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Synopsis 

The purpose of this study was to predict the failure surface of a slope due to 

rainfall. Numerical and experimental study was performed to investigate the mechanism 

of the slope failure. Slope stability analysis was carried out in three dimensions using 

the pore water pressure and the moisture content calculated by three dimensional 

seepage flow model. Only a conventional water-phase seepage flow model as well as the 

water-air two-phase seepage flow model, coupled with two dimensional surface flow 

and erosion/deposition model, were used for seepage analysis. In numerical analysis, the 

influence of pore air on seepage and slope stability was found to be less significant. 
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1. Introduction  

 

Slope failures in residual soils are common in 

many tropical countries particularly during periods 

of intense rainfall. The location of the groundwater 

table in these slopes may be in deep below the 

ground surface and the pore-water pressures in the 

soil above the groundwater table are negative to 

atmospheric conditions. This negative pore-water 

pressure, referred to as matric suction when 

referenced to the pore-air pressure that contributes 

towards the stability of unsaturated soil slopes 

(Fredlund and Rahardjo, 1993; Rahardjo et al., 

1995; Griffiths and Lu, 2005). Under the influence 

of rainfall infiltration, water seepage can cause a 

gradual loss of matric suction in an unsaturated soil 

slope. As the hydraulic properties of the soil with 

respect to matric suction are often highly nonlinear, 

rapid changes in pore-water pressure have a 

significant effect on the soil strength, and therefore 

on the stability of the slope. 

Rainfall-induced slope failures are generally 

caused by increased pore pressures and seepage 

forces during periods of intense rainfall (Terzaghi 

1950; Sidle and Swanston 1982; Sitar et al. 1992; 

Anderson and Sitar 1995; Wang and Sassa 2003). 

The effective stress in the soil will be decreased due 

to the increased pore pressure and thus reduces the 

soil shear strength, eventually resulting in slope 

failure (Brand 1981; Brenner et al. 1985). In 

tropical areas, slope failures due to rainfall 

infiltration are quite usual. These slopes remain 

stable for a long time before the rainstorms (Brand 

1984; Toll 2001). During the rainfall, a wetting 

front goes deeper into the slope, resulting in a 

gradual increase of the water content and a decrease 

of the negative pore-water pressure. This negative 

pore-water pressure is referred to as matric suction 

when referenced to the pore air pressure that 

contributes towards the stability of unsaturated soil 

slopes. The loss of suction causes a decrease in 

shear strength of the soil on the potential failure 

surface and finally triggers the failure (Rahardjo et 

al. 1995; Ng and Shi 1998). 
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During intense rainfall events the variations in 

pore water pressures distributed within the soil are 

highly variable depending on the hydraulic 

conductivity, topography, degree of weathering, 

and fracturing of the soil. Pore water pressure 

increases may be directly related to rainfall 

infiltration and percolation or may be the result of 

the build-up of a perched or groundwater table 

(Terlien, 1998). The response of the material 

involved is largely dependent on its permeability. In 

high-permeability soils the build-up and dissipation 

of positive pore pressures during intense 

precipitation events could be very rapid (Johnson 

and Sitar, 1990). In these cases slope failures are 

caused by high intensity rainfall and antecedent 

rainfall has little influence on landslide occurrence 

(Corominas, 2001). On the contrary, in 

low-permeability soils slope failures are caused by 

long duration-moderate intensity rainfall events; in 

fact, the reduction in soil suction and the increase in 

pore water pressures due to antecedent rainfall, 

considered a necessary condition for landslide 

occurrence (Sanderson et al., 1996; Wieczorek, 

1987). 

Various physically based models coupling the 

infinite slope stability analysis with the 

hydrological modeling were developed assuming 

steady or quasi-steady water table and groundwater 

flows parallel to hill slope (Montgomery and 

Dietrich 1994; Wu and Sidle 1995; Borga et al. 

1998). With approximation of Richards’ equation 

(1931) valid for hydrological modeling in nearly 

saturated soil, Iverson (2000) further developed a 

flexible modeling framework of shallow landslide. 

