
D-Search: An Efficient and Exact Search
Algorithm for Large Distribution Sets
Yasuko Matsubara1, Yasushi Sakurai2 and Masatoshi Yoshikawa1
1Kyoto University; 2NTT Communication Science Labs

Abstract. Distribution data naturally arise in countless domains, such as meteorology, biology,
geology, industry and economics. However, relatively little attention has been paid to data mining
for large distribution sets. Given n distributions of multiple categories and a query distribution Q,
we want to find similar clouds (i.e., distributions), to discover patterns, rules and outlier clouds.
For example, consider the numerical case of sales of items, where, for each item sold, we record
the unit price and quantity; then, each customer is represented as a distribution of 2-d points (one
for each item he/she bought). We want to find similar users, e.g., for market segmentation or
anomaly/fraud detection. We propose to address this problem and present D-Search, which in-
cludes fast and effective algorithms for similarity search in large distribution datasets. Our main
contributions are (1) approximate KL divergence, which can speed up cloud-similarity computa-
tions, (2) multi-step sequential scan, which efficiently prunes a significant number of search can-
didates and leads to a direct reduction in the search cost. We also introduce an extended version
of D-Search : (3) time-series distribution mining, which finds similar subsequences in time-series
distribution datasets. Extensive experiments on real multi-dimensional datasets show that our so-
lution achieves a wall clock time up to 2,300 times faster than the naive implementation without
sacrificing accuracy.

Keywords: Distribution sets; KL divergence; Singular value decomposition, Likelihood

1. Introduction

Distribution data naturally arise in countless domains, such as meteorology, biology,
geology, industry and economics. Although the datasets generated by the correspond-
ing applications continue to grow in size, a common demand is to discover patterns,
rules and outliers. However, relatively little attention has been paid to data mining for
large distribution sets. Here we focus on a less-studied problem, namely on “distribu-
tion search”. Given n distributions of multiple categories and a query distribution Q,
we want to find similar clouds (i.e., distributions), to meet the above demand. To solve
this problem, we present D-Search, which includes fast and effective algorithms for
similarity search for large distribution sets.

2 Y. Matsubara et al.

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

-1000.0-800.0 -600.0 -400.0 -200.0 0.0 200.0

Query (running)

-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

-1000.0-800.0 -600.0 -400.0 -200.0 0.0 200.0
-600.0

-500.0

-400.0

-300.0

-200.0

-100.0

0.0

100.0

200.0

-1000.0-800.0 -600.0 -400.0 -200.0 0.0 200.0

Distribution #1 (running) Distribution #2 (squatting)

Fig. 1. Three distributions fromMoCap data: all showing scatter plots of left and right foot kinetic energy val-
ues for different motions. The query distribution and Distribution #1 “look” more similar, while Distribution
#2 “looks” different.

We illustrate the main intuition and motivation with a real example. Figure 1 shows
three distributions corresponding to three motions. Specifically, they are the scatter plots
of left and right foot kinetic energy values. Given a query motion, shown on the left, we
would like to discover similar objects in large distribution datasets. Figure 1 shows the
output of our approach, which successfully identifies similar distributions. For example,
D-Search detects Distribution #1 similar to the query distribution (in fact, they both
correspond to “running” motions). In contrast, Distribution #2 is not found as a similar
object (in fact, it corresponds to a “squatting” motion).

In this paper, we propose efficient algorithms called D-Search, which can find sim-
ilar distributions in large distribution datasets. We focus mainly on similarity search for
numerical distribution data to describe our approach. However, our solution, D-Search
can handle categorical distributions as well as numerical ones. Our upcoming algorithms
are completely independent of such a choice.

1.1. Example domains and applications

There are many distribution search applications. In this section, we briefly describe
application domains and provide some illustrative, intuitive examples of the usefulness
of D-Search.
– Multimedia : Multimodal data mining in a multimedia database is a challenging topic
in data mining research [16, 5, 22, 12, 3, 36, 15]. Multimedia data may consist of data
in different modalities, such as digital images, audio, video, and text data. For exam-
ple, consider motion capture datasets, which contain a list of numerical attributes of
kinetic energy values. In this case, every motion can be represented as a cloud of

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 3

hundreds of frames, with each frame being a d-dimensional point. For this collec-
tion of clouds, we can find similar motions without using annotations or other meta
data. As another example, consider digital images, which contain a number of rows
and columns of pixels. We can find similar images in large digital image datasets by
using these numerical attributes.

– Medical data analysis : The extraction of meaningful information from large medical
datasets is the central theme of many medical research problems [27]. The Brain-
Computer Interface (BCI), which is mainly designed to help disabled people control
personal computers using biofeedback, is a completely new approach in the field
of neurology [25]. Biofeedback is a coaching and training process that helps people
learn how to change patterns of behavior, to take greater responsibility for their health
and for their mental, physical, emotional and spiritual functions. However, it is unde-
sirable for disabled people to have to adapt to computers. The basic idea behind BCI
is that the computer adapts rather than the person. For example, mental task classi-
fication using electroencephalograms (EEG) is an approach to understanding human
brain functions. EEG signals are weak voltages resulting from the spatial summation
of electrical potentials in the brain cortex, which can easily be detected by electrodes
placed suitably on the scalp. They result from the superposition of three main types of
brain potential, namely oscillatory, event-related, and slow potential shifts. Different
components of the EEG signal have been widely demonstrated to have measurable
correlates with the brain activity involved in specific mental tasks [6, 32]. As another
example, consider diabetes diagnosis information, where each diagnosis has a list of
numerical attributes (e.g., age in years, body mass index, diastolic blood pressure).
For this collection of clouds, we would like to find patterns and groups, e.g., to un-
dertake medical research.

– Web service : There are numerous, fascinating applications for web service mining.
One example is an SNS system such as a blog hosting service. Consider a large num-
ber of blog users each of whom has a list of numerical and categorical attributes (e.g.,
total number of postings, average posting length, URLs of outgoing links, average
number of trackbacks). Now assume that we can record all these attributes, on a daily
basis, for all blog users. For this collection of clouds, we would like to find patterns
and groups, e.g., to undertake sociological and behavioral research. As another ex-
ample, let us assume web services such as an ondemand-TV service, which records
the viewing of TV programs, on a daily basis of all users (e.g., the genre of a TV
program, the time the user spent on the service). Discovering clusters and outliers in
such data (which groups or communities of users are associated with each other?)
would help in tasks such as service design and content targeting.

