
Studies of oscillator neural networks modeling the time 

correlation of neuronal spikes 

NOMURA Masaki 



Abstract 

vVe study a simple extended model of oscillator neural networks concerning the as

sociative memory with sparsely coded phase patterns, in '>ivhich information is encoded 

both in the mean activity level and in the timing of spikes. In this model, we treat sparse 

coding and temporal coding at the same time. We adopted the theory of statistical neu

rodynamics to investigate the order parameter equations governing both the equilibrium 

state and the retrieving process. 

At first, we study the basic properties of the auto-associative memory. Applying 

the methods of statistical neurodynamics to our model, we theoretically investigate the 

model's associative memory capability by evaluating its maximum storage capacities and 

deriving its basins of attraction. We found that the maximum storage capacity diverges 

in the sparse coding limit and the basin of attraction remains large even just below the 

maximum storage capacity. Our theoretical results are in good accordance with those 

of numerical simulations. Then, we consider the association of sequential patterns and 

that of patterns with different activity levels. vVe also found that the basin of attraction 

can be enhanced by introducing the dynamically adjusted threshold. Furthermore, the 

robustness against random synaptic dilution are also studied. It is found that even in 

the case of a high cutting rate, the basin of attraction remains large and the maximum 

storage capacity still diverges in the sparse coding limit. 

It is known that the mixed state plays significant roles in the information processing. 

Thus, second, we study the stability of mixed states in oscillator neural networks, where 

\ve choose correlated patterns to be embedded. Applying the theory of statistical neuro 

dynamics to our model, \ve estimate the maximum storage capacity with respect to the 

OR mixed state, which is composed of correlated patterns. vVe found that the max:imum 

storage capacity diverges in the sparse coding limit. The results are supported by numer-
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ical simulation. In addition , we consider the stability of another type of mixed state by 

numerical simulation. The result suggests that the latter type of mixed state is less stable 

than the OR mixed state. This feature is the result of the dual coding system and is not 

seen in binary models. The difference of the stability between these mixed states suggests 

importance of introducing the timing of neuronal spikes into the information processing. 
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Chapter 1 

Introduction 

1.1 Brief overviews of the Modeling Neural Networks 

The brain processes many types of information and can be separated into many regions 

depending on their functions, such as the auditory system, the visual system and so on. 

Each system is composed of many modules which provide specific function. The brain, 

which is sometimes called the central nervous systems, is hierarchically structured. After 

the discovery of the electrical nature of the nervous signals by Galvani, Ramon y Cajal 

showed that the system is made of an assembly of cells which he called neurons. Now, 

the human brain is said to comprise approximately 3 x 10 10 neurons [1]. The neurons 

communicate each other through the synaptic connections (see Fig.l.l). One neuron 

receives signals from other neurons through synaptic connections. Then, the inputs are 

transmitted to the soma. At the soma, the inputs are summed up, and when the total 

voltage is enough high, a signal, called spike or action potential, is propagated through the 

axon . The generated spike is transmitted to the next neurons via synaptic connections. 

ivicCulloch and Pitts studied the modeling of real neurons, in which they proposed 

a formal neuron including the properties mentioned above [2]. It is a binary unit which 

takes two internal states. The state of a unit is determined by the value resulted from 

the summation of the input signals. If it is larger than a threshold value, the unit is in 
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Figure 1.1: neuron 

firing state, which corresponds to propagating the action potential. Otherwise, the unit 

is in non-firing state, where no action potentials are generated. When we represent the 

state of the j- th unit by sj' where sj takes 1 for firing state and 0 for non-firing state, 

the state of the i- th unit is determined by 

Si= 8 (" J· ·S·- H·) L tJ 1 t , 

j 

(1.1) 

where Jij corresponds to the synaptic efficacies in Fig.l.2, Hi is a threshold value and 
' 

G(x) is a step function defined by 

G(x) = g for x ~ 0 
for x < 0. 

Here, the sumrnation is executed for all the sites linked to the i-th unit. 

(1.2) 

After their studies, Hopfield proposed a collective n1emory model with McCullo-Pitts 

neurons [3]. In this model memory is considered to be the result of the interaction between 
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Figure 1.2: 1cCullo-Pitts neuron 

a large number of formal neurons, and the memory is stored in the synaptic efficacies Jij. 

He adopted a symmetric Hebb rule [4] as the synaptic efficacy. This rule is based on 

the hypothesis from the biological experiments that when the i-th and the j-th neurons 

are firing simultaneously, the connection between them is enhanced, and otherwise it is 

weakened. The most important aspect of the Hopfield model is its analogy to the spin 

glass model in statistical physics. He proved that his model has the Lyapnov function, 

and thus, the macroscopic behaviors of the model can be investigated by the theory of 

statistical physics. Indeed using the replica theory which is a method of statistical physics, 

Am it et al calculated that the storage capacity of the Hopfield model is 0.138 [5]. 

1.2 Attractor Neural Networks with Binary Units 

One of the important problems in the study of memory processing is to recall the memory 

pattern as well as to store it. The models concerning these functions are called associative 

memory models or attractor neural networks. In the Hopfield rnodel, we can achieve to 

store and recall patterns in the follo\ving way. We represent the state of the j-th unit at 

timet as Sj(t), where in this section, we assume that Sj(t) takes 1 and -1 for mathematical 
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convenience. Then, the st ate of the i-th unit at timet+ 1 (if it is updated) is determined 

by 

where sgn ( x) is defined by 

sgn(x ) = { 
1 
-1 

for x ~ 0 
for x < 0. 

(1..3) 

( 1.4) 

Ther are at least two updating rules , one is the synchronous updating rule and the 

other is the asynchronous updating rule. The former means that all units are updated 

simultaneously at each time step, on the other hand, the latter updates one unit at a 

time. In the Hopfield model , the asynchronous updating rule is adopted. VIe express the 

patterns to be embedded as (f ( i = 1, · · ·, N), where J.1 is the number of patterns and i\f 

is the total number of units. Here we assume that (f takes 1 or -1 randomly. According 

to the Hebb's hypothesis, the patterns are embedded in the synaptic efficacies Jij taking 

the form , 

(1.5) 

For th P patterns to be stored , we adopt a following relation as synaptic connections 

(1.6) 

Let us consider the case P = 1. vVhen we set the pattern (l as the initial state of the 

system, that is, Si(O) = (l for i = 1, · · ·, JV, the next state of the site to be updated is 

determined by 

S;(l) = sgn ( ;;= .l;p;j) . (17) 

Substituting Jij = -/J(l(j into Eq.(1.7) (Hereafter we assume Hi= 0.), \ve obtain 

Consequently. the pattern ~l is stable and can be considered to be stored in the system. 
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From the point of view of the memory processing, we have interests in the following 

problems. 

• How many patterns can be stored and successfully retrieved? 

• Can the system recover the original pattern ~l from the noisy pattern ~l + noi. e? 

To answer these questions theoretically we introduce several macroscopic order param-

eters and analyze them with the theory of statistical physics . The load parameter a is 

defined by ~ ' which is called the storage capacity. To measure the similarity between the 

pattern (f and the state of the system at time t , we define the overlap by 

1 N 
m(t) = N L (j Sj(t). 

j=l 

(1.9) 

\Ve note that m(t) takes a value between -1 and 1. vVhen the system has no correlations 

with a pattern, m(t) = 0. However, when the system has a correlation with a pattern , 

we should take care of treating m(t). Let us consider the situations that Sj(t) = (j and 

Si ( t) = -(j for j = 1, · · · , JV. The overlap m( t) takes 1 and -1 for the former and the 

latter case, respectively. However, from the point of view of information, there are no 

differences among them. Thus, it is appropriate to measure the similarity by the absolute 

value of m(t). To answer the above questions corresponds to investigating the following 

properties. 

• the maximum storage capacity 

As the embedded pattern are increased, the final overlap m( oo) becomes suddenly 

very small even when the initial state is set to the noiseless pattern. This critical 

storage capacity is called especially the maximum storage capacity and denoted by 

ac. It provides the answer of the former question. 

• the basin of attraction 

Let us consider the situation tha when we set the noisy pattern measured by mu(O) 
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as the initial state, the final overlap m( oo) is near 1, however, when we set the noisy 

pattern measured by mL (0), the final overlap becomes almost zero. \~Ve may con

jecture that there is a boundary between mL (0) and mu (0) that separates whether 

m( oo) becomes near 1 or almost 0. This boundary is called the basin of attraction 

and gives us t he answer of the latter question . 

• the critical overlap 

The final overlap m( oo) is needed to consider the above properties. It is called the 

critical oYerlap. 

