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Abstract

Solution of periodic boundary value problems is of interest in various branches
of science and engineering such as optics, electromagnetics and mechanics.
In our previous studies we have developed a periodic Fast Multipole Method
(FMM) as a fast solver of wave problems in periodic domains. It has been
found, however, that the convergence of the iterative solvers for linear equa-
tions slows down when the solutions show anomalies related to the periodicity
of the problems. In this paper, we propose preconditioning schemes based
on Calderon’s formulae to accelerate convergence of iterative solvers in the
periodic FMM for Helmholtz’ equations. The proposed preconditioners can
be implemented more easily than conventional ones. We present several nu-
merical examples to test the performance of the proposed preconditioners.
We show that the effectiveness of these preconditioners is definite even near
anomalies.

Keywords: BEM, FMM, Preconditioning, Calderon’s formulae, Wood’s
anomaly

1. Introduction

In science and engineering, one finds various interesting applications of
periodic structures which utilise peculiar behaviours of waves in periodic do-
mains. In optics, for example, one can mention photonic crystals [1] which
show various interesting features such as band gap structures, and metama-
terials [2] which may be designed to have an apparently negative refractive
index, etc. It is important to develop fast solvers of periodic wave scattering
problems to analyse such structures efficiently. Although the finite difference
time domain (FDTD) method is a well-accepted solver for such problems, the
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boundary element method (BEM), enhanced with the fast multipole method
(FMM), is also considered to be an effective alternative[3, 4].

Indeed, we can expect that the number of unknowns N is small in BEM
because we need to discretise only the boundaries of domains. Although the
inefficiency of BEM due to its O(N2) complexity has been a long standing
problem, we can now reduce the O(N2) computational time of the original
BEM toO(N(logN)α) (α ≥ 0) with the help of FMM. Furthermore, since the
algorithm of FMM utilises the division of the domain of problems into cubic
“boxes”, it can efficiently deal with periodic problems as we regard the unit
cell (unit of the periodicity) as the level 0 box of FMM. The combination of
BEM and FMM is therefore considered to be suitable as a solver of scattering
problems for periodic structures.

The computational time of FMM now depends mainly on the iteration
number of the linear equation solver because the linear equation is usually
solved with iterative solvers. This is why the developments of good precon-
ditioners is very important in the study of FMMs. This is all the more so in
periodic scattering problems where the solutions are known to show anoma-
lous behaviour occasionally[5]. Indeed, the phenomena known as Wood’s
anomalies are characterised by sudden changes of solutions in response to
slight changes of the wave lengths or the incident angles of the incident waves.
These anomalies are related to the existence of guided modes, leaky modes,
cutoff frequencies, etc., which are typically seen in the solutions of periodic
wave problems. It has been shown that the convergence of iterative solvers
in periodic FMMs degrades near these anomalies (Otani and Nishimura [6]).

In passing, we would like to point out that there exists confusion related
to the definition of ‘Wood’s anomalies’ in literature. Indeed, in engineering,
Wood’s anomalies refer to physical phenomena stated above. In mathemat-
ics, however, Wood’s anomalies stand for the cutoff frequencies where the
periodic Green’s function diverges. The same phenomena are usually called
‘Rayleigh’s anomalies’ in engineering. We here follow the engineering prac-
tice to use the expression ‘Wood’s anomaly’ in a physical sense, and refer to
what mathematicians call ‘Wood’s anomaly’ as ‘Rayleigh’s anomaly’.

In the Krylov subspace methods such as GMRES and BiCG, we can
decrease the iteration number by multiplying the coefficient matrix by ma-
trices called preconditioners[7]. Among various preconditioners which have
been proposed in the past, the one based on Calderon’s formulae is consid-
ered promising. This type of preconditioner was proposed by Steinbach and
Wendland for Laplace’s equation[8]. Christiansen and Nédélec later applied
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this preconditioning to Helmholtz’ equation[9]. Antoine and Boubendir found
that this preconditioning is particularly effective for the problems in multiple
domains and numerically verified its effectiveness for non-periodic problems
for Helmholtz’ equation in 2D[10]. Also noteworthy are the recent develop-
ments in the Calderon preconditioners for Maxwell’s equations in which the
use of Buffa-Christiansen basis [11] together with the conventional RWG (or
Raviart-Thomas) basis is considered (see [12, 13] for example).

In our previous study, we examined the Calderon preconditioning in pe-
riodic transmission problems for Helmholtz’ equation in 2D and found that
the good performance of the Calderon preconditioning can be exploited just
by ordering equations and unknowns appropriately in the BEM equations
obtained with collocation[14] (See section 3.2 for a brief summary of obser-
vations made in [14]). However, we have not so far addressed important
issues such as the effect of anomalies, Galerkin discretisation or 3 spatial
dimensionality.

In this paper, we present a preconditioning based on Calderon’s formu-
lae for periodic transmission problems for Helmholtz’ equation in 3D. We
consider the Galerkin discretisation which is often used with hypersingular
integral equations. Our findings can be summarised as follows; The Gram
matrix associated with the basis functions is effective as a preconditioner for
the Galerkin matrices, although we cannot fully precondition them just by
ordering the unknowns and equations appropriately as we could in the collo-
cation case. This preconditioner is sparse, symmetric, and is easy to invert
iteratively. We also verify numerically that the proposed preconditioning
based on Calderon’s formulae is effective even near anomalies.