Baum et al. (2002) proposed an extension version 

of Iverson’s model to consider variable rainfall 

intensity into account for hill slope with finite depth. 

Tsai and Yang (2006) modified Iverson’s model by 

amending the boundary condition at the top of the 

hill slope to consider more general infiltration 

process instead of constant infiltration capacity. 

The physically based model with the hydrological 

modeling in nearly saturated soil (Iverson 2000; 

Baum et al. 2002; Tsai and Ynag 2006) was 

commonly used for the assessment of shallow 

landslides triggered by rainfall due to its simplicity 

(Crosta and Frattini 2003; Keim and Skaugset 2003; 

Frattini et al. 2004; Lan et al. 2005; D’Odorico et al. 

2005; Tsai 2007). Tsai et al. (2008) developed a 

physically based model not only by using the 

complete Richards’ equation with the effect of 

slope angle, but also by adopting the extended 

Mohr-Coulomb failure criterion (Fredlund et al. 

1978) to describe the unsaturated shear strength. 

Sassa (1972, 1974) carried out a series of flume 

tests and concluded that the changes in rigidity of 

sand and upper yield strain within a slope are 

essential to the analysis of slope stability. Fukuzono 

(1987) conducted experiment to examine the 

conditions leading up to slope failure using nearly 

actual-scale slope models providing heavy rainfall. 

Crozier (1999) tested a rainfall-based 

landslide-triggering model developed from previous 

landslide episodes in Wellington City, NewZealand, 

which referred to as the Antecedent Water Status 

Model, to provide a potentially useful level of 

prediction of landslide occurrence by providing a 

24-hour forecast. Sharma (2006) carried out 

experimental and numerical studies to investigate 

effects of slope angle on the moisture movement on 

unsaturated soil and further on the slope stability, 

and also analyzed the difference in failure pattern 

and moisture movement in single and two layers of 

soil with different hydraulic conductivities. 

Tsustumi and Fujita (2008) investigated several 

landslide sites and used physical experiment and 

numerical simulation with the combination of 

rainwater infiltration for the analysis of slope 

stability. Mukhlisin and Taha (2009) developed 

numerical model to estimate the extent of rainwater 

infiltration into an unsaturated slope, the formation 

of a saturated zone, and the change in slope stability. 

Then, the model was used to analyze the effects of 

soil thickness on the occurrence of slope failure. 

The above discussed numerical studies are 

applicable only for two dimensional analyses; 

however failure of slopes occurs in three 

dimensions. There is not only water phase but also 

air phase in soil slopes. Both the pore air and pore 

water will have influence on the seepage flow, but 

all the above mentioned studies have neglected the 

air flow on seepage analysis. In looking at the 

behaviour of unsaturated soils, some authors (e.g. 

Dakshanamurthy et al, 1984) incorporate airflow 

within the soil, and it is clear that this aspect can be 

significant to the overall behaviour of the soil. 
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Therefore, numerical study in three dimensions is 

necessary for seepage analysis and slope stability 

analysis with considering the effects of air phase in 

the seepage. 

In this study the analysis of slope failure due to 

rainfall was investigated using pore water pressure 

and moisture content calculated by only a 

conventional water-phase seepage flow model as 

well as the water-air two-phase seepage flow model. 

Janbu’s simplified method was incorporated into 

dynamic programming to locate the critical slip 

surface of a general slope. Simulation results were 

compared with the experimental results obtained so 

as to evaluate the capability of the model. 

 

2. Numerical Modeling 

 

Numerical models can be valuable tools in the 

prediction of seepage and the slope stability 

analysis. In the present analysis single-phase 

seepage flow model calculates the pore water 

pressure and moisture content inside the body of the 

considered model slope where as the two-phase 

model calculates the pore water pressure, pore air 

pressure, and moisture content. Necessary surface 

water head for the seepage flow model was 

evaluated using surface flow and erosion/deposition 

model. Slope stability model uses the pore water 

pressure and moisture content obtained by the 

seepage flow model as well as surface water head 

obtained by the surface flow and erosion/deposition 

model as in put data to calculate the critical slip 

surface and the corresponding factor of safety 

simultaneously. 