The associative process suggests the image of energy landscapes with valleys and hills on 

which the dynamical system relaxes toward one of the bottoms of the valleys illustrated 

in Fig.l.3 [6]. In this figure , each memory pattern corresponds to each bottom of the 

valleys , Nil, i\!12 and l'v13. \Nhen the initial state of the system is enough similar to the 

pattern i'v12, the system retrieves the pattern M2 like a ball rolling down the valley. In this 

sense the width of the valley is coordinate with the basin of attraction. As the number 

of embedded patterns is increased , the landscape becomes complicated and valleys whose 

bottoms are higher than those of memory patterns appear (see Sl, S2 and S3 in Fig.1.3). 

They are also attractors where the system is trapped and referred to as spurious states. 

Con idering these the associative memory model is called the attractor neural network 

model. These analogies between the Hopfield model and physical systems enable us to 

apply the theory of statistical physics to the analysis of the associative memory modeL 

For example, since the Hopfield model has the energy function 

(1.10) 

we can apply the replica method to calculate the ma..'<in1um storage capacitv, which is 

estimated by the investigation of the equilibrium state of the system [5]. To estimate 
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Figure 1.3: The one-dimensional landscape for associative memory. 

the basin of attraction , it is necessary to study the retrieval process . This type of non

equilibrium state is difficult to treat, however, the theory of statistical neurodynamics 

proposed by Amari et al [7] and developed by Okada [9] enables us to investigate the 

synchronous updating model. 

Although the patterns we treated above have no correlations a1nong them since they 

are randomly generated , one of the important results was obtained in treating correlated 

patterns [10, 11, 12, 13, 14 , 15]. Especially, Gardner found that the maximum storage 

capacity diverges proportionally to 1/ a ln a in the sparse coding limit a ----t 0 [15] when 

the embedded patterns are defined by 

with probability a 
with probability 1 - a. 

(1.11) 

The coding condition such as a rv 0 is called sparse coding. Since it is known that the level 

of activity in our brain is very low , it is very important to study the models concerning 

the above. 

\\ e can consider the att~actor neural network as a Inodule which provides a specific 
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Figure 1.4: Depiction of input-output circuit with the attractor neural network 

function. Let us consider the situation that we receive stimulus from the outer world and 

return a respon . vVe can divide such a process of the nervous system into three parts, 

input , central processing and output. Furthermore, the central processing can be divided 

into neural systetns with different functions and computational roles. Such neural systems 

receive the input , process it and transmit the output to the next module (see Fig.1.4) . 

The function of each module should be a result of the interaction of large number of 

neurons, and thus, the attractor neural network appears in the system. We can say that 

the function is a result of learning, so it is considered as one kind of associative memories 

[6, 8]. 
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1.3 Associative Memory Model with Oscillator Units 

The Hopfield model is based on the assumption that information is coded only in the 

mean activity level of the neurons. In the model, the units takes only two states, firing 

and non-firing states. However, as the biological experiments make progress , it has been 

revealed that the dynamical aspects of neuronal activities such as synchronous oscillations 

of neuronal ensembles are computationally significant in information proce sing [16, 17, 

18, 19, 20, 21]. :\tiany authors have proposed models concerning these aspects [22, 23, 24]. 

It has been reported that under suitable conditions, models composed of oscillator units 

work as associative memory and several properties such as maximum storage capacity and 

basin of attraction can be evaluated theoretically [25, 26, 27, 28, 29 , 30, 31]. Cook showed 

that the maximum storage capacity of the oscillator model adopted a generalized Hebb 

rule with uncorrelated patterns is 0.038. Aoyagi et al showed the basin of attraction by 

analyzing the dynamics in the retrieval process. They suggested that the oscillator model 

is attractive one to treat the dynamical aspects of neurons because of the mathematical 

tractability as well as the associative ability. 

1.4 Outline of the thesis 

The oscillator models mentioned above are based on the unrealistic situation that all the 

components in the network are always in the firing state. Since we described previously 

that the activity of our brain is very low, it is necessary to consider temporal coding and 

sparse coding simultaneously. 

In Chapter 2, we stud) the properties of oscillator neural networks treating sparsely 

coded phase patterns. In the former sections, we theoretically in\·estigate basic properties 

such as maximum storage capacity and basin of attraction by applying the theory of 

statistical neurodynamics. ~ext, we consider several advanced features of our model. In 
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particular , we study the robustness against the synaptic dilution of the oscillator model 

and compare the results with those of the traditional Hopfield model. 

In Chapter 3, we consider spurious states illustrated in Fig.l.3 of oscillator neural 

networks. The spurious state, which is also called mixed state, is formed as a result of 

storing patterns but not identical with them. Thus, we may consider that it is unneces

sary and undesirable for information processing. However, as Miyashita showed that the 

formation of a concept pattern can be interpreted as a mixed state, it plays important 

roles in the memory processing [32]. In addition, several models concerning applications 

of mixed states to the information processing have been reported [33, 34]. For a mixed 

state on temporal coding models, Wang et al have reported the retrieval ability by nu

merical simulations [35], however, few theoretical studies have been presented . Therefore, 

we investigate theoretically the properties of mixed states. In the former sections in this 

chapter, we analyze the stability of the OR mixed state in an oscillator neural network. 

At last, we propose an interesting example of using mixed states in the information pro

cessing. \t\ e can say that introducing mixed states provides us an ability of solving the 

binding problem in a smart manner. 

In the final chapter, we summarize the results and give some comments. 
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Chapter 2 

Analysis of Oscillator Neural 
Net-works for Sparsely Coded Phase 
Patterns 

2.1 Introduction 

One of the important but unsolved problems in neuroscience is to determine how infor

mation is coded in neuronal activities. lVIost of the traditional neural network models 

consisting of binary units are constructed on the assumption that information is coded 

only in the Inean activity level of the neurons. Although these models have provided us 

with theoretically interesting information, they ignore many dynamical aspects of neu

ronal actiYities. In fact, oscillatory activity appears to be ubiquitous in many neuronal 

systems. For example, some recent biological experiments have revealed that spatially 

synchronous oscillations of neuronal ensembles are dependent on the global properties of 

the external stimulus. It has been suggested that such synchronization is computationally 

significant in information processing [16, 17, 18, 19, 20]. The hippocampus is also one 

of the areas in which neuronal synchronization is observed and is believed to play an 

important role in memorv processing (20, 21] . 

\Vi th these new findings, n1any models concerning the dynan1ical aspects of neurons 

and memory processing ha\·e been proposed (22, 23, 24]. Among these, models consisting 
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of networks of oscillator components are particularly attractive, owing to their mathemat

ical tractability. Like the Hopfield model (3), the simplicity of these models allows us to 

obtain useful analytic results. In fact , it has been reported that under suitable conditions , 

the oscillator net\vork models model associative memory, and we can theoretically evaluate 

their maximum storage capacities and basins of attraction [25, 26, 27, 28, 29, 30 , 31]. 

However, such phase oscillator models are based on the unrealistic situation that all 

the components in the network are always in the firing state. In fact, real neurons can be 

in either the firing or non-firing state. In addition, it is known that the level of activity in 

our brain is very low. (i.e., at any given time only a small percentage of neurons are in the 

firing state.) This situation is termed sparse coding. From the results of theoretical studies 

of associative memory with binary units, it has been found that the storage capacity 

diverges as -1/alna as the activity level a becomes small (10, 11, 12, 13, 14, 15]. 

It thus see1ns that to faithfully capture the essential dynamics of real oscillatory neu

ronal systems, it is necessary to extend the oscillator model to treat the non-firing state 

as well as the firing state. 

In the next section, we first review the theoretical basis of the phase oscillator model 

and propose an extended version of the oscillator model to treat non-firing states. In the 

analysis of this model, we estimate the maximum storage capacity, derive the basin of 

attraction, and evaluate the quality of recalled memories. Then, we find that vvhen we 

define the threshold as a dynamical variable in a certain manner, the size of the basin 

of attraction can be increased. Embedding patterns with different acti\·ity levels and the 

influence of synaptic dilution are also studied. 
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2.2 Basic Properties of Oscillator Neural Networks 

2.2.1 Phase Oscillator Model 

Let us first start with a survey of the theoretical basis of the phase oscillator model. \Ve 

assume that neurons fire periodically and interact weakly with each other. In general , 

although such a neural system can be described in terms of many internal dynamical 

variables, it is well known that it can be reduced to a system of simple coupled phase 

oscillators [36, 37). In this form, we can characterize the state of the i-th unit by a single 

variable, cPi ( t), which is referred to as the phase. This variable represents the timing of 

the neuronal spikes at time t. A typical reduced equation takes the form 

(2.1) 

where Jij and /3ij characterize the interaction between the i-th and j-th units. Assuming 

that all natural frequencies wi(t) are equal to some fixed value w0 , we can eliminate the 

wi(t) term in Eq.(2.1) by redefining cPi(t) through cPi(t) ~ cPi(t) +w0t . When \Ve represent 

the state of the i-th unit by the complex form Wi(t) = exp(i<Pi(t)), Eq.(2.1) can be written 

in the alternati,·e form 

d~~ ( t) = ~ (hi ( t) - hi ( t) W/ ( t) ) , 
N 

hi(t) =I: cij wj(t), 
j=l 

(2.2) 

where the complex variable Cij = Jij exp(i/3ij) represents the effect of the interaction 

between the i-th and j-th units and hi(t) is the complex conjugate of hi(t). (vVe assume 

Cii = 0 throughout this paper.) Considering the fact that all units relax toward the 

equilibrium state satisfying the relation vVi = hd I hi I, \ve can simplify the above to the 

discrete tin1e system 

- ( ) hi ( t) 
rlt i t + 1 = lhi(t)l' 

V 

hi ( t) = I: cij vv1 ( t) . 
j=l 

(2.3) 

where the synchronous updating rule is assumed. vVe should remark that if we use asyn-

chronou updating, th equilibrium states of Eq. (2.3) are equ ivalent to those of the original 
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phase model. This can be easily shown by considering the noiseless limit in a statistical 

mechanics treatment. In this sense, this model can be thought of as a synchronous update 

version of the phase oscillator neural network with discrete time [28). 