– E-commerce : Consider an e-commerce setting, where we wish to find customers
according to their purchasing habits. Suppose that for every sale we can obtain the
time the customer spent browsing, the number of items bought, their genres and sales
price. Thus, each customer is a cloud of 4-d points (one for each purchase). The
e-store would like to classify these clouds, to perform market segmentation, rule dis-
covery (is it true that the highest volume customers spend more time on our web site?)
and spot anomalies (e.g., identity theft).

1.2. Contributions

We introduce efficient algorithms called D-Search, which can find similar distributions
in large distribution datasets. The contributions are as follows: (a) We examine the time

4 Y. Matsubara et al.

and space complexity of our solutions and compare them with the complexity of the
naive solution. Given n distributions of an m-bucketized histogram and a query distri-
bution, our algorithms require only O(n) to compute KL divergence, instead of O(mn)
as required by the naive method, and lead to a large reduction in the search cost. (b)
Extensive experiments on real multi-dimensional datasets shows that our method is sig-
nificantly faster than the naive method without sacrificing accuracy. (c) We propose to
address the problem of time-series distribution mining and present our solution, which
finds similar subsequences in time-series distribution datasets. (d) Finally, we propose
the extend version of D-Search which finds the top k distributions that maximize the
likelihood, given a probability density.

1.3. Outline

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3
introduces preliminary concepts, and describes the proposed method and identifies the
main tasks of distribution search. We then explain the techniques and constraints
we use to realize efficient KL divergence calculations. We also address the problem of
time-series distribution mining. Section 4 describes an extended version of D-Search,
which finds the top k distributions given a probability density function. Section 5 intro-
duces some of the applications for which our method proves useful, and evaluates our
algorithms by conducting extensive experiments. Section 6 concludes the paper.

2. Related Work

Related work falls broadly into three categories: (1) similarity functions between dis-
tributions, (2) probabilistic query processing, and (3) model estimation. We provide a
survey of the related literature.

2.1. Comparing two distributions

There are several statistical methods [26] for deciding whether two distributions are the
same (Chi-square, Kolmogorov-Smirnoff). However, they do not give a score; only a
yes/no answer; and some of them cannot be easily generalized for higher dimensions.

Functionals that return a score are motivated from image processing and image com-
parisons: the so-called earth-moving distance [28] between two images is the minimum
energy (mass times distance) to transform one image into the other, where mass is the
gray-scale value of each pixel. For two clouds of points P and Q (= black-and-white
images), there are several measures of their distance/similarity: one alternative is the
distance between the closest pair (min-min distance); another is the Hausdorff distance
(max-min - the maximum distance of a set P , to the nearest point in the set Q); an-
other would be the average of all pairwise distances among P -Q pairs. Finally, tri-
plots [34] can find patterns across two large, multi-dimensional sets of points, although
they cannot assign a distance score [4]. The most suitable idea for our setting is the
Kullback-Leibler (KL) divergence (see Equation (2)), which gives a notion of the dis-
tance between two distributions. The KL divergence is commonly used in several fields
to measure the distance between two probability density functions (PDFs, as in, e.g.,
information theory [35], pattern recognition [31, 17]).

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 5

2.2. Probabilistic queries

A remotely related problem is the problem of probabilistic queries. Cheng et al. [7]
classify and evaluate probabilistic queries over uncertain data based on models of un-
certainty. An indexing method for regular probabilistic queries is then proposed in [8].
In [33] Tao et al. present an algorithm for indexing uncertain data for any type of PDFs.
Distributions for our work can be expressed by PDFs as well as histograms. However,
the main difference between our study and [7] is that we focus on comparing differ-
ences between distributions, while Cheng focuses on locating areas in distributions that
satisfy a given threshold.

2.3. Model estimation

Recently significant progress has been made on understanding the theoretical issues
surrounding learning mixture distributions in theoretical computing [20, 9, 19] and ma-
chine learning [37, 30, 21]. Mixture models are used in a broad range of scientific and
engineering applications, including computer vision and speech recognition. The effec-
tiveness of modeling hinges on choosing the right parameters for the mixture distri-
bution, and the problem of parameter selection for mixture models has a long history
[20]. The most commonly used method for parameter estimation is maximum likelihood
estimation (MLE), which suggests choosing the parameters in a way that maximizes
the likelihood of the observed data, given a model. In modern practice this is gener-
ally accomplished with the iterative optimization technique known as the expectation
maximization (EM) algorithm [10]. Recently significant progress on understanding the
theoretical issues surrounding learning mixture distributions and EM has been made in
theoretical computer science [9, 19, 37, 30, 21, 13].

Distribution search and mining are problems that, to our knowledge, have not been
addressed. The distance functions among clouds that we mentioned above either ex-
pect a continuous distribution (such as a probability density function), and/or are too
expensive to compute.

3. Proposed method

We now present our distribution search algorithms. In this section, we define some fun-
damental concepts and the problem of distribution search, and then propose algorithms
for solving it. We also introduce time-series distribution search, as an extended version
of D-Search.

3.1. Preliminaries

3.1.1. KL divergence

Given two distributions P andQ, there are several measures of their distance/similarity,
as described in the literature survey section. However, the above distances suffer from
one or more of the following drawbacks: they are either too fragile (like the min-min
distance); and/or they do not take all the available data points into account; and/or they
are too expensive to compute. Thus we propose using information theory as a basis, and
specifically the Kullback-Leibler (KL) divergence.

6 Y. Matsubara et al.

Table 1. Symbols and definitions.

Symbol Definition

n number of distributions
m number of buckets

P, Q two histograms of numerical
and/or categorical distributions

P̂ histogram of the logarithm of P
pi, p̂i i-th bucket of P , P̂

Sp SVD coefficients of P
Ŝp SVD coefficients of P̂
spi i-th coefficient of Sp

D(P, Q) symmetric KL divergence of P and Q
dc(P, Q) lower bounding KL divergence

of P and Q with c histogram buckets
d′c(P, Q) approximate KL divergence

of P and Q with c SVD coefficients

Q probability density function

L(P |Q) likelihood function of Q given P
lc(P |Q) upper bounding likelihood of Q

given P with c histogram buckets
l′c(P |Q) approximate likelihood of Q

given P with c SVD coefficients

Let us assume for a moment that the two clouds of points, P and Q, consist of
samples from two (continuous) probability density functions P and Q, respectively.
The KL divergence measures the distance from one probability distribution P to another
one Q [11]. Intuitively, the (continuous, and asymmetric) KL divergence DCKL(P,Q)
corresponds to the extra coding cost we have to suffer, when we try to compress samples
from P while using the coding that is optimal for Q. Formally, the KL divergence is
defined as follow:

DCKL(P,Q) =
∫

px · log
(

px

qx

)
dx (1)

where px and qx are the probability density functions at x.
As defined, the KL divergence has two drawbacks: (a) it needs the probability den-

sity functions, which we don’t know and (b) it is asymmetric. All the above definitions
are for the case of continuous variables. The first issue can be (partially) resolved by
bucketization: once we choose a size of grid cells, m (e.g., chosen according to space
budget), we can impose a d-dimensional grid on all our clouds, and measure the counts
of points in every grid cell. Then, we employ the discrete version of the KL divergence,
defined as follows:

DKL(P,Q) =
m∑

i=1

pi · log
(

pi

qi

)
(2)

where pi, qi are the i-th buckets of distributionsP andQ, respectively. That is,
∑m

i=1 pi =∑m
i=1 qi = 1.
The above definition is asymmetric, and thus we propose using the symmetric KL

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 7

divergence DSKL:

DSKL(P,Q) = DKL(P,Q) + DKL(Q,P)

=
m∑

i=1

(pi − qi) · log
(

pi

qi

)
. (3)

In the rest of the paper, we shall simply denote DSKL(P,Q) as D(P,Q).
There is a subtle point we need to address. The KL divergence expects non-zero

values, however, histogram buckets corresponding to sparse areas in multi-dimensional
space may take a zero value. To avoid this, we introduce the Laplace estimator [23, 18]:

pi =
p′i + 1

|P ′| + m
· |P ′| (4)

where p′i is the original histogram value (i = 1, . . . , m) and pi is the estimate of p′i. |P ′|
is the total number of points (i.e., |P ′| =

∑m
i=1 p′i).

Another solution is that we could simply treat empty cells as if they had “minimum
occupancy” of ε. The value for “minimum occupancy” should be ε << 1/|P ′|. We
chose the former since it provides better search accuracy, although our algorithms are
completely independent of such choices.

3.1.2. Singular value decomposition

Here we provide a brief overview of singular value decomposition (SVD). A set P of n
m-bucketized histograms can be transformed using SVD as follows.

Every matrix P ∈ Rn×m can be decomposed into

P = UΣVT

where U ∈ Rn×r, V ∈ Rm×r and Σ ∈ Rr×r, with r ≤ min(n,m) the rank of P.
The columns vi of V ≡ [v1 · · · vr] are the right singular vectors of P and they form
an orthonormal basis its row space. Similarly, the columns ui of U ≡ [u1 · · ·ur] are
the left singular vectors and form the basis of the column space of P. Finally Σ ≡
diag[σ1 · · ·σr] is a diagonal matrix with positive values σi, called the singular value
of P. The transformed data (i.e., the projection of P) SP ≡ [sp1 · · · spr] is given as
SP = UΣ.

3.2. D-Search

The first problem we want to solve is as follows:

Problem 1 (Distribution search). Given n distributions of anm-bucketized histogram
and a query distribution Q, find the top k distributions that minimize the KL divergence.

This involves the following sub-problems, which we address in subsequent subsections.
(a) How can we represent the distribution of a histogram compactly, and accelerate dis-
tance calculations? (b) How can we prune a significant number of search candidates and
achieve a direct reduction in the search cost? (c) What is the space and time complexity
of our method?

8 Y. Matsubara et al.

3.2.1. Lower bounding KL divergence

We described how to measure the distance between distributions. The first question is
how to store the distribution information, in order to minimize space consumption and
response time. Recall that for each m-bucketized distribution P , we could keep the
fraction of pi that falls into the i-th bucket.

The naive solution is to maintain an exact m-bucketized histogram for each dis-
tribution, and to use such histograms to compute the necessary KL divergences, and
eventually to run the required mining algorithm (e.g., the nearest neighbor search).

However, this may require too much space, especially for higher dimensions. One
solution would be to use the top c most populated buckets, in the spirit of ‘high end
histograms’. The argument against it is that we may ignore some sparsely populated
bins, whose logarithm would be important for the KL divergence.

For the definition, we compute the KL divergence with c histogram values, that
is, we compute (pi − qi) · log(pi/qi) if we select either pi or qi, otherwise, we can
simply ignore these values since they are very close to zero. Consider that the sequence
describing the positions of the top c values of P andQ is denoted as Ipq. We then obtain
the lower bounding KL divergence of P and Q:

dc(P,Q) =
∑

i∈Ipq

(pi − qi) · log
(

pi

qi

)
. (5)

Lemma 1. For any distributions, the following inequality holds.
D(P,Q) ≥ dc(P,Q). (6)

Proof. From the definition,

D(P,Q) =
m∑

i=1

(pi − qi)(log pi − log qi).

Since ∀i, (pi − qi)(log pi − log qi) ≥ 0, for any c value (1 ≤ c ≤ m), we have
D(P,Q) = dm(P,Q) ≥ dc(P,Q), (7)

which completes the proof.

3.2.2. Multi-Step Sequential Scan

Instead of operating on lower bounding KL divergence with c buckets of a single com-
putation, we propose using multiple computations, in an attempt to achieve a trade-off
between accuracy and comparison speed. As the number of buckets c increases, the
lower bounding KL divergence becomes tighter, but the computation cost also grows.
Accordingly, we gradually increase the number of buckets, and thus improve the accu-
racy of the approximate distance, during the course of query processing.

Algorithm 1 shows our proposed method, which uses the lower bounding KL di-
vergence. In this algorithm N indicates the k-nearest neighbor list, and Dcb shows the
exact KL divergence of the current k-th nearest neighbor (i.e., Dcb is the current best).
As the multi-step scan, the algorithm uses breadth-first traversal, and it prunes unlikely
distributions at each step, as follows:
1. We first obtain the set of k-nearest neighbor candidates (Napp) based on the approx-
imate KL divergence (i.e., the lower bounding KL divergence) with the top c his-
togram buckets.

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 9

2. We then compute the exact KL divergence between candidate distributions (Napp)
and the query distribution. When we find a distribution whose exact KL divergence
is smaller than Dcb we update the candidate (N).

3. For all distributions, if the lower bounding KL divergence is larger than Dcb, we
exclude the distribution since it cannot be one of the k-nearest neighbors.

We compute h steps that form an arithmetic progression: c = {c1, 2c1, 3c1, ..., h · c1},
or more generally, for steps of ci := i · c1 for i = 1, 2, ..., h.

The search algorithm gradually enhances the accuracy of the lower bounding KL
divergence and prunes dissimilar distributions to reduce the computation cost of the KL
divergence. Finally, we compute the exact KL divergences between distributions, which
are not pruned in any steps, and the query distribution.

