.3.3 Handling of Object Movement 

Handling of object movement is achieved by leaving the origin place and enter­

ing the destination place. The handling method depends on the types of place 

primitives and the object forms. 

Handling of leaving place Pi is achieved by the following methods. 

I. If the origin place is the processing place 

(a) If the object form is the point model 

an object leaves place Pi when event emove associated with the origin 

place Pi occurs. 

(b) If the object form is the discrete line model 

an object leaves place Pi when event emove associated with the origin 

place Pi and the destination place N ULL occurs. 
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(c) If the object fonn is the continuous line model 

an object leaves place p2 when event emove associated with the desti­

nation place Pi occurs. 

2. If the origin place is the accumulating, mixing or separating place 

an object leaves place Pi when event emove associated with the origin place 

Pi occurs. 

3. If the origin place is the dividing place 

an object leaves place Pi when event emave associated with the origin place 

Pi and the destination place NULL occurs. 

Handling of entering place Pi is achieved when event emove associated with the 

destination place Pi occurs. 

5.2.3.4 Detection of Inconsistency 

If an object movement event cannot be reported to a process computer for some 

reasons, the status of a modeled manufacturing line in the database of the process 

computer becomes different from the actual status of a real manufacturing line. 

If this occurs, the object movement action cannot be performed successfully. If 

one of the following cases is detected, consistency among places and objects is 

regarded as violated and invalid movement ECA rules are triggered. 

• There is no object at origin place PJrom· 

• There is an object at destination place Pto when Pto is processing place and 

obj_form is not the continuous line model. 

• There is an object at destination place Pto when Pto is dividing or separating 

place. 
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5.2.3.5 Extension of Primitive Places 

In order to represent real manufacturing lines intuitively, some extensions of the 

processing place are defined. One extension is to define a place which can hold 

multiple objects. This type of place can be represented as a queue. Queues can be 

categorized into two types. 

• First In First Out (FIFO) Queue 

• Last In First Out (LIFO) Queue 

Another extension is to define a place where multiple objects move by one 

event. This type of place can be represented by a conveyor, as shown in Fig. 5.7. 

Place 1 I Place 2 I Place 3 I Place 4 I Place 5 

Tail P O O g Head 

Move forward from backward (FB) 

Move backward to backward (BB) 

Conveyor 

Move forward to forward (FF) 

Move backward from forward (BF) 

Figure 5.7: Conveyor 

A conveyor is a sequence of processing places. Objects on a conveyor moves 

simultaneously by one movement event. Movements of a conveyor can be defined 

as follows. 

Move forward to forward: Objects on Place 2, 3 and 4 move to Place 3, 4 and 

5, respectively. 

Move backward from forward: Objects on Place 3, 4 and 5 move to Place 2, 3 

and 4, respectively. 

Move forward from backward: Objects on Place 1, 2 and 3 move to Place 2, 3 

and 4, respectively. 
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Move backward to backward: Objects on Place 2, 3 and 4 move to Place I, 2 

and 3, respectively. 

5.2.4 History Management Model 

The history management model described below generalizes the multidimensional 

views presented in the previous chapter, based on the mapping operations among 

time, places and objects. 

5.2.4.1 Status of Places and Objects 

Places and objects can be associated with time-varying status values acquired by 

sensors, such as temperature, humidity and length. Status of places and objects 

can be represented by time series of data and is denoted by the following notations. 

Status of a place: Status of place Pi at the time t1 is denoted by a Pi ( tz). 

Status of an object: Status of object o~ at the time t1 is denoted by a Cj ( tz) 
ok 

5.2.4.2 Mapping Operations 

To extract the relationships among time, place, and object, the following mapping 

operations can be defined. 