2.2.2 Extended Model 

The weakness of the model described by Eq. (2.3) is that it can only be used to treat the 

firing state. vVe wish to extend this model so that it has the ability of retrieving sparsely 

coded phase patterns. In Eq.(2.3), hi(t) can be regarded as the local field produced by 

all other units. This field determines the state of the i-th unit at the next time step. 

In a real neuron, when the membrane voltage is less than some threshold, the neuron 

generates no neuronal spikes. Therefore, it is reasonable to extend the above model 

so that the generation of spikes depends on the strength of the local field. Based on 

this consideration, for oscillator neural networks we propose the following generalized 

synchronous model [36, 37): 

hi( t) 
vvi ( t + 1) = J ( I hi ( t) I ) I hi ( t) I , 

N 

hi(t) =I: cij ~vj(t). (2.4) 
j=l 

In this paper \Ye assume that j(x) = G(x- H), where 8(x) is a step function defined by 

8 ( x) = { 1 for x 2:: 0 
0 for x < 0, 

and H is a threshold parameter controlling the activity of the network. 

(2.5) 

Figure2.l(a) displays the function 8(x- H), and (b) illustrates the dynamical change 

at updating. Since the arnplitude IVVi(t + 1) I depends on the threshold H, it has a strong 

influence on the activity of the system. 

\"o,v, we define a set of complex patterns denoted by ~iL = A~L exp(ie:L) (J..L = 1, · · ·, P 

; i = 1, · · · , i\ ) , where P is the total number of patterns and . is the total number of 

units. The variables er and .-if represent the phase and the ainplitude of the i-th unit 
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in the p,-th pattern, respectively. For theoretical simplicity, we choose Af independently 

with the probability distribution: 

4~ = { 1 for firing state with probability a 
• z 0 for silent state with probability 1 - a. 

(2.6) 

For the firing state , Bf is chosen at random from a uniform distribution between 0 and 

21r. Note that all the patterns have the same mean activity level, a. As the learning rule , 

we adopt a generalized Hebb rule [4] taking the form 

C ·. = { a~ L~= 1 ~r~} fori =I= j 
zJ 0 for i = j. (2.7) 

I'\ote that the matrix of the synaptic efficacies Cij is self-adjoint. This rule is based on the 

hypothesis that when the i-th and j-th neurons are firing simultaneously, the connection 

between them is enhanced, and otherwise no modification occurs [4]. We also note that 

this is slightly different from the covariance rule adopted in the context of the learning of 

sparsely coded patterns. Owing to the rotational symmetry of the phase distribution in 

the patterns, cij can be defined in terms of the patterns ~r themselves, rather than the 

difference between the patterns and the average activity. 

\Ve \vould like here to make some comments about this extended model. As mentioned 

above~ it is well kno\vn that the dynamics of weakly coupled oscillatory neurons can be 

reduced to thos of phase oscillators through a systematic theoretical technique. At the 

sam time, this formalisrn can be also applied to a network of neuronal groups exhibiting 

periodic firing collectively, instead of a single neuron [37]. In this case, the phases of the 

oscillators can be regarded as the tin1ings of the oscillatory behavior which such neuronal 

groups exhibit. Therefore the phase is closely related to the tin1ings of the neuronal 

spikes. In this paper we have attempted to extend the previous model by introducing 

an amplitude variable phenomenologically in order to describe the non-firing state. By 

doing this , the relation between the model and real systerns may become less apparent , 

but the dvnan1ics of the phase variables are still able to rnodel those of real systerns. 
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Also, we believe that using a certain reduction technique , the relation between our model 

and real systems can be elucidated under suitable conditions. For example , we could 

consider a network consisting of neuronal systems exhibiting both oscillatory behavior 

and a non-firing state, and thus having both a limit cycle solution and a resting fixed 

point. 

2.2.3 Theoretical Analysis 

To analyze the recalling process theoretically, we must introduce several macroscopic order 

parameters. The load parameter a is defined by a = P / JV. Th overlap o/fJ.I. ( t) between 
I 

Wi(t) and ~fat timet is defined by 

(2.8) 

In practice, owing to rotational symmetry, the similarity between the state of the system 

H i(t) and the p-th pattern ~fL can be measured by mJ.I.(t) , the amplitude of ~fJ.I.(t). Now, 

let us consider the situation in which the system is retrieving the pattern ~l , that is, 

m(t) = m 1 (t) r-v 0(1), (2.9) 

The local field hi ( t) can be separated as 

(2.10) 

where zi(t) is defined by 

1 -
zi(t) = v I: ~f~jvVj(t). 

a j ,v:f.l 

(2.11) 

The first term in Eq.(2.10) is the signal driving the systen1 to recall the pattern, and the 

second term can be regarded as the noise arising fron1 the other learned patterns . It is 

the essence of our analysis that we treat the second noise terrn as a complex Gaussian 

noise characterized by 

(2.12) 
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It has been confirmed with numerical simulations that the assumption is valid as long 

as the network succeeds in retrieval [38]. Under the above assumptions, we study the 

properties of this network by applying the methods of statistical neurodynamics [7, 39: 

9, 40]. To begin with , we calculate the overlap at timet+ 1. From Eqs.(2.8), (2.4) and 

(2.10), J11 1(t + 1) is given by 

~ow, we assume that the phase of M 1(t + 1) is almost constant, that is, cp 1 (t + 1);::::::; cp0 . 

The validity of this assumption is supported by the results of preliminary numerical 

simulations. Owing to the rotational symmetry of the complex Gaussian noise, we can 

replace Zj(t) with zj(t)exp[i(cp0 +Bj)]. After some calculations, in the limit ~N-+ oo, we 

obtain 

m(t + 1) 
1"' 1 1 I~Jim(t)+zj(t) 
aN~ l~jlf(ll~jlm(t) + Zj(t)l) II~Jim(t) + Zj(t)l 

I I m(t) + z(t) )) 
\ \J(Im(t) + z(t)l) lm(t) + z(t)l z(t), 

(2.1.3) 

where<< >>z(t) represents the average over the complex Gaussian noise z(t) defined 

by Eq.(2.12). To calculate Eq.(2.13) numerically, we need the value of a(t), which is the 

variance of z( t). Thus, in the next step, we consider the relation between zi ( t + 1) and 

zi(t): from \vhich we can obtain the relation between a(t + 1) and a(t). From Eq.(2.11), 

the noise at time t + 1 can be written as 

(2 .14) 
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where hjv(t) and hj(t) are defined by 

hjv(t) = a~ L ~.f~1Wk(t) , 
k,J.L:j:V 

(2.15) 

~ ote that these functions satisfy the relation hj ( t) = hjv ( t) + hj ( t). vVe can carry out the 

summation in Eq.(2.14) under the assumption that hjv(t) is independent of ~f. Doing 

so, we obtain 

Zi ( t + 1) 

K(m(t), a(t)) 

G(m(t), a(t)) 

rv ]( (m ( t) , a ( t) ) + Zi ( t) G (m ( t) , a ( t) ) 

1 - h ·(t) 
= aN _L ~r~J f(lhj(t)l) lhJ·(t)l 

J,V:j:l J 

= I I a (!'(lm(t) + z(t)l) + f(lm(t) + z(t)l)) 
\\ 2 2lm(t) + z(t)l 

+(1 _a) (!'(lz(t)l) + f(lz(t)l)) )) 
2 2lz(t)l z(t)' 

where f' means the derivative of f. 

(2.16) 

(2.17) 

(2.18) 

Note that Eqs.(2.16), (2.17) and (2.18) are needed to calculate a in both the equilib-

rium and the non-equilibrium cases we will describe in the next two sections. 

2.2.4 Equilibrium State 

In this section, we consider the equilibrium state of our model, in which Zi ( t) is constant. 