Algorithm 1 D-Search(Q, k)
/* N is the sorted nearest neighbor list */
initialize N
for i := 1 to h do
N = MultiStepScan(N , Q, k, ci)

end for
for all P ∈ database do
compute D(P,Q)
if D(P,Q) ≤ Dcb then
add P to N and update Dcb

end if
end for
return N

Lemma 2. For any distributions, D-Search guarantees exactness when finding distribu-
tions that minimize the KL divergence for the given query distribution.

Proof. From Lemma 1, we obtain D(P,Q) ≥ dc(P,Q) for any granularity, for any
distribution. For N , Dcb ≥ dc(P,Q) holds. In the search processing, since Dcb ≤
D(P,Q), the lower bounding KL divergence of N is less than Dcb. The algorithm
discards P if (and only if) dc(P,Q) > Dcb. Therefore, the final k-nearest neighbors in
N cannot be pruned during the search processing.

Although we described only a search algorithm for k-nearest neighbor queries, D-
Search can be applied to range queries. It utilizes the current k-th nearest neighbor
distance Dcb for k-nearest neighbor queries, and the search range is used to handle
range queries.

3.3. Enhanced D-Search

In the previous subsection, we described the basic version of D-Search, which guaran-
tees the exactness for distribution search while the algorithm efficiently finds distribu-
tions that minimize the KL divergence. The question is what can we do in the highly
likely case that the users need a more efficient solution in practice requiring high ac-
curacy, not a theoretical guarantee. As the enhanced version of D-Search, we propose
compressing the histograms using the singular value decomposition (SVD), and then

10 Y. Matsubara et al.

Algorithm 2MultiStepScan(N , Q, k, c)
/* Napp is the sorted nearest neighbor list */
initialize Napp

/* compute approximate KL divergence */
for all P ∈ database do
compute dc(P,Q)
if dc(P,Q) ≤ dcb then
add P to Napp and update dcb

end if
end for
/* compute exact KL divergence */
for all P ∈ Napp do
compute D(P,Q)
if D(P,Q) ≤ Dcb then
add P to N and update Dcb

end if
end for
/* prune the search candidates */
for all P ∈ database do
if dc(P,Q) > Dcb then
remove P from database

end if
end for
return N

keeping some appropriate coefficients. As we show later, this decision significantly im-
proves both space and response time, with a negligible effect on the mining results.
The only tricky aspect is that if we just keep the top c SVD coefficients, we might not
obtain good accuracy for the KL divergence. This led us to the design of our method
that we describe next. The main idea is to keep the top c SVD coefficients for the his-
togram P (m) = (p1, . . . pm), as well as the top c coefficients for the histogram of the
logarithms (log p1, . . . log pm). We elaborate next.

Let P̂ = (p̂1, . . . , p̂m) be the histogram of the logarithms of P = (p1, . . . , pm),
i.e., p̂i = log pi. Let Sp and Ŝp be the SVD coefficients of P and P̂ , respectively. We
present our solution using Sp and Ŝp.
Proposed Solution: We represent each distribution as a single vector; we compute Sp

and Ŝp from P and P̂ for each distribution, and then we compute the necessary KL
divergences from the SVD coefficients. Finally, we apply a search algorithm (e.g., the
nearest neighbor search) to the SVD coefficients.

The cornerstone of our method is Theorem 1, which effectively states that we can
compute the symmetric KL divergence using the appropriate SVD coefficients.

Theorem 1. Let Sp = (sp1, . . . , spm) and Ŝp = (ŝp1, . . . , ŝpm) be the SVD coeffi-

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 11

cients of P and P̂ , respectively. Then we have

D(P,Q) =
1
2

m∑

i=1

fpq(i) (8)

fpq(i) = (spi − ŝqi)
2 + (sqi − ŝpi)

2

−(spi − ŝpi)
2 − (sqi − ŝqi)

2.

Proof. From the definition,

D(P,Q) =
m∑

i=1

(pi − qi) · log
(

pi

qi

)
.

Then we have

D(P,Q) =
m∑

i=1

(pi − qi) · (log pi − log qi)

=
1
2

m∑

i=1

fpq(i).

In light of Parseval’s theorem, this completes the proof.

The KL divergence can be obtained from Equation (8) using the SVD calculated
from histogram data. The number of buckets of a histogram (i.e., m) could be large,
especially for high-dimensional spaces, while the most of buckets may be empty. The
justification for using SVD is that very few of the SVD coefficients of real datasets
are often significant and the majority are small, thus, the error is limited to a very small
value. When calculating the SVD from the original histogram, we select a small number
of SVD coefficients (say c coefficients) that have the largest energy from the original
SVD array. This indicates that these coefficients will yield the lowest error among all
the SVD coefficients.

For Equation (8), we compute the KL divergence with the top c SVD coefficients,
that is, we compute fpq(i) if we select either spi or sqi (ŝpi or ŝqi), otherwise, we can
simply ignore these coefficients since they are very close to zero. Thus, we obtain the
approximate KL divergence of P and Q:

d′c(P,Q) =
1
2

c∑

i=1

fpq(i). (9)

Figure 2 shows the SVD-based approximation of the probability distribution from
MoCap. It is represented by a 10 × 10 bucketized histogram (i.e. full coefficients c =
m = 100). However, the numerical rank is much lower. In addition to the basic ver-
sion of D-Search described in Section 3.2, the enhanced version also uses the multi-step
scan algorithm (see Algorithms 1 and 2), which efficiently finds similar distributions
using their SVD-based approximate KL divergences. Figure 2 shows the gradual ‘re-
finement’ of the approximation. In Figure 2 (a), we compute the approximate distance
from the coarsest version of a distribution P as the first step of the refinement. If the dis-
tance is greater than the current k-th nearest neighbor distance (i.e.,Dcb), we can prune
P . Otherwise, we compute the distance from the more accurate version as the second
refinement step (see Figure 2 (b)). We compute the exact distance from the original rep-
resentation of P only if the approximate distance does not exceed Dcb (see Figure 2
(c)).

12 Y. Matsubara et al.

0.5
0.0 0.5

0.0

0.02

0.5
0.0 0.5

0.0

0.02

(a) c = 1 (b) c = 16

0.5
0.0 0.5

0.0

0.02

(c) Original data

Fig. 2. Approximation of probability distribution from running motion: three probability distributions are
shown here, from running motion of MoCap, which is shown in Figure 1 (Query distribution). They are
approximations of c = 1, c = 16 and the original data, respectively.

3.4. Theoretical analysis

In this section we examine the time and space complexity of our approach and compare
it with the complexity of the naive solution. Recall that n is the number of input distri-
butions, m is the number of buckets that we impose on the address space, and c is the
number of buckets or SVD coefficients that our methods keeps.