Place/Object mapping Time(pi, o~) 

Place/Object mapping obtains a set of time points when object o~ existed 

in place Pi· 

Placeffime mapping Object(pi, tz) 

Place/Time mapping obtains a set of objects existing in place Pi at the time 

it. 
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Object/Time mapping Place( o~1 ~ t1) 

Object!fime mapping obtains a set of places where object o~1 existed at the 

time t1• 

5.2.4.3 ~iews 

In order to provide retrieval functions of historical data, views for time, place 

and object are defined based on the mapping operations. ts and te denote the 

starting point and the ending point of a time interval, respectively. tp is a period 

for obtaining each tuple of the views. 

where Vtz E { ts, ts + tp, ts + 2tp, · · ·, ts + ( l te;ts j )tp}, V Pi E {PI,···, PAl}, 
p 

v o~j E Object(pi, tz). 

Object ~iew: Vabject ( o~j) is a set of tuples 

The time view provides relationships among places and objects for each time 

point ts, ts + tp, · · ·, te. The place view provides the status of the specified place 

and the status of objects passing through the place during the time interval from 

ts to te. The object view provides the status of the specified object and the status 

of places where the object passed through. 
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5.2.4.4 Lineage of objects 

When an object passes through places other than processing, an object is reborn 

as new objects of other classes. For example, an object o~ 1 of class c1 may be 

split into other objects o~2 , o~2 , o~2 of class c2 at a dividing place. When object o~1 

enters a place and object o~~~ is delivered from the place, it is called that object 

o~' is derived from object o~j. A set of objects from which o~' are derived is 

denoted by parent( o~') and a set of objects which are derived from o~ is denoted 

by child(o~1 
). 

By applying the parent and child relationship to object o~1 recursively, all an­

cestors and descendants of the object can be obtained. A set of objects which 

result in being derived from o~ and objects from which o~ is derived can be ob­

tained by the following procedure. 

1. Set an initial object o~ to a set 0. 

2. For every object o~/ E 0, add child( a~') to 0. Repeat this until no more 

object is added. 

3. For every object o~' E 0, add parent( a~') to 0. Repeat this until no more 

object is added. 

A set of objects obtained by the above procedure is called a set of lineage objects 

for object o~ and denoted by lineage( o~ ). 

In the flow from raw materials to final products, classes of objects vary at 

places other than processing. By obtaining the object view for all objects in 

lineage( o~1 
), production history from raw materials to final products can be re­

trieved. 
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5.2.5 An Example 

An example of representing a manufacturing line is described here, utilizing a 

sample manufacturing line shown in Fig.5.8. 

e5 

Object of C3 

Figure 5.8: An Example of a Manufacturing Line 

The sample manufacturing line consists of six places p1 , p2 , p3 , p4 , p5 , p6 . Places 

PI, P2, P4, P5, P6 are processing places and place p3 is a mixing place which mixes 

objects from P1 and pz. An object existing in p4 has two candidates of destination 

places, P5 and p6 , for its movement. 

Three object classes C1, C2, C3 are defined in the example. Mixing place p3 

generates an object of C3 from an object of C1 and an object of C2. The object 

fonn is defined as the point model for all object movements. 

Each object movement { emove, Ptrom, Pto, obj_form, Cnext} for the object classes 

can be defined as follows. Note that two movements from p4 are defined because 

the example line has a branch in p4 . 

• c1 
{ e1 , NULL, PI, point model, NULL} 
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{ e3 , p 1, p3 , point model, NULL} 

{ e5 : p3 , p4 , point model , C3} 

{ e2 , NULL, p2 , point model, NULL} 

{ e4, p2 , p3, point model , NULL} 

{ es, p3, p4, point model, C3} 

• c3 
{ e5, p4, Ps, point model, NULL} 

{ e7, p4 , p6 , point model, NULL} 

{ e8 , p6 , NULL, point model, NULL} 

Next, suppose that object movements occurs in the following sequence. 