Applying zi(t + 1) = zi(t) = zi to Eq.(2.16), we obtain 

Using this equation, we immediately obtain 

where 

11<1 2 = o: ((af(lm + zl) + (1- a)J(Izl)))z 

= o:Q. 
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(2.19) 

(2.20) 

(2.21) 

(2.22) 



Consequently, we find that the equilibrium state satisfies the equations 

m \ (t( lm + zl) I:: :I))' (2.23) 

a 
0'2 

r \ ( ~ 2(1- G)2Q 
(2.24) 

. t I ( (a ( f'(lm + zl) + f(lm + zl) ) J ( G (2.25) 
2 2lm + zl 

+(l _ a) ( f'(lzl) + f(l zl) ))) 
2 2lzl z 

Q = ((af(lm + zl) + (1- a)f(lz l)))z. (2.26) 

Solving the above equilibrium equations, we can find two types of solutions. If the 

load parameter a is smaller than a certain value ac, there exists a solution for which 

the overlap m between the system and the pattern is not zero. As m # 0 implies that 

the system has a correlation with the retrieved pattern: this solution corresponds to the 

retrieval state. Then, if a is larger than ac, there is only one solution, and for this solution 

m= 0. This solution therefore corresponds to the non-retrieval state . 

The critical load parameter ac is called "the maximum storage capacity':. We now ex-

amine our theoretical results by comparing them with results from numerical simulations. 

In Fig.2.2(a)) we show the dependence of ac on several parameters, such as the threshold 

H = 0.3, 6.5 0.8 and the activity level a. In (a), We can see that as the activity level a 

decreas s, the storage capacity ac increases for each H. In particular, in the limit a -t 0, 

we numerically find that the storage capacity diverges in proportion to -1/ a ln a, as in 

the case of the Hopfield model. The maximum storage capacity as a function of a and H 

is illustrated in (b). It is shov~n there that for any H, the storage capacity diverges as a 

decreases to zero. 
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2.2.5 Non-equilibrium State 

In this section, we derive dynamical equations to study the retrieving process. To obtain 

a recursion equation for u, we start with Eq.(2.16). Squaring Eq.(2 .16) we obtain 

2u2 (t + 1) = aQ(m(t), u(t)) + 2u2 (t)G2 (rn(t), u(t)) 

+2Re ( (K(m(t) , u(t)) zi(t)G(m(t), u(t)))) z(t), (2.27) 

where K(m(t) , u(t)) and G(m(t), u(t)) are given by Eqs.(2.17) and (2.18), and 

Q(m(t) , u(t)) = (( af(lm(t) + z (t)l) + (1- a)J(Iz(t)l) ll z(t) . (2.28) 

To proceed with the calculation, we must estimate the time correlation of the noise. 

For the first-order approximation , we ignore the temporal correlation of zi(t). v\e then 

obtain 

a 
2Q(m(t), u(t)) + u 2 (t)G2 (n-,(t) , O'(t)) 

+aa2 m(t + 1)m(t)G(m(t) , O"(t)) . (2.29) 

This correseonds to the Amari-i\:!aginu theory in the case of traditional neural networks 

[7]. 

For the second-order approximation, vve take into account the fact that zi ( t) is corre-

lated only with zi(t- 1), while all correlations with zi(t') fort' < t- 1 are ignored. In 

this case, u(t + 1) can be obtained from 

a 
0"

2 (t + 1) = 2Q(m(t) , u(t)) + 0"
2 (t)G2 (m(t) , u(t)) 

+aG(m(t), u(t)))\(t + 1, t) (2.30) 

+aa2m(t + 1)m(t- 1)G(m(t) , u(t))G(m(t - 1) , u(t- 1)) , 

vvhere Q(m(t) , O"(t)) is given by Eq.(2.28), G(m(t) , u(t)) is given by Eq.(2.18) , and 

(2.31) 
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Here, 

aX(t, t- 1) a(t- 1) 
p(t, t- 1) = 2a(t)a(t _ 1) + a(t) G(m(t- 1), a(t- 1)) (2.32) 

is needed to evaluate Eq.(2.31). :\ote that p(t, t- 1) is the correlation coefficient between 

z(t) and z(t-1). For the second order approximation , consequently, the retrieving process 

of the net\vork is described by the equations 

m(t+1) = 

.)((t+1 , t) 

p(t, t- 1) 

G(rn(t), a(t)) 

Q(rn(t) ,a(t) ) = 

1 ~ 1 1 l ~] lm(t) + zj(t ) 
aN 71~] l f(ll~j Jm(t) + zj(t)J ) II~Jirn(t) + Zj (t) i 

( (j(lm(t) + z(t )l) l:i~~: :i~~~)) z( t) 

a 
2Q(m(t), a(t)) + a 2 (t)G2 (m(t) , a(t)) 

+aG(m(t), a(t)) ~Y(t + 1, t) 

+aa2m(t + 1)m(t- 1)G(m(t) , a(t))G(m(t- 1), a(t- 1)) 

Re< Wj(t + 1)Wj(t) >j 

aX(t,t-1) a(t-1) 
2 () ( )+ () G(m(t-1) , a(t-1)) atat-1 at 

((
a (!'( jm(t) + z(t)j) + f(im(t) + z(t)J) ) 

2 2jm(t) + z(t)J 

+(l _a) (!'(j z(t)j) + J(j z(t)J) ) )) 
2 2jz(t) j z(t) 

(( aJ(jm(t) + z(t)j) + (1- a)J(jz(t)J) ))z(t). 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

For initial conditions, we choose a 2 (0) = aa/2 , X(O , -1) = 0 and X(1, 0) = a2m(1)m(O). 

·~..;e choose many values of the initial overlap m(O) and carry out numerical calculations 

for each. In this way we determine the lower bound, under which the network fails to 

retrieve the pattern. 

For higher-order approximat ions , we could derive similar generalized equations de

scribing the ret rieval dynamical process . However, as shown in Fig.2 .3, the theoretical 

prediction at second order gi \·es reasonable agreement with the numerical simulation in 

contra t to that at first order. \Ve thus conclude that it is sufficient to use the second-order 
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approximation for the theoretical analysis in this paper. 

Figure2.4 displays a phase diagram for m(O)c and m( oo) at various mean activity 

level a and threshold H. The solid lines and the data points here correspond to the 

theoretical and the numerical results, respectively. It is seen that even in the region 

1 satisfying a < ac, the system cannot retrieve the pattern if the initial overlap m(O) is 

smaller than m(O)c. The boundary corresponding to m(O)c is represented by the lower 

curves in Fig.2.4. Thus, for m(O) 2:: m(O)c, m(t) reaches the value of the upper curves 

m(oo) , while for m(O) < m(O)c, m(t) decreases to zero. We should note that the basins of 

attraction remain wide even near ac. This can be thought of as an advantage of associative 

memory. 

To predict the correct behavior of the retrieval dynamics, it is necessary for the time 

correlation of the noise terms to be taken into account, and thus the second-order approx-

imation discussed above is necessary. In the case we consider, this order is also sufficient, 

but interestingly, it has been reported that the fourth-order approximation is necessary 

when a = 1 and H = 0 [28]. The question arises why the second-order approximation 

is not sufficient in this case, while it is sufficient in the case we consider. The key point 

here is that the order of the last term in Eq.(2.34) is proportional to the square of the 

activity level a2
. F~r ~ < 1, this factor a2 weakens the influence of the time correlation 

on the recalling process. Consequently, for a sparse coded pattern with a < 1, even the 

second-order approximation results in reasonable agreement with the numerical results. 

2.3 Advanced Properties of Oscillator Neural Net
works 

2.3.1 Sequence Generator 

In this section, we consider the case in which the network retrieves a cyclic sequence of 

P patterns associatively, say ~ 1 -7 ~2 -7 · · · -7 ~P -7 ~ 1 -7 · · · . In order to allow for such 
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a process: \Ye employ synaptic connections of the form 

C _ 1 ~ v+l v 
ij - --,;:; ~ ~i ~j. 

al v=l 
(2.39) 

In a manner similar to that in the derivation of Eqs.(2.29) and (2.34) , we obtain the 

following equations: 

ex 
2Q(m(t) , o-(t)) + o-2 (t)G2 (m(t), o-(t)) (2.40) 

m(t + 1) I I m(t) + z(t) )) 
\ \J(Im(t) + z(t)l) lm(t) + z(t)l z('). 

(2.41) 

Note that, since the target pattern changes from time to time, for the definition of the 

overlap we adopt m(t) = mll-(t) =la~ I:f= 1 ~f~Vi(t)i, where f-L is the number of the target 

pattern at timet. Here G(m(t), o-(t)) and Q(m(t), o-(t)) are the same as those defined 

by Eqs.(2.37) and (2.38) , respectively. vVe should note that in the limit N ---1 oo, the 

last term in Eqs.(2.29) and (2.34) vanishes in Eq.(2.40), because the effect of the time 

corr lation can be ignored in the above derivation. Therefore, in a sequence generator, it 

is expected that our theoretical prediction is almost exact. 