This paper is organised as follows. In section 2, we formulate periodic
transmission problems governed by Helmholtz’ equation in 3D and the as-
sociated BEM solved with Galerkin’s method. We then investigate precon-
ditioning schemes based on Calderon’s formulae in section 3. After showing
some numerical examples in section 4, we summarise this paper and present
future plans in section 5.

2. Periodic boundary value problems for Helmholtz’ equation in

3D

In this section, we formulate periodic boundary value problems and a
boundary element method to solve them.
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2.1. Governing equation

We define the domain D ⊂ R
3 by

D = (−∞,∞) ⊗ [−L/2, L/2] ⊗ [−L/2, L/2].

The domain D is divided into Nd disjoint subdomains such that
D = D1 ∪D2 ∪ · · · ∪DNd

holds (Fig. 1). The subdomain D1 is an infinite
domain while others are finite domains.

Incident

D1

D2

D3

L

1

2

3

wave

Periodic boundary

Figure 1: Periodic boundary value problems.

Now, we consider the problem of finding a function u satisfying the
Helmholtz equation:

∆u+ k2
i u = 0

in every subdomain Di. The function u also satisfies boundary conditions:

ui = uj (1)

1

εi

∂ui

∂n
=

1

εj

∂uj

∂n
(2)

on ∂Di ∩ ∂Dj , periodic boundary conditions:

u(x1, L/2, x3) = eiβ2u(x1,−L/2, x3) (3)

u(x1, x2, L/2) = eiβ3u(x1, x2,−L/2) (4)

∂u

∂x2

(

x1,
L

2
, x3

)

= eiβ2
∂u

∂x2

(

x1,−
L

2
, x3

)

(5)

∂u

∂x3

(

x1, x2,
L

2

)

= eiβ3
∂u

∂x3

(

x1, x2,−
L

2

)

(6)
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and the scattered field us = u − uI satisfies the radiation condition in D1,
where ui is the limit value of u from domain Di to ∂Di, ki is the wave number
in Di, u

I is the incident wave and εi is a constant defined in each subdomain
Di. Also, n is the normal vector defined on ∂Di and the direction of n

is fixed. We assume uI to be a plane wave given as follows unless stated
otherwise:

uI(x) = Cince
ik1v·x (7)

where Cinc ∈ C is a constant and v ∈ R3 is a unit vector which represents the
incident direction. The numbers βi ∈ R (i = 2, 3) which appear in (3),(4),
(5) and (6) are the phase differences of the incident wave between xi = −L/2
and xi = L/2 , expressed by βi = k1viL (i = 2, 3) mod 2π where vi is the ith
component of v. Note that k1 is not the first component of the wave vector
but the wave number in the domain D1.

2.2. Boundary integral equation

The solution to the above problem is well-known to have the following
expression for x ∈ Dj :

uj(x) = δj1u
I(x) −

{

εjSj(sgnjqj) −Djuj

}

(x) (8)

where Sj and Dj are defined by

(Sjv)(x) =

∫

∂Dj

Gp
j (x − y)v(y) dSy (9)

(Djv)(x) =

∫

∂Dj

sgnj(y)
∂Gp

j (x − y)

∂ny
v(y) dSy (10)

and Gp
j is the periodic Green function defined by

Gp
j (x − y) =

∑

ξ∈L

eiβ·ξGj(x − y − ξ)

Gj(x − y) =
eikj |x−y|

4π|x − y|
with L being the lattice points defined by L = {(0, ξ2, ξ3)|ξ2 = pL, ξ3 =
qL, p, q ∈ Z}. Also, qj is a function on ∂Dj defined by

qj =
1

εj

∂uj

∂n
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and sgnj(x) is the signature function whose value is 1 when the normal vector
n on x ∈ ∂Dj is inward fromDj , −1 when it is outward and 0 when x 6∈ ∂Dj .

From the representation in (8) one obtains

uj

2
(x) +

{

εjSj(sgnjqj) −Djuj

}

(x) = δj1u
I(x) (11)

sgnjqj

2
(x) +

{

D∗j(sgnjqj) −
1

εj

N juj

}

(x) = δj1sgn1(x)
1

ε1

∂uI

∂n
(x) (12)

for x ∈ ∂Dj , where

(D∗jv)(x) =

∫

∂Dj

sgnj(x)
∂Gp

j (x − y)

∂nx

v(y) dSy (13)

(N jv)(x) =

∫

∂Dj

sgnj(x)sgnj(y)
∂2Gp

j (x − y)

∂nx∂ny
v(y) dSy. (14)

The singular integral in (14) is evaluated in the sense of finite part if neces-
sary. From (1), (2), (11) and (12), we obtain the following boundary integral
equations for x ∈ ∂D:

∑

j

sgnj(x)
{

εjSj(sgnjq) −Dju
}

(x) = sgn1(x)uI(x) (15)

∑

j

{

D∗j(sgnjq) −
1

εj
N ju

}

(x) = sgn1(x)
1

ε1

∂uI

∂n
(x) (16)

where ∂D = ∪j∂Dj . The unknown functions u and q are defined by

u = ui = uj, q =
1

εi

∂ui

∂n
=

1

εj

∂uj

∂n
on ∂Di ∪ ∂Dj .