1. Object o~1 enters place P1 at the time tt 1 • 

2. Object o~2 enters place P2 at the time tt2 • 

3. Object o~2 moves from place P2 to place P3 at the time tt 3 • 

4. Object of1 moves from place P1 to place P3 at the time tt4 • 

5. Objects o~1 and o~2 becomes object o~3 and o~3 moves from place P3 to place 

p4 at the time tz 5 • 

Examples of the mapping operations for the object movement history de­

scribed above are shown below. 

Place/Object mapping Time(p2, o?) ~ [tt 2 , ttJ 
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Object/Time mapping Place( o~2 , t1 2 ) ~ {P2} 

Object 

p4 

p3 !,.-
1'---------~: ::::: :] 

Object 

Object 

Time 

~: 
p3. !_,.. 

1'-----------{::::>:J 

Time 

Figure 5.9: An Example of Time, Place and Object Views 

Examples of views for the object movement history are shown in Fig.5.9 by 

the three dimensional representation (place p5 and p6 are not included because the 

inclusion makes the figure so complex). Intuitively, each view can be regarded as 

a cross plane cut by one of time, place and object axes. 
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lin eage( o~3 ) is { o~ 1 , o~2 , of3
} . Production history for raw materials o~' and 

o~2 to final product o~3 can be traced by obtaining object views for objects in 

5.3 Implementation 

Based on the Time/Place/Object model described in the previous section, a family 

of middlewares has been implemented as a development environment of tracking 

and history management systems. The middlewares are organized by the follow­

ing components as shown in Fig.5.1 0. 

1. Development tools 

• A builder 

Using this tool , a system designer defines address assignments of ac­

quired data, schema of data acquisition, conditions of event detections, 

schema for event transmission, organization of a manufacturing line 

and movement of manufactured objects. 

• A source code generator 

According to the information defined by the builder, source codes spe­

cialized for a target plant are automatically generated. 

2. Run-time environments 

• An active real-time temporal database (RTDS) 

This component achieves the data acquisition from control networks, 

storage of them to disks, detection of events and data provision to the 

RTVS. 

82 

• A temporal object-oriented database (RTVS) 

This component achieves object persistence, provision of temporal ob­

jects and transaction management. 

• A tracking manager 

This component achieves tracing of objects and invocations of ECA 

rules. A part of source codes of this component is generated by the 

source code generator. 

• An application library 

This component provides library functions which can be used in ap­

plications for a target plant such as ECA rules, operator station control 

and communication with business systems. 

Run-time Environment 

Application 
Development 

Library 

Tracking 
Manager 

Plant Dependent Codes 

Real-Time View Server 
(RTVS) 

Real-Time Data Server 
(RTDS) 

Development Tools 

Figure 5.10: Organization of the Middlewares 

5.3.1 Development Tools 

Development tools run on PCs with Microsoft Windows. As described before, 

development tools include a builder by which a system designer defines a target 
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plant and a source code generator which generates source codes according to the 

builder definition. 

Among the components in the run-time environment, the RTDS and the track­

ing manager are customized for a target plant property. Builders and source code 

generators for the RTDS and the tracking manager have different concepts from 

each other, considering the difference of defined informations. 

For the RTDS, system designers need to input the following infonnations 

about the target plant. 

Definition of data acquisition Addresses of data on a control network and labels 

for the data are defined. Types of data acquisition from the control network 

are periodical reading from a distributed shared memory and eventual re­

ception of messages. 

Definition of event detection Conditions for detecting events from acquired data 

are defined. Conditions can be the edge detection of a bit signal, linear 

inequality and so on. 

Definition of schema for provided data Data structures for periodical transmis­

sion of acquired data and eventual report of detected events are defined. 

On the other hand, informations for the tracking manager are as follows. 

Definitions of the target plant organization Places in a target plant are defined. 

Places can be defined in hierarchy and a plant can be divided into some 

sections. 

Definitions of production units Classes of objects in a target plant are defined. 

A class can be associated with schema for production recipes and results. 