Figure2.5(a) displays a phase diagram obtained from our theoretical analysis. All the 

lines of heoretical results agree with the numerical ones quite well , as expected. This 

agreement suggests that higher-order approximations will result in even better agreement 

and leads us to believe that our theoretical derivation is valid. In (b) it is also sho'vvn 

that: like auto-associative n1emory (Fig. 2.2 (b)), the storage capacity diverges in the lirni t 

a ---1 0. This is regarded as expressing the meaning that in the limit of sparse coding (i.e., 

as a ---1 0). ". can embed an infinite length of sequential patterns. 

2.3.2 Dynamically Adjusted Threshold 

Fron1 Fig.2.4 it appears that the basin of attraction for our model is sn1aller than those 

in the binarv n1odel and the pha e oscillator. In this section we attempt to increase 
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the size of the basin of attraction by defining the threshold as a dynamical variable that 

is proportional to the standard deviation of the noise. Therefore, assuming the same 

condition as in Sec.2.2 .2: we add the equation 

H(t) = J -2ln ao-(t) , (2.42) 

where H(t) is the threshold at time t. This choice for the form of H(t) is made to 

insure the relations m ~ 1 and [activity level] ~ a, which cause the Hamming distance 

between the state of the unit and the retrieved pattern to be small [41]. Comparing 

Fig.2.6 with Fig.2.4, it is seen that the basin of attraction can be enlarged by introducing 

the dynamically adjusted threshold into our model. Therefore, when we introduce the 

dynamically adjusted threshold, our model has an advantage similar to that of the binary 

model and the phase oscillator. 

2.3.3 Patterns Generated with Different Activity Levels 

f To this point, we have assumed that the activity levels are equal for all patterns. However, 

\

it is likely that the actual activity level depends on the pattern which the network is 

retrieving presently, in other words, on the content of the required information processing. 

Unfortunately, using a traditional neural network, we encounter difficulties in storing 

patterns with different activity levels simultaneously. In this section, we demonstrate 

that, unlike traditional models, the proposed oscillator model can easily store multiple 

patterns with different activity levels using a simple Hebbian learning rule. 

Let us consider a set of complex patterns defined by 

Prob[lt;fl = 11 = { ~~ for 1 ~ J.L ~ P1 
for P1 + 1 ~ /L ~ P , 

(2.43) 

where generally a 1 -:j:. a2 . Thus, the total number of the patterns \Vith activity level a1 is 

P1, while the total number of patterns \vith the activity level a2 is P2 = P- P1. Csing 

the above patterns) grouped into t\.vo different activity le\·els, we examine whether the 
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network can retrieve patterns having different activity levels. To retrieve such patterns, 

we use the following modified form of the learning rule Eq.(2.7): 

(2.44) 

\.Yith the method described in Sec.2.2, we can derive both equilibrium and dynamical 

equations. The results have the same forms as those in Sec.2.2. However, here the value 

a1 should be used in place of the activity parameter a in the previous equations, because 

the retrieval pattern ~i1 has an activity level a 1 . Let us define the load parameter as 

a1 = P1/ N with respect to the retrieval pattern. (The usual load parameter is defined as 

a= P/N = (P1 + P2)/JV.) The theoretical analysis yields a 1e = const.- a 2 , where a 1e 

is the maximum storage capacity for a 1, and a2 is the storage capacity for a2 . Figure2.7 

displays ale as a function of a2 = P2/ N. vVe can see from Fig.2. 7 that a 1e = a( ar) - a2, 

where the constant value a(a1 ) is given by the equations in (2.23), (2.24), (2.25) and 

(2.26) for a = a1 . For the maximum storage capacity a 2c associated with the activity 

level a2 we ha,·e a2e = a(a2) - a 1 . 

Let us consider the case P1 = ?2 . Note that in this case, a 1 = a2 and the total 

storage capacity a has the relation as a= 2a1 = 2a2 . We assume that a 1 = 0.1, a2 = 0.2 

and H = 0.3. Under these conditions, the basin of attraction obtained both from the 

theoretical analysis and the numerical simulations is displayed in the left panel of Fig.2.8. 

\Ve should note that in the region (b), the patterns with activity a 1 can be recalled, while 

the patterns with acti,·itv a2 cannot. Since we consider the case P 1 = P2 , the vertical 

lines correspond to half of the usual maximum storage capacities. In the right figures, we 

display typical behavior of the overlap m(t) for the initial condition m(O) = 0.5. The load 

parameters a= 0.02 0.05 and 0.08 used here correspond to the regions (a), (b) and (c) 

sho...,vn in the left figure, respectively. The evolutions corresponding to these values of a 

represent the retrie,·al processes of ~l and ~[1 + 1 associated with the activity levels a 1 and 

26 

a2 , respectively. Note that in the region (b), the patterns with a= 0.2 act only as noise 

when the network is recalling the pattern with a = 0.1. As a whole, the above findings 

suggest that the network has a good ability to retrieve patterns with different activity 

levels. vVe should remark that the patterns with activity a 1 can be stored more stably 

rather than those with activity a2 when a1 < a2. 

2.3.4 Dilution 

In this section, we study the influence of random synaptic dilution on the model's asso-

ciative memory capability. For the case of the phase oscillator model, that is when a = 1 

and H = 0, this effect has already been reported (31, 29]. Following the method used in 

that case to treat random synaptic dilution in our model, we assume that the synaptic 

efficacies for j =f. i take the form 

(2.45) 

where cij is the standard Hebbian matrix, as defined by Eq.(2.7), and, the Cij are indepen-

dent random variables, taking the values 1 and 0 with probabilities c and 1-c, respectively. 

Note that the dilution parameter c represents the ratio of connected synapses. In the limit 

N ---7 oo, Eq.(2.45) can be regarded as 

cij = cij + TJij, (2.46) 

where the synaptic n01se IJij 1s a complex Gaussian noise with mean 0 and vanance 

1J2 / N (42]. The relationship between the dilution parameter c and the variance TJ can 

be calculated as 
1- c 

TJ2 =--a. 
c 
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Under the same assumption as that used in obtaining Eq. (2.9) , we can separate the local 

field into the signal and two noise parts as follows: 

N 

hi(t) = I: cij wj(t) 
j 

N 

L(Cij + 1Jij)Wj(t) 
j 

N 1 p -

L( -NI: ~re;+ 1Jij)~vj(t) 
j a J.L=l 

A1 1 (t)~l + zi(t) 

j\J 1 (t)~l + zf(t) + zf(t), 

where zf(t) and zt(t) are defined as 

zf( t) 

N 

zt ( t) = L 1Jij wj ( t). 
j 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

The ne\v noise term zi(t) is caused by synaptic dilution, while the term zf(t) is like 

the noise defined by Eq. (2.11), representing the crosstalk noise arising from the other 

embedded patterns . In analogy to our treatment in Sec.2.2 , we assume that zf(t ) and 

zi(t) are independent complex Gaussian noises with mean 0 and variance O";(t) and O";(t) , 

respectively. Therefore zi ( t) can be regarded as a complex Gaussian noise with mean 0 

and variance 20"2 
( t) = O"; ( t) + O"; ( t). Thus, we can derive dynamical equations in the same 

way as in Sec.2.2. The form of the macroscopic order parameter m( t + 1) is the same as 

that gi ·en by Eq.(2.13). 

First, appl ving the theory of statistical neurodynamics to zf ( t), we calculate a; ( t). 

Ho,vever, to apply the theory of statistical neurodynamics , it is necessary to take into 

account the s cond term in 

zs(t + 1) = ~7J ·· f(ihoi) h~ + n /(t) ~7] ·· 7] ·· (f'(lh~l) + J(ih~i)) 
L ~ LJ J lhql l ~ LJ )t 2 2lfql l 

] J J ~ 
(2.52) 

28 

where h~ = hj(t) -7]jiWi(t). As reported in [29], for the asymmetrical case, 1Jij # 7J]i, the 

second term here can be ignored. Then, as seen from Fig. (2.9), there is little difference 

between symmetric and asymmetric cases in a sparse coding system. Thus we conjecture 

that this term can be ignored altogether. Doing so, in the ~ ---t oo limit , we obtain 

O";(t) 772Q(m(t), O"(t)) 

1- c 
-o:Q(m(t) O"(t)), 

c 

where Q(m(t) , O"(t)) is defined by Eq.(2.38). 

For the crosstalk noise zi(t), in analogy to Eq.(2.16), we obtain 

zf(t + 1) = K(m(t), O"(t)) + zf(t )G(m(t) , a(t)), 

(2.53) 

(2.54) 

where K(m(t),O"(t)) and G(m(t),a(t)) are defined by Eqs.(2.17) and (2.18), respectively. 