Though the left-hand sides of (15) and (16) appear to be summed up for all
the subdomains, they are actually sums over the subdomains whose bound-
aries include x. Also, note that the right-hand sides of equations (15) and
(16) are equal to 0 unless x ∈ ∂D1 holds.

We note that integral equations in (15) and (16) include sums of integral
operators in (9), (10), (13) and (14). These equations are considered to be
the Helmholtz counterpart of the PMCHWT formulation in Maxwell’s equa-
tions ([3, 13], for example), which is widely used in scattering problems for
dielectric objects. It is also possible to derive other integral equations which
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are Fredholm integral equations of the 2nd kind including differences of inte-
gral operators in (9) (10), (13) and (14) (See [4], for example). Comparison
of numerical performances of these formulations will be an interesting future
research subject. We shall, however, concentrate on the equations in (15)
and (16) in the present paper.

2.3. Discretisation of boundary integral equations

In this paper, we discretise (15) and (16) by using piecewise linear basis
functions and the Galerkin method. We discretise the boundary of the do-
mains by a triangular mesh and define Nh as the number of the vertices of
the triangles and tn(x) as the piecewise linear basis whose value is one at the
n th vertex of the mesh. By discretising (15) and (16) and expanding the
unknown functions u and q with tn(x), we obtain the following equations:

Nh
∑

m=1

(Snmqm −Dnmum) = uI
n (17)

Nh
∑

m=1

(D∗
nmqm −Nnmum) = qI

n (18)

where uI
n and qI

n are defined by

uI
n =

∫

∂D1

tn(x)sgn1(x)uI(x) dS, qI
n =

∫

∂D1

1

ε1

tn(x)
∂uI(x)

∂n
dS,

Snm, Dnm, D∗
nm and Nnm are defined by

Snm =
∑

j

εjS
j
nm Dnm =

∑

j

Dj
nm (19)

D∗
nm =

∑

j

D∗j
nm Nnm =

∑

j

1

εj
N j

nm, (20)
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and Sj
nm, Dj

nm, D∗j
nm and N j

nm are defined by

Sj
nm =

∫

∂Dj

tn(x)sgnj(x)(Sj(sgnjtm))(x) dSx (21)

Dj
nm =

∫

∂Dj

tn(x)sgnj(x)(Djtm)(y) dSx (22)

D∗j
nm =

∫

∂Dj

tn(x)(D∗j(sgnjtm))(x) dSx (23)

N j
nm =

∫

∂Dj

tn(x)(N jtm)(x) dSx, (24)

respectively. The summations in (19) and (20) are over subdomainsDj whose
boundary contains the support of tn.

We define S as the matrix whose (n,m) component is Snm, and define D,
D∗ and N in a similar way. We also define u, q, uI and qI as the vectors
whose mth components are um, qm, uI

m and qI
m, respectively. Then, we can

rewrite (17) and (18) as

Ax = b (25)

where

A =

(

−D S
−N D∗

)

, x =

(

u

q

)

, b =

(

uI

qI

)

(26)

2.4. Periodic fast multipole method

The periodic fast multipole method (periodic FMM) is an algorithm which
rapidly calculates the left-hand sides of (15) and (16) by collectively dealing
with effects from the part of the boundary far from the point x with the help
of the multipole expansions. Effects from the part of the boundary near x,
however, are evaluated directly with the conventional BEM. In this paper, we
do not elaborate on the detail of the periodic FMM. For more information,
the reader is referred to Otani and Nishimura[3, 15].

3. Preconditionings based on Calderon’s formulae

In this section, we consider preconditionings based on Calderon’s formu-
lae. For simplicity, we assume throughout this section that the domain D
consists of two subdomains D1 andD2, and the direction of the normal vector
on boundary is fixed outward (Fig. 2).
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Γ

n

−
V

1
x

2
x

x3

D2

D1

Figure 2: Domain Dj (j = 1, 2) in R3.

3.1. Calderon’s formulae for periodic boundary value problems

We define a function V by

V (x) =

∫

∂Dj

Gp
j (x − y)ψ(y)dSy −

∫

∂Dj

∂Gp
j (x − y)

∂ny
φ(y)dSy inDj , j = 1, 2

where ψ and φ are arbitrary functions defined on the boundary ∂Dj . Then,
V satisfies following relations for j = 1, 2:

V −

2
=

∫

Γ

Gp
j (x − y)

∂V −

∂n
dS −

∫

Γ

∂Gp
j (x − y)

∂ny
V −dS (27)

1

2

∂V −

∂n
=

∫

Γ

∂Gp
j (x − y)

∂nx

∂V −

∂n
dS −

∫

Γ

∂2Gp
j

∂nx∂ny

V −dS (28)

V − = Sjψ +
φ

2
−Djφ (29)

∂V −

∂n
=
ψ

2
+ D∗jψ −N jφ (30)

where V −(x) is the limit value of V (x) from D2 to Γ and ∂V −

∂n
is the limit

value of the normal derivative of V (x) from D2 to Γ.
From (27), (28), (29) and (30), we obtain the Calderon formulae for
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periodic problems:

I
4

= −SjN j + DjDj (31)

0 = SjD∗j −DjSj (32)

I
4

= D∗jD∗j −N jSj (33)

0 = −D∗jN j + N jDj (34)

where I is an identity operator.

3.2. Preconditionings based on Calderon’s formulae with collocation

We now summarise results from [14] where preconditioning methods for
the linear equations obtained from (15) and (16) with collocation are dis-
cussed.