 

2.1 Seepage flow model 

Following pressure based Richards’ equation 

valid for variably saturated soil was used in 

conventional 3D seepage flow model for calculating 

the change in pore water pressure inside the model 

slope (Awal et al., 2009). 

 

















+

∂

∂

∂

∂
+








∂

∂

∂

∂

+








∂

∂

∂

∂
=

∂

∂






 +

1
z

h
 

z
K

zy

h

y
K

y

x

h

x
K

xt

h

s
S

w
SC

ww

ww

            (1) 

 

where, hw is the water pressure head; Kx, Ky and 

Kz are the hydraulic conductivity in x, y and z 

direction respectivel; C=∂θw/∂hw is the specific 

moisture capacity, θw is the soil volumetric water 

content; Sw is the saturation ratio; Ss is the specific 

storage; t is the time; x and y are the horizontal 

spatial coordinates; and z is the vertical spatial 

coordinate taken as positive upwards. 

In order to solve the equation (1) following 

constitutive relationships proposed by van 

Genuchten (1980) are used for establishing 

relationship of moisture content and water pressure 

head (θw-h), and unsaturated hydraulic conductivity 

and moisture content(K-θw): 
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where, Se is the effective saturation; α and η are 

empirical parameters; θs and θr are saturated and 

residual moisture content respectively; Ks is the 

saturated hydraulic conductivity; and m=1-1/η. 

For 3D water-air two-phase seepage flow 

analysis, following equations are derived for the 

simultaneous flow of water and air based on the 1D 

flow equations (Touma, and Vauclin, 1986). 

 

Water-phase equation 
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Air-phase equation 
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where, ha is the air pressure head; ho is the 

atmospheric pressure expressed in terms of water 

column height; C= ∂θ/∂hc is the specific moisture 

capacity; hc = ha –hw is capillary head; n is the 

porosity of soil; ρa is density of air; ρoa is density of 
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air at the atmospheric pressure; ρow is density of 

water at the atmospheric pressure; Kwx, Kwy and Kwz 

are the hydraulic conductivity in x, y and z 

directions respectively; and Kax, Kay and Kaz are the 

air conductivity in x, y and z directions respectively. 

In order to solve the equations (5) and (6) 

following constitutive relationships proposed by 

van Genuchten (1980) are used: 
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where, Kws is the saturated hydraulic 

conductivity; Kas=Kws (µw/µa) is the saturated air 

conductivity; and µw and µa are dynamic viscosity 

of water and air respectively. µw =1.002×10
-2

 

NS/m
2
 and µa =1.83×10-5 NS/m

2
 at 20°c. 

Numbers of methods are available for the 

numerical solution. In several 1D variably saturated 

flow studies, finite difference schemes have been 

widely used (e.g. Day and Luthin, 1956; Freeze, 

1969; Kirkby, 1978; Dam and Feddes 2000; 

Vasconcellos and Amorim, 2001). However, fewer 

researchers have used finite differences to solve 

variably saturated flow problems in higher 

dimensions. In this study, the equations (1), (5) and 

(6) are solved by line successive over relaxation 

(LSOR) scheme used by Freeze (1971a, 1971b, 

1978) by an implicit iterative finite difference 

scheme. 

 

2.2 Surface flow and erosion/deposition model 

The mathematical model developed by 

Takahashi and Nakagawa (1994) was used to 

investigate the surface flow and erosion/deposition 

on the surface of the model slope. The depth-wise 

averaged two-dimensional momentum equations for 

the x-wise (down valley) and y-wise (lateral) 

directions are: 
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The continuity of the total volume is 
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The continuity equation of the particle fraction 

is 
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The equation for the change of bed surface 

elevation is 
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where, M (=uh) and N (=vh) are the flow 

discharge per unit width in x and y directions; u and 

v are depth averaged velocities in x and y 

directions; h is the water depth; g is the 

gravitational acceleration; β is the momentum 

correction factor; ρT is the mixture density; τbx and 

τby are the bottom shear stresses in x and y 

directions; R is the rainfall intensity; I is the 

infiltration rate; sb is the degree of saturation in the 

bed; ib is the rate of hydraulic erosion or deposition 

from the flowing water; c is the sediment 

concentration in the flow; c* is the maximum 

sediment concentration in the bed; and zb is the 

erosion or deposition thickness measured from the 

original bed elevation. 