2.3.5 Equilibrium State 

In the equilibrium state, putting zi(t) = zi(t + 1) into Eq.(2.54), we obtain 

zc 
]{ 

2 1- G 
') o:Q 

a-
(l-G) 2 . c 

Therefore , 0" 2 , the variance of z( t), takes the form 

1 2 1 2 
-a + -(]" 2 c 2 s 

( 
1 1- c) 

2(1- G) 2 + ~ o:Q. 

(2 .55) 

(2.56) 

(2 .57) 

Consequently, the properties of the network in the equilibrium state can be calculated 

frorn Eqs.(2.23), (2.57), (2.25) and (2.26). In Fig.2.10, we summarize the theoretical 

results concerning the dependence on the ratio of connected synapses c. In Fig.2.10(a), it 

is found that the ma.~imum storage capacity is an increasing function of the connectivity 
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c. Particularly, we can see that, as the activity level a becomes small, the storage capacity 

decreases almost linearly with the connectivity c. A similar linear dependence is observed 

in the case of the diluted Hopfield model. On the other hand , in (b), it is found that even 

if the ratio of connectivity is small , the maximum storage capacity tends to diverge in the 

limi t a -t 0. However. it seems that the rate of this divergence decreases as c decreases. 

2.3.6 Non-equilibrium State 

In order to estimate the robustness with respect to synaptic damage, we should also 

consider the influence of synaptic dilution on the retrieval process, particularly, on the 

basin of attraction . For this purpose, we can apply the same method as used in the 

derivation of Eq. (2.34). After some calculations, the resulting recursion equations at 

second order are given by 

a 
o-

2
(t+ 1) = 2Q(m(t),o-(t)) +o-2 (t)G2 (m(t),o-(t)) 

4\:(t + 1, t) 

p(t , t-1) 

+aG(m(t) , o-(t))X(t + 1, t) 

+aa2m(t + l)m(t- 1)G(m(t) , o-(t))G(m(t- 1) , o-(t- 1)) 

1 
+2(1- G2 (m(t), o-(t)))TJ2Q(m(t) , a-(t)) (2 .58) 

Re < vVj ( t + 1) vVj ( t) > j ( 2. 5 g) 

a.-Y ( t , t - 1) a- ( t - 1) 
? () ( ) + () G(m(t- 1) , o-(t- 1)) (2.60) 
~a- t () t - 1 () t 

.~\(t , t- 1)- G(m(t- 1), o-(t- 1))Q(m(t- 1), o-(t- 1)) 2 

+ 2a(t)a(t- 1) TJ ' 

where TJ is related to the connectivity c 'Via Eq. (2.4 7). As mentioned in Sec.2.2 , Eq. (2.60) is 

used to calculat Eq.(2.59). For initial conditions, we choose o- 2 (0) = aa/2c, .-Y(O, -1) = 0 

and .X(1, 0) = a2 m(1)m(O). In the case of a= 0.1 and H = 0.5 , Fig.2.11 illustrates the 

theoretical results concerning the basins of attraction for various values of the connectivity 

c. \ ·e can see that near saturation a rv ac , the basin of attraction remains large even 

for lO\\ connectivity. Therefore, we find that synaptic dilution has little influence on the 
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width of the basin of attraction, even though the storage capacity decreases with the 

connectivity. 

2.4 Conclusion 

In this chapter , we have presented a simple extended model of oscillator neural networks 

to allow for the description of the non-firing state. vVe have studied the model 's associati\ e 

memory capability for s.narsely coded phase patterns, in which some units are in the non-

firing state and the other units encode information in the phase variable representing the 

timing of neuronal spikes. In particular, applying the theory of statistical neurodynamics , 

we have evaluated the maximum storage capacity and derived the basin of attraction. We 

have found the following properties of our model in its basic form: 

• In both case of auto-associative memory and sequence generators , the storage ea-

pacity diverges as the activity level decreases to zero. It was numerically found that 

the storage capacity diverges proportionally witly -1/a ln a in the limit a-t 0. 
_..,./..-

• Even just below the maximum storage capacity, the basin of attraction remains 

large. 

v~"e then investigated the model with regard to the size of the basin of attraction. \~Ye 

found that with the model in its basic form, the basin of attraction is smaller than those 

of the binary model and the phase oscillator. For associative memory, it is desirable that 

the basin of attraction be large. For this reason, we considered employing a dynamically 

adjusted threshold , and we found the following: 

• The basin of attraction can be enlarged by using the dynamically adjusted threshold. 

In vie\v of biology, the neurons may die of age or be injured by accident. Thus , the ) 

robustness with respect to synaptic damage is important for real neuronal systems. For \ 
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this reason , we also investigated our model with regard to robustness , and we found the 

following: 

• It was found that the system is robust with respect to synaptic damage: Even in the 

case of a high cutting rate , the basin of attraction remains large , and the maximum 

of the storage capacity diverges in the a -t 0 limit. For low activity patterns , the 

maximum storage capacity decreases almost linearly with the ratio of connected 

synapse. 

The above properties are common with the Hopfield model. In addition, we have found 

that our model possesses a novel feature not seen in the Hopfield model. In realistic 

situations , the activity level of the firing pattern may generally depend on the content 

of the information processing. Using traditional neural network models based onlv on 

activity rate coding, however, we encounter difficulties when the network simultaneously 

stores such patterns with different activity levels . Contrastingly, with our model, we found 

the following: 

• Unlike the Hopfield model, provided that the phase distribution in the embedded 

patterns is uniform , it was shown that patterns with d ifferent activity levels can be 

memorized simultaneously. 

In conclusion from the above findings it is seen that the oscillator neural network 

exhibits good performance in the case of sparse coding. In this situation, the phases of 

the oscillators can be regarded as the timings of oscillations in the original system, which 

are closely related to the timings of the neuronal spikes. This implies that in our model 

inforn1ation is encoded by the relative timing of oscillations, which corresponds to spikes 

in the original SYStem. This is one type of temporal coding. In this sense, we believe that 

these results support the plausibility of temporal coding. 
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In the description provided by our model , a firing state and a non-firing state corre

spond to the existence of a limit cycle solution and a steady solution, respectively, even 

if a very low frequency is considered. However, to obtain interesting results , we have 

assumed that the native frequencies of all neurons are the same. This may be biologically 

unrealistic. In addition, we have not considered the probabilistic nature of the synapses 

and neurons, which may play an important role in the information processing. A more 

realistic treatment in which these points are considered more carefully is needed. 
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f(x) 
(a) 

H X 

lm["'i] 
(b) 

8.(t) 
l 

silent state '---firing state 

F igure 2.1: (a) The step function f (x) = 8(x- H), where His the "threshold": When 
lhi(t)l ~ H, lvVi(t+l)l = 1, and otherwise, lvVi(t+l)l = 0. (b) Depiction of the dynamical 
change of the state of the unit. The circle and the origin correspond to the firing state and 
the non-firing state, respectively. The phase and amplitude of Wi(t) change according to 
Eq. (2.4). 
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Figure 2.2: (a) Storage capacity ac as a function of the mean activity level a for various 
thresholds H. The data points indicate numerica~ results with JV = 1000 for 20 trials. 
The lines were obtained from theoretical analysis. (b) A three-dimensional isometric plot 
of the Inaximuin storage capacity ac as a function of a and H from the theoretical results. 
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Figure 2.4: (a) ~ction~ '{arious values of the threshold H, with a= 0.1. 
The data points are the results of the numerical simulation , the dashed lines correspond 
to th st-order approximation , and the solid lines correspond to the second-order ap
proximation. 1e results of the numerical simulation were obtained with JV = 1000 for 
20 trials. (b) San1e as (a) but with a = 0.5. 
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Figure 2.5: (a) Basins of attraction for various activity levels a and thresholds H. The 
data points are the results of the numerical simulations (iV = 1000 for 20 trials) , and 
the solid lines are the theoretical results. (b) A three-dimensional isometric plot of the 
maximum storage capacity a, as a function of a and H from the theoretical results. 
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Figure 2.6: Basins of attraction in the case that H(t) is a dynamically adjusted variable 
with a == 0.1. Comparing with Fig.2.4(a), we find that this mechanism enlarges the 
basin of attraction. The data points represent the results of a numerical simulation with 
N == 1000 for 20 trials, and the line is the theoretical result. 
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\vith a = 0.1 and a = 0.2 are embedded in equal number at the same time. Here H = 0.3. 
The dotted line and the data points represent the theoretical and the numerical results! 
respectivel_y. The vertical long-dashed line indicates the n1aximum storage capacity for 
patterns with a = 0.2. Thus, in the left figure (a) is the region where both activity level 
patterns are successfully retrieved : (b) is the region where only patterns with a = 0.1 can 
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These are the results of the numerical simulation. 
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Figure 2.10: (a) Dependence of the maxirnum storage capacity on the ratio of connectivity 
c for various activity levels \vith H = 0.5. Here we adopted the normalized maximum 
storage capacity by cxc(1). The solid lines represent the theoretical results, and the data 
points represent the numerical results with JV = 2000 for 20 trials. (b) A three-dimensional 
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Chapter 3 

Studies of Mixed States in Oscillator 
Neural Networks 

3.1 Introduction 

Through the studies of associative memory models with binary units , it is known that 

as a result of learning, a pattern, which is similar to learned patterns but not identical 

with them, becomes a stable state as illustrated in Fig.1 .3. This state is called "mixed 

state" and theoretically studied with binary models [43 , 44, 45]. Though we may consider 

it is unnecessary and undesirable for the information processing, some examples of using 

mixed states in the information processing have been reported [33, 34]. In addition , the 

physiological experiments by Miyashita [32] can be related to a mixed state. 