To start with, we note that (31), (32), (33) and (34) can be expressed as
(

−Dj Sj

−N j D∗j

) (

−Dj Sj

−N j D∗j

)

=

(

I
4

0
0 I

4

)

This equation means that the integral operator
(

−Dj Sj

−N j D∗j

)

is the inverse of itself up to the factor of 1/4. In addition, it is known that
the following relationship holds

( −∑

j Dj
∑

j εjSj

−∑

j
1
εj
N j

∑

j D∗j

) ( −∑

j Dj
∑

j εjSj

−∑

j
1
εj
N j

∑

j D∗j

)

=

(

I 0
0 I

)

+

(

K1 K2

K3 K4

)

(35)

where K1,K2,K3 and K4 are compact operators[10]. Namely, A2 is a compact
perturbation of the identity where

A =

( −∑

j Dj
∑

j εjSj

−∑

j
1
εj
N j

∑

j D∗j

)

.

As a result we see that the linear equation

Ãx = b̃ (36)
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obtained by discretising (17) and (18) with collocation (which is different
from the Galerkin equation in (25)) can be preconditioned by Ã itself (i.e.,
we can use Ã−1 as the preconditioner), where Ã is the collocation discreti-
sation of A. Notice that solving the linear equation in (36) with the (right)
preconditioner Ã−1 means solving Ã2y = b and x = Ãy instead of solv-
ing (36) according to the standard definition of preconditioners[7], which is
somewhat confusing in the present context. Therefore, there is no matrix
inversion involved in using Ã−1 as the preconditioner.

We can show that the solution of (36) converges faster (with equal or less
number of matrix-vector product operations, to be precise) with no precon-
ditioner than with Ã−1 as the right preconditioner if we use GMRES as the
iterative solver and have enough memory so that we do not need to restart
GMRES. Indeed, if we solve (36) with the preconditioner Ã−1, it takes two
matrix-vector products in every iteration of GMRES. However, if we solve
(36) with no preconditioner, we need to calculate only one matrix-vector
product in every iteration. Therefore, the computational time of GMRES
with no preconditioner for 2n iterations is nearly equal to that of GMRES
with preconditioner Ã−1 for n iterations since the matrix-vector product takes
by far the largest part in the whole computational time. It is known that
GMRES after n iterations finds the solution which minimizes the residual of
the linear equation in (36) in the Krylov subspace. GMRES after n iterations
with the preconditioner Ã−1 finds the solution in the following affine space:

x0 + {Ãv, Ã3v, Ã5v, · · · , Ã2n−1v} (37)

while GMRES after 2n iterations with no preconditioner finds the solution
in the affine space given by:

x0 + {v, Ãv, Ã2v, · · · , Ã2n−1v}, (38)

where x0 is the initial guess and v is the initial residual. Therefore, GMRES
with no preconditioner converges faster in terms of the computational time
than GMRES with the preconditioner Ã−1 because the space (38) contains
(37).

We verified this fact for Helmholtz’ equation in 2D numerically in [14].

3.3. Preconditionings based on Calderon’s formulae with the Galerkin method

In this subsection, we consider similar Calderon preconditionings with
the Galerkin discretisation.
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We first note that we cannot simply apply the preconditioning scheme
stated above in the case of the Galerkin discretisation. Indeed, a relation
ηj = Sjζ with

ζ(x) ≈
Nh
∑

n=1

ζntn(x), ηj(x) ≈
Nh
∑

n=1

ηj
ntn(x)

is easily seen to be discretised into

Nh
∑

m=1

Sj
nmζm =

Nh
∑

m=1

ηj
mT

j
nm (39)

where

T j
nm =

∫

∂Dj

tn(x)tm(x) dSx

is the Gram matrix. Summing up (39) with respect to the index j, we obtain

Sζ ≈ T ′η

where ζ and η are vectors whose nth component are ζn and
∑

j η
j
n and

T ′
mn =

∫

∂D

tm(x)tn(x)dSx.

In the present context, we have T ′
mn = T 1

mn = T 2
mn. Since T ′ is regular, we

obtain

η ≈ T ′−1Sζ

which implies that a product DSζ is discretised into

T ′−1DT ′−1Sζ. (40)

From (25), (35) and (40), we see that the coefficient matrix in (25) satisfies

T−1AT−1A ≈ I +K ′

where K ′ is a matrix which is obtained by discretising a compact operator
and T is given by

(

T ′ 0
0 T ′

)
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Similarly, one has

AT−1AT−1 ≈ I +K (41)

where K = TK ′T−1. Consequently, we can precondition (25) using the
matrix TA−1T as a right preconditioner if we use Galerkin’s method.

Furthermore, (41) implies that we can use T , instead of TA−1T , as a pre-
conditioner for (25) because the square of the matrix AT−1 is approximately
equal to I + K. Indeed, we can use the same argument as has been used
in section 3.2 to show that (25) preconditioned with T converges faster than
that using TA−1T , as far as the computational time is concerned.