3.4.1. Space complexity

Naive method
Lemma 3. The naive method requires O(mn) space.
Proof. The naive method requires the storage of m-bucketized histograms of n distri-
butions, hence the complexity is O(mn).

Proposed solution (D-Search)
Lemma 4. The proposed algorithms require O(m + n) space.
Proof. D-Search initially allocates memory to store histogram ofm buckets. The basic
version of D-Search selects the top c most populated buckets, and keeps them. The
enhanced version calculates the SVD coefficients and keeps only the top c coefficients.
Then it reduces the number of buckets (or SVD coefficients) to O(c) and allocates
O(cn) memory for computing the KL divergence. However, c is normally a very small
constant, which is negligible. We sum up all the allocated memory and we obtain a
space complexity of O(m + n).

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 13

3.4.2. Time complexity

Naive method

Lemma 5. The naive method requires O(mn) time to compute the KL divergence for
the k-nearest neighbor search.

Proof. Computing the KL divergence requires O(m) time for every distribution pair.
For n distributions, it would take O(mn) time.

Proposed solution (D-Search)

Lemma 6. The proposed algorithms require O(n) time to compute the approximate
KL divergence for the k-nearest neighbor search.

Proof. The calculation of the nearest neighbor search requires O(cn) time. We han-
dle c histogram values (or SVD coefficients) for each distribution. This is repeated for
the number n of input distributions. Again, since c is a small constant value, the time
complexity distribution search can be simplified to O(n).

3.5. Time-series distribution mining

Many data sources consist of observations that evolve over time leading to time-series
distribution data. For example, financial datasets depict the prices of every stock over
time, which is a common example of time-series distribution data. Reporting meteo-
rological parameters such as temperature readings from multiple sensors gives rise to
a numerical distribution sequence. Business warehouses represent time-series categori-
cal distribution sequences such as the sale of every commodity over time. Time-series
distribution data depict the trends in the observed pattern over time, and hence capture
valuable information that users may wish to analyze and understand.

In this section we introduce a search method for time-series distributions that can
find similar subsequences in distribution datasets. The problem we propose and solve is
as follows:

Problem 2 (Time-series distribution mining). Given time-series distribution datasets
and query distribution Q, find subsequences whose distribution minimizes the KL di-
vergence.

Consider the time ordered series distribution of d-dimensional points. Distributions
performed at different times or by different subjects have different durations, and data
sampling rates can also be different at various times. We should solve the following
question: How do we efficiently find similar subsequences for multiple windows? In
our approach, we choose a geometric progression of windows sizes [29, 24]: rather
than estimating the patterns for windows of lengths w0, w0 + 1, w0 + 2, w0 + 3, ..., we
estimate them for windows of w0, 2w0, 4w0, ..., or, more generally, for windows of
length wl := w0 ·W l for l = 0, 1, 2, Thus, the size of the window setW we need to
examine is dramatically reduced.

The main idea behind our approach is shown in Figure 3. We compute the KL di-
vergence of data points falling within a window, and organize all the windows hierar-
chically. In this case, query distribution in Figure 3 is similar to P(8,12), P(12,16) at the
level 0 (l = 0), and, P(8,16) at the level 1 (l = 1), which are shaded in Figure 3.

With our method, we can also optimally use the sliding window, which is used as a

14 Y. Matsubara et al.

Fig. 3. Time-series distribution search (multiple windows, w0 = 4,W = 2).

general model in time-series processing [38, 14]. By using the sliding window, we can
find similar sequences, which are delayed less than the basic window time.

4. Extension to probability density functions

In the previous subsection we presented our distribution search algorithms, which use
distributions as queries for search processing. In this section, we extend our concepts
and introduce the probability density function (PDF) to find distributions that maximize
the likelihood. We first describe how to measure the distance between distributions and
probability density. We use the likelihood as the basis throughout this problem. Here we
formally define our problem as follows:
Problem 3. Given n distributions and a probability density function Q, find the top k
distributions that maximize the likelihood.

Let X = {x1, . . . xM} be a distribution with M points, and Q be the probability
density function. The log likelihood function is defined by:

L(X|Q) =
M∑

i=1

logQ(xi) (10)

where xi is the value of the i-th point of X , and Q(xi) shows the probability function
of xi, which is subject to the constraint 0 ≤ Q(xi) ≤ 1.

4.1. Upper bounding likelihood

Given a set of distributions and a PDFQ, the naive solution is to compute the likelihood
using all the data points of the distributions with Q, as in Equation (10). However, this
idea is too expensive to compute, especially for a large number of data points (i.e.,
M is too large). We thus propose bucketizing X and Q. The concept of our method
is illustrated in Figure 4. Instead of using all the points xi (i = 1, . . . ,M) of X for

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 15

)(xQ q

xx
(a) (b)

Fig. 4. Upper bounding likelihood: instead of using all the data points of the distributions with PDF Q, we
compute the discrete version of the likelihood.

computing the likelihood, we bucketize both X and Q with m grid cells. Here, we use
the upper bound of probability for Q.

Let P = {p1, . . . pm} be a bucketized distribution X with m grid cells, and Q =
{q1, . . . qm} be the upper bounds of Q withm buckets. The upper bounding likelihood
is defined by:

L(P |Q) =
m∑

i=1

pi log qi (11)

where pi is the value of the i-th bucket of P , and qi shows the i-th value of Q.
Lemma 7. For any distributions, the following inequality holds.

L(X|Q) ≤ L(P |Q). (12)
Proof. Let x1, x2, . . . , xs be points of X, which belong to the i-th bucket pi of P. For
any x, we have

∑s
j=1 logQ(xj) ≤ pi · log qi. This completes the proof.

Here, a subtle point should be noted. As well as the KL divergence, we can compute
the likelihood with c histogram values, that is, we compute pi · log qi if we select either
pi or qi, otherwise, we can simply ignore these values since they are very close to zero.
Consider that the sequence describing the positions of the top c values of P and Q is
denoted as Ipq. We then obtain the upper bounding likelihood of P given Q:

lc(P |Q) =
∑

i∈Ipq

pi · log qi. (13)

Lemma 8. For any distributions, the following inequality holds.
L(P |Q) ≤ lc(P |Q). (14)

Proof. From the definition, since ∀i, pi · log qi ≤ 0, for any c value (1 ≤ c ≤ m), we
have

L(P |Q) = lm(P |Q) ≤ lc(P |Q), (15)
which completes the proof.