) For mixed states in the temporal carding, only a few study have been reported [35]. 

In this chapter, we study the mixed states on the oscillator model we have proposed 

in Chapter 2 except for patterns. We theoretically analyze the equilibrium state of the 

system and investigate the maximum storage capacity for the mixed state. In discussion , 

we propose a few examples applying the mixed states to the information processing. 
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3.2 Model 

Following Chapter 2, we represent the state of the i-th unit and the local field produced 

by all other units at timet by W'i(t) and hi(t), respectively. Then we treat the following 

synchronous model: 

hi ( t) 
vvi ( t + 1 ) = J ( I hi ( t) I ) I hi ( t) I , 

N 

hi(t) = ~ cij ~vj(t), (3.1) 
j = l 

where t he effect of the interaction between the i-th and j-th units cij is defined below. 

Next, we define a set of complex patterns as follows: 

~fv = TJfv exp(iBf ), (J-L = 1, · · ·, P; v = 1, · · ·, s; i = 1, · · ·, N), (3.2) 

where we choose TJfv independent ly with the following probability distribution, 

J-LV _ { 1 for firing state with probability a 
TJi - 0 for silent state with probability 1 - a. (3.3) 

For the firing state, 8f is chosen at random from a uniform distribution between 0 and 

With these patterns, we define two types of mixed states. 

• Type 1: mixed state composed of patterns with the same phase 

xr = 8 (t TJfv - 1) exp( iBf) 
v=l 

(3.4) 

• Type 2: mixed state composed of patterns with the different phases 

(3 .5) 

vVe illustrate examples of the original patterns and the rnixed states 1n Fig.3.1. Fig-

ure3.1(a) and (b) correspond to the mixed state defined by Eq.(3.4) and (3.5), respec-

tively. ;\ote that the type 1 mixed state corresponds to the OR mixed state and we also 
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note that the mixed state defined by Eq.(3.5) is equivalent to that defined by Eq.(3.4) 

when all the phases at each site er for J-L = 1, ... , s are identical. 

The original patterns defined by Eq. (3.2) and the mixed states defined by Eq. (3.4) orga-

nize the following a kind of hierarchical structure, 

E[~fv ~{ v'] {:2 
( J-L i- 1-L') 
(J-L = J-L

1 and v =f- v') (3.6) 
(J-L = J-L

1 and v = v') 

( Jl -~/ v'] {~ ( J-L i- 1-L') (3.7) E Xi ~i 
(J-L = J-L') 

I g- (1- a)' 
(J-L i- 1-L') E[xtxr l 
(J-L = J-L'). 

(3.8) 

Figure 3.2 displays the structure between the original patterns and the type 1 mixed 

states. 

1 ·ow, we define the effect of the interaction between the i-th and the j-th units with 

C· · = aN L..,Jl=l L...,v=ll.:,i l..:,j 'l T J 
{ 

1 '\'p '\'S r:/.LV it.LV ( · _j_ ·) 

t] 0 ( i = j). 
(3.9) 

3.3 Theory 

At first, we theoretically consider the stability of the type 1 mixed state defined in the 

systern represented by Eq.(3.1), (3.2), (3.3) and (3.9). To analyze the equilibrium state of 

the system theoretically, we define the following order parameters. The storage capacity 

CL is defined by CL = sPIN. And the overlap mt.LV ( t) between wi ( t) and ~fv is defined by 

(3.10) 

In addition, we define the overlap m~(t) between w·i(t) and the mixed state xf by 

(3.11) 

where am = 1 - ( 1 - a) 5
, which is the activity level of the mixed state . 

In general , we can consider the situation in which the system is retrieving the mixed state 
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1 h . Xi, t at IS, 

(J-L i- 1) (3.12) 

m~(t) mm(t) rv 0(1) , (J-L i- 1). (3.13) 

The local field hi ( t) can be separated as 

s 

hi(t) = z JVI 1 v(t)~lv + zi(t), (3.14) 
v=l 

where zi(t) is defined by 

(3.15) 

vVe treat the second noise term as a complex Gaussian noise characterized by 

(3.16) 

Assuming the above, we obtain the equilibrium equations in the final form by applying 

the methods of statistical neurodynamics generalized to treat the structured patterns [46] 

(see appendix A), 

m ~ k 1 s k I I mk + z ) ) ~ s-tCk-la- (1- a) - \ \f (lmk + zl) lmk + zl z, (3.17) 

mm a~'!;; ,Ckak(1- a)s-k ( (1 (lmk + zl) I:~: :I)) z, (3 .18) 

CLQ 1 + (s- 1)a ) 1 -a 
[ }2 { }2] ~ { 1- {1 + (s- 1)a}G + (s-

1 
1- (1- a)G ' 

(3.19) 

G ~ C k( 1 - )s-kllf'(lmk+zl)+f(lmk+zl))) 
f;:as ka a \\ 2 2lmk+zl z' (3.20) 

s 

Q L sCkak(1- a)s-k \ \!2 (lmk + zl))) z. (3.21) 
k=O 
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3.4 The results 

In Fig.3.3 , we show the dependence of ac on the activity level a under the parameters 

s = 1, 2, 3 and H = 0.5. It shows that the maximum storage capacities concerning the 

mixed states (s = 2, 3) keep the feature similar to that of the maximum storage capacity 

concerning the embedded pattern itself (s = 1), that is, in the sparse coding limit a----t 0, 

the storage capacity diverges. Thus, we can conclude that the type 1 mixed state can be 

recalled stably. 

Finally, we mention the stability of the type 2 mixed state. Figure3.4 displays the time 

dependence of the overlaps mm (t) ( s = 2) of both the type 1 and the type 2 mixed state, 

which are calculated by the numerical simulations. It is shown that the type 2 mixed 

state could not be retrieved while the type 1 mixed state can be recalled successfully. vVe 

check this feature is seen in the several activity levels and/or s. This suggests that the 

type 2 mixed state is less stable than the type 1 mixed state. 

3.5 Conclusion 

In this study, we theoretically and numerically considered the stability of the mixed states 

in the extended oscillator neural network model. The results are summarized as follows. 

• Applying the theory of statistical neurodynamics generalized for the structured pat-

terns, we have estimated the maximum storage capacity of the type 1 mixed state. 

It suggests that the maximum storage capacity diverges in the sparse coding limit . 

Our th~oretical results are in good agreement with numerical simulations. 
---=-

• The numerical simulation suggests that the maximum storage capacity of the type 

2 n1ixed state is less than that of the type 1 mixed state. 

Based on these results, we mention following examples of using such mixed states in 

the infonnation processing. 

50 

• Conformation of concept patterns 

It is said that we store memories in a hierarchical manner [32), and some papers 

modeling it have been proposed [47]. In addition, some authors have proposed 

models considering the relationship between the concept pattern and the mixed 

state [33]. Introducing the phase, we simply realize this function. Let us consider 

the following situation. We suppose the correlated patterns ~ 11 and ~ 12 to be the 

representations of the individuals in the category 1, and ~21 and ~22 to be the 

representations of the individuals in the category 2. In this situation, the mixed 

patterns x1 and x2 (see Fig.3.1(a)) can be considered as the concept patterns related 

to the category 1 and the category 2, respectively. These concept patterns are 

retrieved successfully. On the other hand, since the mixed state composed of ~ 11 

and ~21 (see Fig.3.1(b)) is not so stable, we can say that few concept patterns are 

formed between them. In this sense, the phase and the amplitude represent the 

category and the individual, respectively. 

This is one of the examples showing the validity of using the timings of the spikes in the 

information processing, since with the traditional binary units, undesirable mixed states 

are also stable and successfully retrieved. This example realize the following conflicting 

situation. 

1. Usually, the memory patterns included in the same concept pattern should be similar 

to each other [33, 46]. 

2. In some cases, each representation for physical property in the same concept might 

be different from others. 