Note that this preconditioning with T is possible because we have ordered
the equations and unknowns as in (26). If we use different orderings, however,
we cannot expect T to work as a preconditioner. For example, the ordering
used by Antoine and Boubendir converts (25) into

Âx̂ = b̂ (42)

where

Â =

(

S −D
−D∗ N

)

x̂ =

(

q

u

)

b̂ =

(

uI

−qI

)

Calderon’s formulae tell that equation (42) can be right-preconditioned by

T

(

−N −D∗

−D −S

)−1

T (43)

or left-preconditioned similarly, but (42) cannot be preconditioned by T be-
cause the central matrix in (43) has an ordering different from that for Â.
This difference between A and Â is understood from the spectral properties
of the corresponding operators. Indeed, one shows that the eigenvalues of A
accumulate at 1, while those of Â (continuous counterpart of Â obtained by
arranging the components of A appropriately) accumulate either at 0 or at
∞, thus indicating a worse conditioning of Â for a finer mesh.

We remark that the relevance of the Gram matrix in the Calderon pre-
conditioning is known[8], but its effectiveness as a preconditioner has not
been pointed out so far, to the best of the present authors’ knowledge.
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3.4. Calculation of matrix T

The matrix T is symmetric, sparse, diagonally dominant and depends
only on the mesh on the boundary. Hence, we can compute the product of T
and an arbitrary vector with O(Nh) computational time. This suggests that
the inverse of T can be calculated efficiently with Krylov subspace iteration
methods. We therefore use “flexible” iterative methods [7] which enable us
to use different preconditioners for different iteration steps, thus making the
use of iterative methods for the inversion of T possible. In this method, the
computational time of T−1 is O(Nh) if the number of iterations is independent
of Nh.

4. Numerical examples

In this study, we compare the efficiency of the following 6 approaches to
solve the system of integral equations in (15) and (16). The first 4 are based
on (25) and the last 2 are related to (42).

1. The first approach solves (25) with FGMRES (flexible GMRES, see
Sec. 3.4) with T as the right preconditioner.

2. The second approach solves (25) with FGMRES with TA−1T as the
right preconditioner.

3. The third approach also solves (25) with FGMRES and a right pre-
conditioner which is the part of the matrix computed directly in the
FMM algorithm, i.e., the part of the coefficient matrix representing the
interactions between neighbour leaves [3].

4. The fourth approach solves the unpreconditioned equation (25) as is
with GMRES.

5. The fifth approach solves (42) with FGMRES using the part of the
matrix computed directly in the FMM algorithm as the right precon-
ditioner.

6. The sixth approach solves (42) as is with GMRES.

For the evaluation of integrals in (21), (22), (23) and (24) needed in calculat-
ing the preconditioner in the approaches 3 and 5, we combine an analytical
integration for the Laplace part (1/(4π|x− y|)) and a numerical integration
for the rest (i.e., G(x−y)−1/(4π|x−y|)) in the evaluation of (9), (10), (13)
and (14). The outer integrals in (21), (22), (23) and (24) are evaluated nu-
merically. Although it is possible to solve (42) with the preconditioning based
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on Calderon’s formulae, we did not test this method because this approach
is equivalent to the 2nd approach.

In the numerical examples to follow, we use the low frequency FMM
taking the periodicity into account with the help of the periodic M2L formula
proposed in Otani and Nishimura[3]. We use the Fujitsu HX600 cluster (with
AMD Opteron CPUs) of the data processing center of Kyoto University for
the calculation with minimum shared memory parallelisation.

4.1. Verification

We first verify our approach by solving problems with known analytical
solutions. We consider the model with two layers of spheres shown in Fig. 3.
The unit domain D has two spheres with the radius of 0.2 whose centres are
0.5 apart (Fig. 3 b)). We denote the domain outside of the spheres by D1 and
the domain in the inside of the spheres by D2, respectively. The period L is 1
in both x2 and x3 directions and the number of elements is 316848. We have
intentionally made the mesh very fine so that we can test the performance
of the proposed approaches in relatively large problems.

Incident wave

0.5

0.2

periodic boundary

1.0

1
x

2
xx3

a) b)

Figure 3: The model with two layers of spheres. a) The shape of the domains b) The unit
domain

If εj = 1 and kj = k (k is a constant) for j = 1, 2, the analytical solution
of the problem is exactly (and non-trivially) equal to the incident wave. We
verify the accuracy of the methods by comparing the analytical solution and
the numerical solutions for this choice of εj (j = 1, 2). The wave number
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is set equal to kj = 6 (j = 1, 2). The incident wave is the plane wave
in (7) with β2 = 1 and β3 = 0. As a solver of linear equations, we use
GMRES or flexible GMRES with the error tolerance of 10−4 for the outer
GMRES. For the FGMRES, the inner iterative solver is also GMRES. In
approaches 1 and 2, we set the error tolerance for the inversion of T in the
inner GMRES to be 10−15 and the maximum number of iterations to be
10. We stop the inner iteration when either of these conditions is satisfied.
We selected this extremely small error tolerance in order to calculate T−1

as precisely as possible so that we can fully utilise the effect of Calderon’s
formulae. As a matter of fact, the convergence of this iteration is very fast
and usually reaches the 10−15 threshold within 10 iterations. This is because
T is well-conditioned. For approaches 3 and 5 the error tolerance of the inner
GMRES is set to be 10−3 with the maximum number of iterations being 10.
This is because we just need a rough approximation of the inverse of the
preconditioner since the main purpose of this preconditioning is to scale the
coefficient matrix properly.