Takahashi (1991) categorized the flow as: a) 

stony debris flow (c≥0.4c*), b) immature debris 

flow (0.4c*>c≥0.1c*) and c) turbulent flow 

(c<0.1c*); based on sediment concentration in the 

flow and proposed different flow resistance 

equations for each types of flow. 

For stony debris flow 
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For immature debris flow 
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For turbulent flow 
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where, n is the Manning's roughness coefficient 

and dm is the mean diameter of particles. 

The erosion velocity for unsaturated bed given 

by Takahashi (1991) is as follows. 
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where, ø is the internal friction angle of the bed, 

Ke is the parameter of erosion velocity and c∞ is the 

equilibrium solids concentration. c∞ is defined by 

the following equations (Nakagawa et al., 2003). 

 

For stony debris flow (tanθ>0.138) 
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For immature debris flow (0.138≥tanθ>0.03) 
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For turbulent flow (0.03≥tanθ) 
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Where, θ is water surface gradient, and 
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in which τ*c is the non-dimensional critical 

shear stress and τ* is the non-dimensional shear 

stress. 

If the slope is steeper than about 9 degrees and 

cs∞ by equation (29) calculates the value less than c∞ 
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and for the slope on which cs∞ by equation (29) 

count less than 0.01, cs∞ should be obtained by 

using appropriate bed load equation.  

 

The deposition velocity given by Takahashi 

(1991) is as follows. 
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where, dδ
 is a constant. 

The finite difference form of the equations (11) 

to (14) can be obtained by the solution methods 

developed by Nakagawa (1989) using Leap-Frog 

scheme. 

 

2.3 Slope stability model 

The stability of a slope depends on its geometry, 
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soil properties and the forces to which it is 

subjected to internally and externally. The 

numerous methods currently available for slope 

stability analysis provide a procedure for assigning 

a factor of safety to a given slip surface, but do not 

consider the problem of identifying the critical 

conditions. Limit equilibrium method of slices is 

widely used for slope stability analysis due to its 

simplicity and applicability. In the method of slices, 

the soil mass above the slip surface is divided into a 

number of vertical slices and the equilibrium of 

each of these slices is considered. The actual 

number of the slices depends on the slope geometry 

and soil profile. The limiting equilibrium 

consideration usually involves two steps; one for 

the calculation of the factor of safety and the other 

for locating the most critical slip surface which 

yields the minimal factor of safety. Methods by 

Bishop, Janbu, Spencer and Morgenstern and Price 

are now well known. 

In this study Janbu’s simplified method has 

been incorporated into an effective minimization 

procedure based on dynamic programming by 

which the minimal factor of safety and the 

corresponding critical non circular slip surface are 

determined simultaneously. Fig. 1 shows the three 

dimensional general slip surface and forces acting 

on a typical column. Wij is the weight of column; Pij 

is the vertical external force acting at the top of the 

column; Tij and Nij are the shear force and total 

normal force acting on the column base; Qij is the 

resultant of all intercolumn forces acting on the 

column sides; �x and �y are discretized widths of 

the columns in x and y directions respectively; and 

αxz and αyz are the inclination angles of the column 

base to the horizontal direction in the xz and yz 

planes respectively. 