4.2. Likelihood approximation

Next, we describe how to approximate the likelihood of distributions by using the
SVD approach. Let Q̂ = (q̂1, . . . , q̂m) be the histogram of the logarithms of Q =

16 Y. Matsubara et al.

(q1, . . . , qm), i.e., q̂i = log qi. Let Sp and Ŝq be the SVD coefficients of P and Q̂,
respectively. We present our solution using Sp and Ŝq.

Theorem 2. Let Sp = (sp1, . . . , spm) and Ŝq = (ŝq1, . . . , ŝqm) be the SVD coeffi-
cients of P and Q̂, respectively. Then we have

L(P |Q) =
1
2

m∑

i=1

gpq(i) (16)

gpq(i) = sp2
i + ŝq2

i − (spi − ŝqi)
2

Proof. From the definition,

L(P |Q) =
m∑

i=1

pi log qi.

Then we have

L(P |Q) =
1
2

m∑

i=1

gpq(i).

In light of Parseval’s theorem, this completes the proof.

For Equation (16), we compute the likelihood with the top c SVD coefficients. Thus,
we obtain the approximate likelihood of P and Q:

l′c(P |Q) =
1
2

c∑

i=1

gpq(i). (17)

We also use the multi-step scan algorithm (Algorithms 1 and 2), which provides an
efficient solution for probability density functions.

5. Experimental Evaluation

To evaluate the effectiveness of D-Search, we carried out experiments on real datasets.
Our experiments were conducted on an Intel Core 2 Duo 1.86 GHz with 4 GB of mem-
ory, running Linux.

The experiments were designed to answer the following questions:
1. How successful is D-Search in capturing time-series distribution patterns?
2. How well does D-Search work for probability density functions?
3. How does it scale with the sequence lengths n in terms of computational time?
4. How well does it approximate the KL divergence?

5.1. Pattern discovery in time-series distributions

In this section we describe some of the applications where D-Search proves useful. Fig-
ures 5-8 show how D-Search finds similar distributions. Note that, for all experimental
results, the enhanced version perfectly captures all similar distributions, that is, the out-
put of the enhanced version is exactly the same as that of the naive method and the basic
version.

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 17

-500.0
-400.0
-300.0
-200.0
-100.0

0.0
100.0
200.0
300.0
400.0

0.0-400.0-800.0-1200.0

Query (jumping)

-500.0
-400.0
-300.0
-200.0
-100.0

0.0
100.0
200.0
300.0
400.0

0.0-400.0-800.0-1200.0
-500.0
-400.0
-300.0
-200.0
-100.0

0.0
100.0
200.0
300.0
400.0

0.0-400.0-800.0-1200.0

Distribution #1 (jumping) Distribution #2 (jogging)

Fig. 5. Discovery of subsequences inMoCap. We choose a window size (i.e.,w0) of 1 sec. on the lowest level
for this dataset.

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

-40.0 -20.0 0.0 20.0 40.0

Query (alcoholic)

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

-40.0 -20.0 0.0 20.0 40.0
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

-40.0 -20.0 0.0 20.0 40.0

Distribution #1 (alcoholic) Distribution #2 (control)
Fig. 6. Discovery of subsequences in EEG. We choose window a size (i.e., w0) of 1 sec. on the lowest level
for this dataset.

18 Y. Matsubara et al.

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

Fr
eq

ue
nc

y

User

Query (tennis final)

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

Fr
eq

ue
nc

y

User

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

Fr
eq

ue
nc

y

User

Distribution #1 (tennis semi-final) Distribution #2 (cooking)
Fig. 7. Discovery of subsequences in Ondemand TV. We choose a window size (i.e., w0) of 3 hours on the
lowest level for this dataset.

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

Fr
eq

ue
nc

y

User

Query (John Lennon)

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

Fr
eq

ue
nc

y

User

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

Fr
eq

ue
nc

y

User

Distribution #1 (John Lennon) Distribution #2 (Nat King Cole)
Fig. 8. Discovery of subsequences inMusicStore. We choose a window size (i.e.,w0) of 3 hours on the lowest
level for this dataset.

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 19

MoCap

This dataset consists of the subject numbers 7, 13, 14, 16 and 86, taken from the CMU
motion capture database [1]. In our framework, a motion is represented as a distribution
of hundreds of frames, with each frame being a d-dimensional point. It contains 26
sequences, each consisting of approximately 8000 frames. Each sequence is a series
of simple motions. Typical human activities are represented, such as walking, running,
exercising, twisting, jogging and jumping.

One of the results on this dataset was already presented in Section 1. As shown
in this figure, D-Search can successfully identify similar distributions. Figure 5 also
shows that D-Search can successfully find similar distributions. For example, D-Search
detects Distribution #1 (the subsequence from data no.14-14 2-4 sec.) similar to the
query distribution (the subsequence from data no.14-20 2-4 sec.). In fact, they both
correspond to a jumping motion. In contrast,Distribution #2 (from the same data no.14-
14, 4-6 sec.) is not found as a similar object. In fact, it corresponds to a jogging motion.

EEG

This dataset was taken from a large study that examined the EEG correlates of the
genetic predisposition to alcoholism downloaded from the UCI website [2]. It contains
measurements from 64 electrodes placed on subjects’ scalps that were sampled at 256
Hz (3.9-msec epoch) for 1 sec., that is, the length of each sequence is 256. There were
two groups of subjects: alcoholic and control.

Our approach is also useful for classification. Figure 6 shows that D-Search can
classify the query distribution and Distribution #1, (a subsequence from co2a0000364
of 36-37 sec., and a subsequence from co3a0000451 of 56-57 sec., respectively), into
the same group (in fact, they both corresponded to “alcoholic”). In contrast,Distribution
#2, which is a subsequence from co2c0000364 of 75-76sec., goes to another group (in
fact, it belongs to “control”).

Ondemand TV

This dataset is from an ondemand TV service and consists of 13,231 programs that
users viewed in a 6-month timeframe (from 14th May to 15th Nov. 2007). We randomly
selected 10,000 anonymous users from the dataset. Each distribution sequence contains
a list of attributes (e.g., content ID, the date the user watched the content, the ID of the
user who watched the content).

As shown in Figure 7, our method can find a similar ondemand TV program. For ex-
ample, D-Search found that Distribution #1 was a similar distribution, and Distribution
#2 was a dissimilar distribution to the query distribution. In fact, the query distribution,
Distribution #1 andDistribution #2 are “Sports: Australian Open Tennis Championships
2007 Women’s Final (from 1st Feb. 2007 to 1st Apr. 2008)”, “Sports: Australian Open
2007 Tennis Championships Women’s Semifinal (from 1st Feb. 2007 to 1st Apr. 2008)”,
“Cooking: Oliver’s Twist No.1 (from 23rd Oct. 2006 to 1st Aug. 2008”)

MusicStore

This dataset consists of the purchasing records fromMusicStore obtained over 16 months,
(from 4th Apr. 2005 to 1st Jul. 2006). Each record has 3 attributes: user ID (50,000
anonymous, randomly selected users), music ID (43,896 items of music), and date of
purchase/sale.