84 

Definition of the target plant behavior Movements of objects are defined. Trig­

ger of movements used in this definition can be chosen from events defined 

for the RTDS. ECA rules associated with movements are also defined. 

An example screen of the builder is shown in Fig. 5.11. 
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Figure 5.11: An Example Screen of the Builder 

The generators generate source codes customized for a target plant according 

to these definitions. A mechanism of the generator for the RTDS is different from 

that for the tracking manager, due to the difference of characteristics. 

The generator for the RTDS is based on the method of the example expansion[3 I] 

which expands minimum but functionally complete examples according to the 

definitions. Source codes for data acquisition, event detection and data provision 

are automatically generated by expanding pre-registered example codes. 
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The generator for the tracking manager has a different mechanism from that 

for the RTDS. Source codes for the tracking manager have two parts: a target 

dependent part and a target independent part. Codes for the target independent part 

are fixed, while those for the target dependent part are generated by the generator. 

The target dependent part includes invocations of object movements and ECA 

rules, access functions to the defined plant organization and object properties. 

5.3.2 Run-time Environments 

Run-time environments work on a kind of UNIX which has a real-time capability. 

Run-time servers are based on the RTDS and the RTVS which have been already 

implemented before. 

Time points in the Time/Place/Object model are represented by the timeval 

structure defined as a standard of UNIX. Places and objects are represented as per­

sistent objects in the RTVS. The data structures for places and objects are shown 

in Fig. 5. I 2. An instance of a place has a link attribute storing a reference to an 

object existing in the place. For places in which multiple objects can exist, the 

link attribute is able to store the multiple references. An instance for an object 

has link attributes storing references to objects from which the object has been 

derived and/or which the object has derived, in order to deal with the lineage of an 

object. An instance of an object has also attributes storing time stamps when the 

object has entered and left each places. The time stamp attributes associate time, 

place and object and make it possible to realize the mapping operations and view 

generations. 

The tracking manager receives events utilizing the event object and invokes 

the object movement procedure and defined ECA rules. The tracking manager 

associates instances of places with instances of objects and achieves tracing ob­

jects. When an object passes through places other than the processing place, it 
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Place p. 
l 

(dividing) 

a link to an exsiting object 

a link to child(o ci) 

Place p. 
1 t+ 

(Separating) 

a link to an exsiting object 

a link to parent(o ~~) 

Time stamps 
when entering and 
leaving each place 

Time stamps 
when entering and 
leaving each place 

Figure 5.12: A Data Structure for Places and Objects 

associates an instance of an object with those of derived objects. 

The application library includes about 100 library functions by which applica­

tions can utilize to get and change the status of the tracking manager, store result 

data, and obtain the time, place and object views. 

5.3.3 Application to a Real System 

The middlewares have been applied to a tracking system for a steel process line. 

This system realizes core functions for steel plant management such as manag­

ing production recipes, providing display data for operator stations, issuing preset 

commands to controllers, gathering result data from controllers and reporting pro­

duction performance to business systems. 

As shown in Fig.5.13, a typical steel process line consists of three sections: 1) 

entry section in which steel coils are carried by conveyors and mounted to pay­

off reels, 2) center section in which steel plates are rewinded from pay-off reels, 

welded to a proceeding plate and a succeeding one, processed by chemicals and 

wound to tension reels and 3) delivery section in which steel coils are carried by 

conveyers and housed to warehouses. The Time/Place/Object model applied to 
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this steel process plant, a pay-off reel can be defined as a dividing place because 

one coil has multiple production change points when moving from the entry sec­

tion to the center section. In the center section, a steel plate is cut by a shear which 

can be defined as a dividing place and a tension reel which rolls up multiple pro­

duction change points can be defined as an accumulating section. The rest places 

such as chemical processors can be defined as processing places. In the entry and 

delivery section, since a steel plate is wound up in the shape of a coil, its object 

form can be represented by the point model. In center section, since steel coils are 

rewound and welded to a proceeding coil and a succeeding one, its object form 

can be represented as the continuous line model. 