The factor of safety Fs for Janbu’s simplified 

method is expressed by the following equation 

(Awal et al., 2009). 
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where, ce and ø are the Mohr-Coulomb 

strength parameters. J=(1+tan2αxzij + tan2αyzij)1/2;  

∑ ∑+= dxdydzcdxdydztzyxW swwij γγθ *),,,(

(the weight of a column); 

∑= dxdytyxhP wij ),,(γ (the vertical external force 

i.e., surface water weight, acting on the top of the 

column); ),,,( tzyxhAverageu wwijp ∑= γ  (the 

pore water pressure at the base of the column) for 

hw(x,y,z,t)>0; dx, dy and dz are the size of cell used 

in seepage flow model, γw and γs are the unit weight 

of water and solids respectively, c* is the volume 

  

 

 

 

Fig. 1 Three dimensional general slip surface and forces acting on a typical column 

(a) Sliding mass and vertically divided columns 
(b) Forces acting on a the column ij 
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concentration of the solids fraction in the body of 

slope model, θw(x,y,z,t) and  hw(x,y,z,t) are the 

moisture content and pressure head in each cell and 

h(x,y,z,t) is the depth of surface water above the 

cell. 

 

3. Experimental Study 

 

A 3m long, 80cm wide and 70cm deep 

rectangular flume, with adjustable longitudinal 

slope was used for the experiment. The flume 

sidewalls were made of aquarium glass. For 

capturing the initiation of slope failure process and 

movement of the failure mass, three digital video 

cameras (VCs) were used. Two cameras were 

placed in the sides and one was placed in the front 

of the flume. The experiments were carried out on 

23 degree flume slope. The schematic diagram of 

the flume, including instrumentation and data 

acquisition system is shown in Fig. 2. 

It is difficult to observe the three dimensional 

view of the failure surface in rectangular flume 

shape. So, the rectangular shape of the flume was 

modified to V-shape having cross slope of 20° by 

using 292.5 cm long and 3cm thick wooden plates. 

The downstream end of the flume was closed with a 

filter mat supported by a wooden plate for retaining 

the soil and providing downstream free flow 

condition. The model slope was prepared by placing 

sediment (Silica sand S6) on the flume and 

compacted in every 5cm thickness (approximately) 

using timber plate. A small space was allowed in 

the upstream for providing runoff input so as to 

develop water table in the bottom layer of the 

model slope which is essential for slope failure 

phenomenon. Profile probes (PRs) consisting four 

sensors (SRs) were used to measure the temporal 

variation of moisture content and pressure 

transducers (PTs) were used to measure the 

temporal variation of air pressure at different 

locations inside the body of the model slope. 

The flume was in inclined position during the 

preparation of the model slope for moisture profile 

and air pressure head profile measurements, 

whereas it was in horizontal position during the 

preparation for observing the slope failure process 

and movement of the failure mass. The profile 

probes (PRs) and air pressure transducers (PTs) are 

positioned in their proper location during the 

preparation of the model slope. Shape and size of 

the model slope with the arrangement of PRs 

sensors (SRs) and PTs are schematically shown in 

Fig. 3. 
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Fig. 2 Experimental setup 
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Fig. 3 Shape and size of the model slope with the arrangement of SRs and PTs 

Before Failure

After Failure

Failure Surface
 

Fig. 4 Typical sketches showing the alignment of threads/sand strips before and after the failure of slope in a 

particular L-section 
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Sediment type S6 

Saturated moisture content,  θs 0.42 

Residual moisture content,  θr 0.004 

Van Genuchten parameter,  α 5.719 

Van Genuchten parameter,  η 5.044 

Specific gravity,  Gs 2.63 

Mean grain size, D50 (mm) 0.24 

Angle of repose,  ø 34
0
 

Porosity,  n 0.4221 

Compression index, CI 1.08 
Particle diameter (mm) 

Table 1 Some parameter values of the sediment 
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Fig. 5 Grain size distribution of the sediment 
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Red colored sediment strips and red colored 

cotton threads were placed respectively at the side 

wall faces and inside the body, normal to the flume 

bed, so as to measure the failure surface after 

sliding. Sediment strips were placed at the face of 

the flume and threads were attached firmly in the 

bottom wall before preparation of the dam body. 

Fig. 4 presents the typical sketches showing 

alignment of sand strips/threads before and after the 

failure of slope in a particular L-section. Some 

parameter values of the sediment used are listed in 

Table 1. The grain size distribution of the sediment 

is shown in Fig. 5. 