We now show the relative errors uerr and qerr defined by

uerr =

∫

∂D
|ucal − uana| dS

∫

∂D
|uana| dS

qerr =

∫

∂D
|qcal − qana| dS

∫

∂D
|qana| dS

for each of the preconditioning approaches in Table 1, where ucal and qcal are
the numerical solutions, uana and qana are the analytical solutions and ∂D is
the boundary of all the subdomains.

Table 1: Relative error.

name Coefficient matrix Preconditioning uerr ∂uerr/∂n

approach 1

A

Calderon with T 5.50 × 10−5 7.26 × 10−3

approach 2 Calderon with TA−1T 5.73 × 10−5 7.06 × 10−3

approach 3 Direct 5.74 × 10−5 8.21 × 10−3

approach 4 No preconditioning 5.74 × 10−5 7.20 × 10−3

approach 5
Â

Direct 6.51 × 10−5 1.16 × 10−2

approach 6 No preconditioning 7.11 × 10−5 1.27 × 10−2
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From Table 1, we can say that all the preconditioning approaches consid-
ered give equally accurate numerical results.

4.2. Computational time

We now consider the domain shown in Fig. 3 with ε1 = 1, and investigate
the number of iterations of GMRES and computational time for various val-
ues of ε2 ≤ 1. For such ε2 we expect no anomalous behaviour of the solution
[16] except possibly at Rayleigh’s anomalies. Figs. 4 a) and b) show the
number of iterations and computational time for each of the preconditioning
approaches, respectively. The horizontal axis gives the value of ε2.
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Figure 4: The number of iterations and the computational time of GMRES and FGMRES
for the model with two layers of spheres. a) The number of iterations for the six approaches.
b) The computational time for the six approaches. c) The number of iterations for the
approaches 1 and 2. d) The computational time for the approaches 1 and 2.

We first note that the preconditioning approaches based on Calderon’s
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formulae, i.e., approaches 1 and 2 are faster than other approaches even
when ε2 is much different from ε1. To compare these two preconditionings
more closely, we plotted the iteration number and the computational time of
these two approaches for the same problem in Figs. 4 c) and d), respectively.

We expect that the computational time for the approach 1 is shorter than
that for the approach 2, while the iteration number of the approach 1 is more
than that of the approach 2. The reason is similar to the collocation case.
Namely, we need to calculate the products of A with a vector just once in
every iteration in the approach 1, while we need the same product twice in
every iteration in the approach 2. Moreover, the Krylov subspace after n
iterations for the approach 2 is included in that of the approach 1 after 2n
iterations as explained in section 3.2. Since the computational time in BEM
depends mainly on the number of matrix vector products, the residual with
the approach 1 is expected to be smaller than that of the approach 2 with
GMRES after the same amount of the computational time. We see that the
results in Fig. 4 are in agreement with this expectation.

In Fig. 5, we fixed ε2 = 0.1 and solved problems for various wave numbers
of the incident wave k1. Fig. 5 a) shows the iteration number for each of
the 6 preconditioning approaches while Fig. 5 b) presents the corresponding
computational time, respectively. We set the maximum number of iterations
of outer GMRES to be 1000. As seen in Fig. 5 a) the approach 6 failed to
converge when the wave number is 20, 25, and 30. In Figs. 5 c) and d), we
compare the preconditioners based on Calderon’s formulae (i.e. approaches 1
and 2) in terms of the iteration number and computational time, respectively.
All the results show the same tendencies as have been observed in the variable
ε2 case.

4.3. Performance near anomalies and guided modes

To investigate the performances of the proposed preconditioning approaches
near anomalies, we consider another problem for the domains shown in Fig. 6.
We denote the domain outside of the sphere by D1 and the domain inside
of the sphere by D2. The radius of the sphere is 0.35 and the period L
is 1 in both x2 and x3 directions. We set ε1 = 1, ε2 = 2.56 and, hence,
k2 = k1

√
ε2 = 1.6k1. In this problem, we expect the solution to show anoma-

lous behaviour because k1 < k2 holds. Indeed, it is known, in this case, that
(see [16] for the corresponding 2D cases) the following results hold:

1. There exist any given number of guided modes (solutions to homoge-
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Figure 5: The number of iterations and the computational time of GMRES and FGMRES
for the model with two layers of spheres. a) The number of iterations for the six approaches.
b) The computational time for the six approaches. c) The number of iterations for the
approach 1 and 2. d) The computational time for the approach 1 and 2.
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neous problems) which satisfy

k1L < |β| < k2L

if the contrast ε2/ε1 is sufficiently high. These guided modes are called
‘robust’.

2. There exist guided modes which satisfy

|β| < k1L < 2π

when β2 = 0 and the structure is symmetric with respect to the x2 = 0
plane, provided the contrast ε2/ε1 is sufficiently high[17]. These guided
modes are called ‘embedded’.

3. The scattering problem has at least one solution when the incident
wave is planar, regardless of the existence or nonexistence of the guided
modes.

The frequencies where guided modes exist are called ‘singular frequencies’.
The 3rd of the above results is of interest from practical viewpoints. However,
other results (2nd one in particular) are also relevant to the case of the plane
wave incidence, as we shall see.

4.3.1. Robust guided modes

Robust guided modes can be excited easily by an incident evanescent
wave given by

uI(x) = Cince
ik1v·x (44)

v =



i

√

(

β2

k1L

)2

+

(

β3

k1L

)2

− 1,
β2

k1L
,
β3

k1L



 ,

(

β2

L

)2

+

(

β3

L

)2

− |k1|2 > 0.