Tension Reel 

• 

~ ~ Looper 
<! 

i § 
Delivery Section Center Section Entry Section 

Figure 5.13: A Typical Steel Process Line 

ECA rules are utilized to realize the following functions: issuing preset com­

mands to controllers, acquiring and storing result data from controllers, commu­

nicating with business computers, comparing the state of the plant model in a 

computer and that of the real plant by coil sensors and so on. 

The scale of this application is shown in Table 5.1. In this application, it took 

about two days to input the plant information on the builders. Time to automat­

ically generate source codes is only a few seconds. The number of generated 

source codes is about 31 thousands lines which corresponds to 1 0 persons/month 

volume when converted by using widely known production volume 3 thousand 
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Table 5.1: An Application Result of the Middleware 

Num. of places Num. of classes Num. ofECA Num. of lines 

of objects rules of generated codes 

68 4 563 31352 

lines/person.month. In addition, specification modifications and design errors 

could be easily compensated by the builders and the source code generators. 

5.4 Summary 

In this chapter, in order to represent the organization of a manufacturing line and 

the behavior of objects, the Time/Place/Object model has been defined. The model 

defines five primitives of places and three forms of objects. The behavior of ob­

jects is defined as a set of object movements through places. Multidimensional 

views for batch manufacturing information management are defined generally 

based on the mapping operations and the views. 
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Chapter 6 

Conclusion 

Recent break-through of information technologies have brought small but pow­

erful computers to manufacturing management systems. This fact requires that 

layers of systems should be integrated and have the ability of communicating 

each other. This thesis discussed about the following issues for the frameworks to 

achieve this integration. 

• Temporal object model based on temporal validity 

In order to represent a monitoring target as an object, a new paradigm for 

dealing with temporal aspects of objects has been introduced. The model 

defines three categories of temporal objects and their temporal validity. 

The Real-Time View Server (RTVS) has been implemented based on the 

temporal object model. This can be utilized as a framework of a database 

system which has the capability of integrating control information and fa­

cility information by the temporal link mechanism. 

• A batch manufacturing information management system based on multidi­

mensional view 

In order to deal with several aspects of manufacturing information, a data 

91 



utilization model based on multidimensional view has been proposed. This 

model defines three views: Plant View, Unit View and Batch View. 

A batch manufacturing information management system has been imple­

mented based on the model. The system is built on the RTVS. An example 

for a coffee manufacturing plant has been illustrated. 

• The Time/Place/Object model 

In order to represent the organization of a manufacturing line and the behav­

ior of objects, the Time/Place/Object model has been defined. The model 

defines five primitives of places and three forms of objects. The behavior of 

objects is defined as a set of object movements through places. Multidimen­

sional views for batch manufacturing information management are defined 

generally based on the mapping operations and the views. 

The family of middlewares including the system development tools have 

been implemented and these tools can generate runtime source codes for 

the RTVS. The middlewares have been applied to a real steel mill tracking 

system and contributed to improving the software productivity. The plant is 

currently operating successfully. 

Of course, the models have rooms to be improved. At this phase, the models 

are focusing only on industrial computers, but the behavior of systems should 

be defined from the view point getting all over the system layers. For example, 

the definition of movement events can be shared with controllers which actually 

detect the events. At the ultimate stage, all programs for the system layers seem 

to be able to be generated by defining the behavior of a manufacturing line. 

At this time, the Time/Place/Object model is focusing only on manufacturing 

management, but this model is general enough to apply to other domains. For 

example, it seems to be applicable to car transportation monitoring and controlling 
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on a high-way. Extensions to other application domains can be valuable future 

works. 

For the latest trend, even mobile phones begin to join to the components of 

manufacturing management systems. In this situation, the integration issues will 

become more significant meanings. 
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