3. On the other hand, representations for memory items belonging to different classes 

might share similar physical properties. 
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In this paper , we have treated homogeneous firing patterns which correspond to the 

homogeneous physical properties. The ultra-metric structure is only conveyed by the 

phase information of our model. This formulation corresponds to the situation that all 

of physical properties are homogeneous, and the concept information is only embedded 

in the phase information. It is the dual coding that enables this type of information 

processing. 
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Figure 3.1: Depiction of the relationship between the embedded patterns and the mixed 
states for s = 2. The circles and the illustrated phases are correspond to the firing states 
and the timings of the spikes, respectively. (a) Type 1 mixed state: For the patterns such 
that the phases at the sites which fire simultaneously are identical (see the sites en closed 
with the long dashed squares), the mixed state could be considered to characterize the 
original patterns. (b) Type 2 mixed state: In contrast, when the phases are not identical 
(see the sites enclosed with the short dashed squares), the patterns may not organize a 
concept pattern. 
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Figure 3.2: Depiction of the hierarchical structure between the type 1 mixed states and 
the original patterns. ~J.Lv and xJ.L are the original patterns and the type 1 mixed states, 
respectively. Each phase pattern organizes the tree and the nodes belonging the same 
tree are correlated , however, there is no correlation among the nodes of different trees. 
The type 2 mixed state x could not be classified into the structure. 
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Figure 3.3: Storage capacity ac as a function of the mean activity level a for a threshold 
H = 0.5 and 1nixed numbers s = 1, 2, 3. The data points indicate numerical results with 
N = 2000 for 20 trials. The lines were obtained from theoretical analysis. 
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Chapter 4 

Con cl us ions 

In the preceding chapters , we study the properties of the associative memory model with 

oscillator units under sparse coding. Here we summarize our results. 

• The properties of the oscillator neural networks for sparsely coded phase patterns 

were studied. Here, we treated sparse coding and temporal coding at the same 

time. At first, applying the theory of statistical neurodynamics, we obtained the 

order parameter equations at the equilibrium state and those describing the re-

trieval process both in the auto-associative memory and in the sequence generator. 

From the equilibrium equations, it is found that the maximum storage capacity 

diverges in proportion to -1/ a ln a in the sparse coding limit, as in the case of Hop-

field model. From the dynamical equations, we estimated the basin of attraction , 

which seems narrow compared with the Hopfield model. However, we found that 

in auto-association , it can be enhanced by introducing the dynamically adjusted 

threshold. \Ne also found theoretically that when the phase distribution in the em-

bedded patterns is uniform, patterns with different activity levels can be memorized 

simultaneously, which can not be achieved in the Hopfield model. In addition, we 

theoretically investigated the robustness against the random synaptic dilution. It is 

found that even in a high cutting rate, the basin of attraction rernains large, and the 

maximum storage capacity still diverges in the sparse coding limit. For low activity 
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patterns, the maximum storage capacity decreases almost linearly with the ratio of 

connected synapses. The validity of these theoretical results is confirmed by good 

agreement with numerical simulations. 

• The stability of mixed states in the oscillator neural networks under sparse coding 

was studied. In this study, we adopted the correlated patterns to be memorized. 

Applying the methods of statistical neurodynamics, we theoretically investigated 

the maximum storage capacity concerning the OR mixed state, which is composed 

of patterns correlated each other. We found that it diverges in the sparse coding 

limit. The theoretical results are in good accordance with numerical simulations. 

Next, we compared the stability of the OR mixed state and that of the mixed state 

composed of uncorrelated patterns by numerical simulations. From the results, 

we can conjecture that the OR mixed state is more stable than the other type of 

mixed state. Using this difference of stability, we proposed an example of concept 

formation. 

In this thesis, we found that introducing the timing of neuronal spikes causes new 

possibilities of information processing. In particular, the simple understanding of 

concept formation depends on the dual coding system. This coding mechanism gives 

us smart solutions for the binding problem. 

Finally, we mention that although we treat only the coupled oscillator model in this 

thesis for the mathematical tractability, it is necessary to investigate properties of 

more realistic models such as Hodgkin-Huxley type for deeper understandings of real 

biological systems. \\ e hope that our work will contribute the valuable knowledge 

to such future works. 
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Appendix A 

Derivation of Order Parameter 
Equations w-ith Generalized 
Statistical N euro Dynamics 

From Eqs.(3.1) (3.10) and (3.14) , JV! 1v(t + 1) (v = 1, · · ·, s) is written by 

1 N - h · (t) 
lvf 1v(t + 1) = mv(t + 1) exp(ic/J 1v(t + 1)) =- LE,~v J(lhj(t)l)----'1;___ 

aN j=t 1 lhj(t)l 

1 ~-lv ~ lv lv L~=lJvflv(t)E,jv+ zj(t) 
- aJV k, E,j J(l ~ Jv[ (t)E,j + zj(t)l) I L~=lJvflv(t)E,Jv + Zj(t)j. 

Here we assume that the phase of lvf 1v is almost constant, that is , <P 1v(t+1) = <P 1v(t) ~ rjy0 . 

Owing to the rotational symmetry of the complex Gaussian noise i z1 ( t) can be replaced 

with zj(t) exp(i(r/Jo + Bj)). Doing so , the overlap is given by 

(A.1) 

Since we treat the symmetric n1ixed state , as far as the systen1 successfully retrieves 

the mixed state , the overlaps are expected to keep the relation mv ( t) ~ m( t) for all 

v = 1 ·· · ,s. Applying this to Eq.(A.1) , in the liinit JV ----too , we obtain 

7n(t+1) = 
1 ~ lv ~ lv m(t)L~=t77]v+zj(t) 

aliV ~ T/j J(lm(t) L T/j + Zj(t)l) j (t) Ls lv + ·(t)l 
J = l v=l m v= L 7]J ZJ 

~ k-t s-kI I m(t)k + z(t) )) 
- ~ - 1 C k -1 a (1 - a) \ \ f (I m ( t) k + z ( t) I ) I m ( t) k + z ( t) I z ( t l . 

(A.2) 
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Similarly, the overlap mm ( t + 1) can be written by 

1 ~ k s-kI I ( m(t)k + z(t) ) ) 
mm ( t + 1) = 1 _ ( 1 _ a) s ~ s C k a ( 1 - a) \ \ f I m ( t) k + z ( t) I ) I m ( t) k + z ( t) I z ( t) · 

(A.3) 

In the equilibrium state, m(t + 1) = m(t), mm(t + 1), z(t) can be replaced by m mrn and 

z, respectively. We novv obtain Eqs.(3.17) and (3.18). 

From Eq.(3.15), the noise at timet+ 1 is written by 

p s 

Zi(i + 1) = L L E,fv fvfliv(t + 1). (A.4) 
Ji=2 v=l 

After this , we consider J\fiiv(t + 1) for p, = 2, · · ·, P; v = 1, · · ·, s in Eq.(A.4). It can be 

rewritten as follows , 

(A.6) 

(A.7) 

(A.8) 

respectively. :'\ ote that these functions satisfy the relation h1 ( t) = hjtJ. ( t) + hj'-v ( t) + 

hjv(t). Since hj1
L is enough large compared with hj'-v(t)+hjv(t), we can expand Eq.(A.5) 

with respect to hjii. After that , carrying out the summation in Eq. ( A.5) under the 
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assumption that hjll ( t) is independent of ~jv, we obtain 

s 

M llll ( t + 1) rv M llll ( t + 1) + G ( t) M llll ( t) + aG ( t) L M ll/3 ( t ) ' (A. 9) 
/3=1,!-v 

(A.10) 

G(t) t sCkak(1- ar-k I I!' (lm(t)k + z (t)l) + f (lm(t)k + z(t)l) )) 
k=O \\ 2 2lm(t)k+z(t)l z( t )' 

(A .11) 

where f' means t he derivative of f. Equation(A.9) can be rewritten in the vector form as 

M'.L Mll + GBMil 
' 

(A.l2) 

Mt-t (Mill Mt-t2 ... MllS)T 
' l ' ' 

(A.13) 

l.VIt-t (Mill 1\{t-t2 ... J\11ls)T 
' l ' ' 

(A.l4) 

(B) vv' 6vv' + a( 1 - 6v~') ' (A.15) 

where B is s x s matrix , and we neglect timet+ 1 and t since we consider the equilibrium 

state. We can derive Mll from Eq.(A.l2) 

Equation(A.4) can be also rewritten in the following form 

p 

Zi = L ~t(I- GB)- 1Mt-t , 

(A.l6) 

(A .l7) 

where ~r is defined by ~r = ( ~f 1 , ~f2 , · · · , ~f5 ). We can now calculate the variance 2a2 

from Eq.(A.l7) , 

1 "'"' 2 N ~ lzi l 
t 

a~Tr (B (I- GBr 1
)

2 

aQ t ( Av )
2 

S v = l 1 - AvG 
(A.l8) 

s 

L sCkak(1 - a)s-k \ \!2 (lmk + zl ))) 
7

, 

k=O -
Q (A.l9) 
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where Av is the v-th eigenvalue of the matrix B . Equation(A.l8) leads to Eq.(3 .19) by 

substituting the eigenvalues Av into Eq.(A.18). 
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