20 Y. Matsubara et al.

Figure 8 shows that D-Search can identify similar user groups. For example, D-
Search found that the query distribution was similar to Distribution #1. In fact, the
query distribution and Distribution #1 are histograms of purchasers of John Lennon’s
“Woman”, and John Lennon’s “Love”, respectively. In contrast, Distribution #2 was not
found to be a similar distribution. In fact, Distribution #2 was a purchaser histogram of
Nat King Cole’s “L-O-V-E”.

5.2. Similarity search with probability density functions

To evaluate the effectiveness of D-Search for probability density functions, we present
case studies on two datasets.

Gaussians

This is a synthetic example of numerical datasets, each of whose distributions is a
mixture of Gaussians. The dataset contains n=400,000 distributions, each with 10,000
points. Figures 9 and 10 show the results on the Gaussians dataset. Given PDFs of the
Gaussian mixture, our approach can correctly find the appropriate distributions from
this dataset.

MoCap

Figures 11 and 12 show that D-Search can successfully identify appropriate distribu-
tions on the MoCap dataset. For example, the top row in Figure 11 shows the PDF,
which corresponds to a moving hands motion. D-Search recognizes that Distribution
#1 and Distribution #2 are similar and dissimilar distributions to the PDF. Similarly,
D-Search identifies that the PDF of balancing on one leg is similar to Distribution #1
in Figure 12. In fact, it corresponds to the same motion. In contrast, Distribution #2
corresponds to boxing motion, and it was not found to be a similar object.

5.3. Performance

To evaluate the search performance, we compared the basic and enhanced versions with
the naive approach. We present experimental results for the search performance when
the data set size varied.

Figure 13 compares our algorithms with the naive method in terms of computation
cost. The database size varied from 100,000 to 400,000. Note that the y-axis uses a
logarithmic scale. We conducted this experiment with a histogram ofm = 10, 000, and
k = 1. Each result reported here is the average of 100 trials. To evaluate the efficiency
of D-Search, We used the three datasets, MoCap, EEG, and Ondemand TV, and we
also used the Gaussians dataset for probability density functions. D-Search provided
a dramatic reduction in computation time. Specifically, the enhanced (basic) version
achieved up to 2,300 times (230 times) faster than the naive implementation in this
experiment.

In addition to high-speed processing, our method achieves high accuracy; the output
of the enhanced version is exactly the same as those of the naive algorithm and the basic
version. While we evaluated performance for the nearest neighbor search (i.e., k = 1),
our method also achieves a dramatic improvement for the k-nearest neighbor search
(k > 1).

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 21

Query

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

Distribution #1 Distribution #2
Fig. 9. Discovery of distributions in Gaussians. The top row shows the probability density of the Gaussian
mixture model, and the middle and bottom rows show similar and dissimilar distributions.

Query

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

Distribution #1 Distribution #2

Fig. 10. Discovery of distributions in Gaussians.

22 Y. Matsubara et al.

Query (moving hands)

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

-12000-10000 -8000 -6000 -4000 -2000 0

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

-12000-10000 -8000 -6000 -4000 -2000 0

Distribution #1 (moving hands) Distribution #2 (walking)

Fig. 11. Discovery of distributions inMoCap.

Query (balancing on one leg)

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

-12000-10000 -8000 -6000 -4000 -2000 0

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

-12000-10000 -8000 -6000 -4000 -2000 0

Distribution #1 (balancing on one leg) Distribution #2 (boxing)

Fig. 12. Discovery of distributions inMoCap.

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 23

0.01

0.1

1

10

100

1000

10000

100000

400,000300,000200,000100,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
 D-Search

D-Search (enhanced)

0.01

0.1

1

10

100

1000

10000

100000

400,000300,000200,000100,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
 D-Search

D-Search (enhanced)

MoCap EEG

0.01

0.1

1

10

100

1000

10000

100000

400,000300,000200,000100,000

W
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
 D-Search

D-Search (enhanced)

0.01

0.1

1

10

100

1000

10000

100000

100,000 200,000 300,000 400,000

w
al

l c
lo

ck
 ti

m
e

(s
ec

.)

Dataset size

Naive
D-Search

D-Search (enhanced)

Ondemand TV Gaussians
Fig. 13. Scalability: wall clock time vs. dataset size n (= number of distributions). D-Search can be up to
2,300 times faster than the naive implementation.

0.01

0.1

1

10

100

0.01 0.1 1

Er
ro

r (
%

)

Wall clock time (ms.)

 D-Search
D-Search (enhanced)

Fig. 14. Approximation quality: relative approxi-
mation error vs. wall clock time.

 1

 10

 100

1000

10000

100000

20015010050

N
um

be
r o

f c
om

pu
ta

tio
ns

Coe!cients

 D-Search
D-Search (enhanced)

Fig. 15. Frequency of approximation use: number
of computations vs. coefficients. Our method sig-
nificantly reduces the search cost for each step of
multi-step sequential scan.

5.4. Analysis of proposed algorithms

D-Search exploits multiple computations for the approximation of KL divergence. In
this section we analyze the approximation quality of each granularity. We conducted
this experiment with the Ondemand TV dataset.

Figure 14 shows scatter plots of the computation cost versus the approximation qual-
ity. The x-axis shows the computation cost for KL divergences, and the y-axis shows
their relative approximation error rate. We compare the basic version and the enhanced
version in the figure. The figure implies a trade-off between quality and cost, but the re-

24 Y. Matsubara et al.

sults of the enhanced version are close to the lower left for both datasets, which means
that the enhanced version provides benefit in terms of quality and cost.

Figure 15 shows how often each approximation was used in the basic version and
the enhanced version for a dataset size of 100,000. We chose a starting coefficient
c1 = 50, and a step h = 4. As shown in the figure, most of the data sequences are ex-
cluded with the approximations of four steps (c = {50, 100, 150, 200}). Compared with
O(m), which the naive implementation requires, the approximation technique provides
a dramatic reduction in computation time. The coarser approximation provides reason-
able approximation quality, and its calculation speed is very high. On the other hand,
although the approximation with higher granularity is not very fast compared to the
coarser version, it offers good approximation quality. Accordingly, using approxima-
tions with various granularities offers significant advantages in terms of approximation
quality and calculation speed. Our algorithms, and especially the enhanced version, can
efficiently prune a large number of search candidates, which leads to a significant re-
duction in the search cost. Similar trends were observed in other experiments (MoCap,
EEG, Ondemand TV, MusicStore, Gaussians).