We here set β2 = 3, β3 = 0 and Cinc = 1.
To examine the behaviour of the solution, we have computed the value of

|u| at x ≈ (−0.35, 0, 0) using FMBEM with the preconditioning approach 1
and a 5780 element mesh, and plotted the results for various values of k1 in
Fig. 7. We see that |u| diverges near k1 = 2.94, indicating that the solution
ceases to exist at a certain k1 near 2.94.

This wavenumber ( ≈ 2.94) is considered to correspond to a guided mode.
Indeed, we can obtain a rough estimate of k1 corresponding to the singular
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Incident wave

Figure 6: The model of spheres.
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Figure 7: The value of |u| at x ≈ (−0.35, 0, 0) in the case of an incident evanescent wave.
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frequency by approximating the scatterers by an uniform layer sandwiched
between homogeneous halfspaces (we call this the 3 layer model), where an
analytical treatment is possible[6]. One may well assume the thickness of
this layer to be 0.7 and the value of ε to be a certain average of ε1 and ε2. If
we average ε1 and ε2 via (1− f)ε1 + fε2 with the volume fraction of spheres
in the layer denoted by f , we obtain ε ≈ 1.4 which leads to k1 ≈ 2.90. If we
average the reciprocal of ε by 1

(1−f)/ε1+f/ε2

we obtain ε ≈ 1.185 or k1 ≈ 2.97.
The observed value k1 = 2.94 is located in between these numbers.

Fig. 8 show the iteration number and computational time for solving this
problem with the 6 types of preconditioners. From these figures, we see that
the iteration numbers for preconditioning approaches based on Calderon’s
formulae (approaches 1 and 2) are always lower than those for other pre-
conditioning approaches. Also, the iteration numbers of the approaches 1
and 2 remain almost constant even near k1 = 2.94 while approaches based
on (42) (approaches 5 and 6) suffer from increased iteration numbers and
computational times there.
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Figure 8: The number of iterations of GMRES and FGMRES for the model of spheres
around a robust guided mode. a) The number of iterations b)The computational time

4.3.2. Embedded guided modes and plane wave incidence

We consider the same problem as in the previous example except that we
take β2 = β3 = 0. In this case, we may have embedded guided modes. As
a matter of fact, the 3 layer model tells that we may expect guided modes
near k1 ≈ 5.76 (ε ≈ 1.4) or k1 ≈ 6.08 (ε ≈ 1.185).

22



To find these guided modes, we compute the response of this system
subject to an incident wave given by

uI(x) = Cince
ik1v·x (45)

v =



i

√

(

β2

k1L
+

2π

k1

)2

+

(

β3

k1L

)2

− 1,
β2

k1L
+

2π

k1

,
β3

k1L





with β2 = 0, β3 = 0 and Cinc = 1. This incident wave is evanescent for
k1 < 2π. Fig. 9 shows the value of |u| at x = (0, 0.35, 0) computed with
the approach 1. We notice in Fig. 9 that |u| diverges at k1 = 5.89 and 5.97,
indicating the existence of two guided modes in the interval predicted by the
3 layer model. In addition to these guided modes, we recognise an anomaly
at k1 = 5.5 in the k1 < 2π range.

We next consider the response of the same system subject to a plane
incident wave given by

uI(x) = eik1x1. (46)

Fig. 10 shows |u| at x = (−0.35, 0, 0) vs k1 obtained with the approach
1. As in the case of the incident evanescent wave, we see that the solution
suddenly changes near k1 = 5.5. Also, we can identify a Rayleigh’s anomaly
at k1 = 2π where the slope of the solution varies rapidly. However, the
solution stays smooth near k1 = 5.89 and 5.97. This result reflects the fact
that the solution to the scattering problem exists as long as the incident wave
is planar even when guided modes exist. Fig. 11 shows the iteration number
and the computational time for the incident plane wave case. We notice that
conventional approaches (approaches 3 to 6) suffer from increased iteration
numbers and computational time at the anomaly near k1 = 5.5 as well as at
the guided modes. With the Calderon preconditionings (approaches 1 and 2),
however, the iteration numbers stay low even at these anomalies and guided
modes. Fig. 12 shows the values of |u| at x ≈ (−0.35, 0, 0) around k1 = 5.89
and 5.97 obtained with the 6 preconditioning approaches, where the incident
wave is the plane wave given in (46). As in Fig. 10, the Calderon results
(approaches 1 and 2) in Fig. 12 also remain smooth even near k1 = 5.89 and
5.97. However, results obtained with other 4 approaches are off the solution
curve by a small amount at these values of k1, reflecting the fact that the
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Figure 9: The value of |u| at x ≈ (0, 0.35, 0) in the case of the incident evanescent wave.
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Figure 10: The value of |u| at x ≈ (−0.35, 0, 0) in the case of the incident plane wave.
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Figure 11: The number of iterations and the computational time of GMRES and FGMRES
for the model of spheres around embedded guided modes. a) The number of iterations b)
The computational time

uniqueness of the solution does not hold at singular frequencies. Fig. 12 also
shows that this non-uniqueness occurs only right at this frequency, and the
solution remains on the solution curve elsewhere around k1 = 5.89 and 5.97.
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Figure 12: The value of |u| at x ≈ (−0.35, 0, 0) in the case of the incident plane wave.