 

4. Results and Discussions 

 

Numerical simulation was carried out with time 

step of 0.01 second and space steps of 2.5cm, 

2.424cm and 2.5cm in x (longitudinal), y (lateral) 

and z (vertical) directions respectively. Both x and 

y directions were assumed horizontal. In surface 

water flow and erosion/deposition model, the time 

step of 0.005sec and space steps of 2.5cm and 

2.424cm in x (parallel to longitudinal axis of flume) 

and y (horizontal) directions respectively. Space 

steps of 15cm and 10cm in x (parallel to 

longitudinal axis of flume) and y (horizontal) 

directions with time step of 10 second was used in 

slope stability model. 

Average rainfall over the flume during 

experiment was 105.365mm/hr. Fig. 6 shows the 

rainfall distribution over the flume. In simulation, 

same rainfall distribution was used. Fig. 7 shows 

the experimental and simulated air pressure head 

profiles at the position of different PTs. Fig. 8 

shows the experimental and simulated moisture 

profiles at the position of different SRs. 

Essentially air becomes trapped in the voids by 

the infiltrating water from the surface, initially 

causing compression of the air phase, leading to a 

reduction in the rate of water infiltration. The air 

pressure will increase until it reaches a sufficient 

value for the air to escape by bubbling. Moisture 

profiles obtained considering two-phase flow was 

found a little bit delayed in comparison with that of 

one-phase flow (Fig. 8).  
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Fig. 6 Distribution of rainfall intensity (in mm/hr) over the flume 
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Fig. 7 Experimental and simulated air pressure head profiles 
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Fig. 8 Experimental and simulated moisture profiles 
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Fig. 9 Experimental and simulated critical slip surfaces (Time= 2780 second) 
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Fig. 10 Experimental and simulated moisture contents at 1100 second 
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In experiment the slope was failed at 2,780 

second. Fig. 9 shows the comparison of 

experimental and simulated critical slip surfaces at 

2780 second. In simulation calculated factor of 

safety was 0.737 in case of data obtained by 

one-phase as well as 2-phase seepage analysis. 

Simulated moisture content contour at 1,100 

seconds is presented in Fig. 10. Experimental 

moisture contents observed by various profile probe 

sensors are also compared with simulated moisture 

contents in Fig. 10. 

Janbu’s simplified method only satisfies force 

equilibrium for the entire sliding mass and assumes 

resultant inter-slice forces horizontal where as it 

does not satisfy moment equilibrium. Also the 

assumption of horizontal resultant inter-slice forces 

does not represent its line of action indeed. For the 

same critical surface factor of safety obtained by 

other methods that also satisfying moment 

equilibrium will be higher. 

 

5. Conclusions 

 

In this study slope stability analysis was carried 

out using the pore water pressure and the moisture 

content calculated by three dimensional seepage 

flow model. Only a conventional water-phase 

seepage flow model as well as the water-air 

two-phase seepage flow model, coupled with two 

dimensional surface flow and erosion/deposition 

model, were used for seepage analysis. In seepage 

analysis, the influence of air on seepage was found 

to be less significant. More experimental studies are 

necessary to get experimental and simulated results 

quite close. The performance of the model can 

further be improved by incorporating more rigorous 

method of slope stability analysis.  
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降雨による斜面崩壊に関する実験及び数値解析 

 

 

Ram Krishna REGMI*・中川一・川池健司・馬場康之・張浩 

 

*京都大学大学院工学研究科 

 

要 旨 

本研究は，降雨による斜面崩壊を予測することを目的としている。実験と数値解析により斜面崩壊のメカニズムにつ

いて検討を行った。間隙水圧と含水量を解く３次元浸透流解析によって斜面の安定解析を実施した。従来の水相のみの

浸透流だけでなく，水と空気の２相を解析する浸透流モデルを２次元の表層流および浸食/堆積モデルとカップリングし，

実験へ適用し検証を行った。数値解析により，浸透流と斜面安定において間隙内の空気の影響は小さく，２相で解析す

る必要性が低いことが示された。 

 

キーワード:浸透流解析，飽和土，斜面安定，表層崩壊 
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