6. Conclusion

We introduced the problem of distribution search, and proposed D-Search, which in-
cludes fast and effective algorithms, as its solution. D-Search has all the desired charac-
teristics:

– High-speed search: Instead of O(mn) time required by the naive solution, our solu-
tion needs only O(n) time to compute the distance for distribution search.

– Exactness: It guarantees no false dismissals.
– It can be extended to time-series distribution mining, which can find similar subse-
quences in time-series distribution datasets.

Our experimental results reveal that D-Search is significantly faster than the naive
method, and occasionally up to 2,300 times faster, while it capturing all similar distribu-
tions perfectly. Furthermore, our algorithms can be extended to time-series distribution
mining and probability density functions. We believe that the addressed problem and
our solution will be of fundamental interest in data mining.

References

[1] CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.
[2] UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/.
[3] C. C. Aggarwal. On classification and segmentation of massive audio data streams. Knowl. Inf. Syst.,

20(2):137–156, 2009.
[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In

Proceedings of VLDB, pages 81–92, Berlin, Germany, Sept. 2003.
[5] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S. Pollard. Segmenting motion

capture data into distinct behaviors. In Graphics Interface, pages 185–194, 2004.
[6] S. D. Bay, D. F. Kibler, M. J. Pazzani, and P. Smyth. The uci kdd archive of large data sets for data mining

research and experimentation. In SIGKDD Explorations, pages 81–85, 2000.
[7] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In

Proceedings of ACM SIGMOD, pages 551–562, San Diego, California, June 2003.

D-Search: An Efficient and Exact Search Algorithm for Large Distribution Sets 25

[8] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods for probabilis-
tic threshold queries over uncertain data. In Proceedings of VLDB, pages 876–887, Toronto, Canada,
August/September 2004.

[9] S. Dasgupta. Learning mixtures of gaussians. In FOCS, 1999.
[10]A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em

algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38, 1977.
[11]R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2000.
[12]S. Fischer, R. Lienhart, and W. Effelsberg. Automatic recognition of film genres. In ACM Multimedia,

pages 295–304, 1995.
[13]V. Gandhi, J. M. Kang, S. Shekhar, J. Ju, E. D. Kolaczyk, and S. Gopal. Context inclusive function

evaluation: a case study with em-based multi-scale multi-granular image classification. Knowl. Inf. Syst.,
21(2):231–247, 2009.

[14]L. Gao and X. S. Wang. Continuous similarity-based queries on streaming time series. In IEEE Trans.
Knowl. Data Eng. (TKDE), pages 1320–1332, 2005.

[15]Z. Gong and Q. Liu. Improving keyword based web image search with visual feature distribution and
term expansion. Knowl. Inf. Syst., 21(1):113–132, 2009.

[16]Z. Guo, Z. Zhang, E. P. Xing, and C. Faloutsos. Enhanced max margin learning on multimodal data
mining in a multimedia database. In KDD, pages 340–349, 2007.

[17]X. Huang, S. Z. Li, and Y. Wang. Jensen-shannon boosting learning for object recognition. In Proceed-
ings of IEEE Computer Society International Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 144–149, 2005.

[18]Y. Ishikawa, Y. Machida, and H. Kitagawa. A dynamic mobility histogram construction method based on
markov chains. In Proceedings of Int. Conf. on Statistical and Scientific Database Management (SSDBM),
pages 359–368, 2006.

[19]R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. In 18th
Annual Conference on Learning Theory (COLT), pages 444–457, 2005.

[20]K.Pearson. Contributions to the Mathematical Theory of Evolution. l. Trans. Royal Soc., 185A, pages
71–110, 1894.

[21]M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain. Simultaneous feature selection and clustering using
mixture models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1154–1166,
2004.

[22]C. Li, P. Zhai, S.-Q. Zheng, and B. Prabhakaran. Segmentation and recognition of multi-attribute motion
sequences. In ACM Multimedia, pages 836–843, 2004.

[23]C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. The MIT Press,
1999.

[24]S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns in time series streams. In SIGMOD, pages
647–658, 2006.

[25]G. Pfurtscheller, D. Flotzinger, and C. Neuper. Differentiation between finger, toe and tongue movement
in man based on 40 hz eeg. In Electroencephalography and Clinical Neurophysiology, pages 456–460,
1994.

[26]W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, 2nd edition, 1992.

[27]M. L. Raymer, T. E. Doom, L. A. Kuhn, and W. F. Punch. Knowledge discovery in medical and biological
datasets using a hybrid bayes classifier/evolutionary algorithm. In IEEE Transactions on Systems, pages
802–813, 2003.

[28]Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval. Int. J.
Comput. Vision, 40(2):99–121, 2000.

[29]Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through group lag correlations. In
Proceedings of ACM SIGMOD, pages 599–610, Baltimore, Maryland, June 2005.

[30]T. Shi, M. Belkin, and B. Yu. Data spectroscopy: learning mixture models using eigenspaces of convolu-
tion operators. In ICML, pages 936–943, 2008.

26 Y. Matsubara et al.

[31]Z. Sun. Adaptation for multiple cue integration. In Proceedings of IEEE Computer Society International
Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 440–445, 2003.

[32]P. Sykacek and S. J. Roberts. Adaptive classification by variational kalman filtering. In NIPS, pages
737–744, 2002.

[33]Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In Proceedings of VLDB, pages 922–933, Trondheim,
Norway, August/September 2005.

[34]A. Traina, C. Traina, S. Papadimitriou, and C. Faloutsos. Tri-plots: Scalable tools for multidimensional
data mining. KDD, Aug. 2001.

[35]J.-P. Vert. Adaptive context trees and text clustering. IEEE Transactions on Information Theory,
47(5):1884–1901, 2001.

[36]W. L. Woon and K.-S. Wong. String alignment for automated document versioning. Knowl. Inf. Syst.,
18(3):293–309, 2009.

[37]Z. Zhang, B. T. Dai, and A. K. H. Tung. Estimating local optimums in em algorithm over gaussian mixture
model. In ICML, pages 1240–1247, 2008.

[38]Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data streams in real time. In
VLDB, pages 358–369, 2002.

Correspondence and offprint requests to: YasukoMatsubara, Kyoto University, Email: y.matsubara@db.soc.i.kyoto-
u.ac.jp