The performances of the Calderon preconditioners for still higher fre-
quencies and finer mesh are investigated in Table 2, where the numbers of
matrix-vector products required by the 6 approaches are given. The param-
eters are the same as in the previous example except for the frequency. The
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incident wave is planar. This table shows more or less the same tendencies as
have been observed in Fig. 11. We also see that the Calderon preconditioners
(approaches 1 and 2) remain effective with finer meshes.

Table 2: Number of matrix-vector products for the model of spheres.

degrees of freedom 5784 5784 172984
k1 10 15 20 25 30 5.5

approach 1 3 3 3 3 5 12 12
approach 2 4 4 4 4 6 12 12
approach 3 18 22 31 35 21 20 87
approach 4 31 29 29 27 27 48 51
approach 5 10 80 123 188 194 60 86
approach 6 161 227 303 451 419 176 402

Summing up, we conclude that preconditioning approaches based on
Calderon’s formulae (approaches 1 and 2) are effective in reducing the num-
ber of iterations even near guided modes and anomalies.

4.4. Computational time for more complicated domains

To examine the effectiveness of the Calderon preconditioners in problems
with complicated domains, we solved the problem for the fish model shown in
Fig. 13 a) subject to a plane incident wave. The constants are set as follows:
ε1 = 1, ε2 = 2.56, ω = 28, β2 = 1 and β3 = 0. The length of the model
from mouth to tail fin is about 0.6. The degree of freedom is 34308. The
computed values of |u| on the boundary are shown in Fig. 13 b). Table 3
gives the iteration numbers and the computational time for the 6 approaches
in this problem. Items “> 1000” in this table mean that the residual did not
decrease less than the given error tolerance 10−4 after 1000 matrix-vector
product operations. Once again, we see that the Calderon preconditioners
are effective in reducing iteration numbers and computational time.

5. Conclusion

We have verified that the preconditioning approaches based on Calderon’s
formulae are effective in the periodic FMM for transmission boundary value
problems for Helmholtz equation discretised with the Galerkin method. Al-
though we cannot precondition Galerkin BEM matrices just by ordering the
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a) b)

Figure 13: a) The model of fish (unit cell). b) The value of |u| on the boundary in the
model of fish.

Table 3: Number of matrix-vector products for the model of fish

matrix-vector products computational time(s)
approach 1 58 2422
approach 2 58 2420
approach 3 462 29900
approach 4 > 1000
approach 5 505 33029
approach 6 > 1000
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unknowns and equations appropriately as we could with collocation, we can
still find a fairly simple preconditioners based on Calderon’s formulae in the
Galerkin cases. Specifically, we can use the Grammian matrix as a precondi-
tioner (approach 1) if we use the right ordering of equations and unknowns.
The inverse of this preconditioner is obtained very easily with iterative meth-
ods since this matrix is well-conditioned. We also have another implemen-
tation of the Calderon preconditioning (approach 2), which is slightly less
efficient in terms of the computational time but requires less memory than
the approach 1. Furthermore, it is found that the preconditioners based on
Calderon’s formulae can decrease the iteration number even near frequencies
where the solution shows anomalous behaviours related to the periodicity of
the problems.

In this paper, however, we tested the efficiency of the Calderon precon-
ditioners only in simple academic problems. Applying this method to more
complicated problems found in real world applications is an important fu-
ture plan. Applications of the proposed preconditioning approaches to other
equations such as Maxwell’s equations and the elastic wave equation also
remain to be investigated. It is known that a naive application of the pre-
conditioning based on Calderon’s formulae for Maxwell’s equations in 3D
makes the coefficient matrix singular[18]. In addition, the square of the in-
tegral operator which appears in the PMCHWT formulation for Maxwell’s
equations does not take the form of the identity plus a compact operator[13].
The same conclusion holds in elasticity as well. However, this does not nec-
essarily mean that approaches similar to those presented in this paper are
ineffective in Maxwell’s equations or in elasticity. The reader is referred to
[19] for further details in elasticity. Our approach in Maxwell’s equations will
be presented in future publications.

References

[1] J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals, Princeton Uni-
versity Press, Princeton, NJ, USA, 1995.

[2] J. Pendry, Negative refraction makes a perfect lens, Physical Review
Letters 85 (2000) 3966–3969.

[3] Y. Otani, N. Nishimura, A periodic FMM for Maxwell’s equations in 3D
and its applications to problems related to photonic crystals, Journal of
Computational Physics 227 (9) (2008) 4630–4652.

28



[4] A. Barnett, L. Greengard, A new integral representation for quasiperi-
odic fields and its application to two-dimensional band structure calcu-
lations, Journal of Computational Physics 229 (19) (2010) 6898–6914.

[5] R. Petit, L. Botten, Electromagnetic Theory of Gratings, Springer-
Verlag Berlin, 1980.

[6] Y. Otani, N. Nishimura, Behaviour of periodic fast multipole boundary
integral equation method for Maxwell’s equations near Wood’s anoma-
lies, in: H. Ammari, H.-B. Kang (Eds.), Contemporary Mathematics
494, AMS, 2009, pp. 43–59.

[7] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[8] O. Steinbach, W. Wendland, The construction of some efficient precon-
ditioners in the boundary element method, Advances in Computational
Mathematics 9 (1) (1998) 191–216.
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