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Abstract

We analytically obtain steady isolated zonal jet solutions of the
evolution equation of zonal flows on a β plane with a homogeneous
zonal flow and a small-scale sinusoidal transversal flow in the back-
ground, derived by Manfroi and Young (1999). It is shown that these
steady zonal jet solutions are all linearly unstable. Numerical time
integrations of the evolution equation also confirm that the perturbed
unstable steady solution becomes a uniform flow in the long run.
These results suggest that mergers/disappearances of zonal jets su-
perposed upon background forced two-dimensional turbulence on a β
plane or a rotating sphere might be due to the intrinsic instability of
the zonal jets.
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1 Introduction

In contrast to three-dimensional turbulence, it is well known that two-dimensional
turbulence in an irrotational system is characterized by the inverse energy
cascade (Kraichinan [7]). The kinetic energy injected at a small scale is trans-
ferred to larger scales, which brings about an isotropic larger-scale structure
as time progresses. The effect of rotation, which is so-called the β effect,
retards this inverse energy cascade and causes anisotropic features. A pi-
oneering numerical study of two-dimensional turbulence on a β plane by
Rhines [15] shows that a multiple zonal band structure emerges as the tur-
bulent motion evolves. It is explained that kinetic energy transferred from
a small scale is arrested around the Rhines scale, where the β effect and
the advective effect in the governing equation become comparable, and then
the fluid motion is governed by the zonal flows whose width is roughly the
same as the Rhines scale. Many succeeding studies have confirmed the emer-
gence of the multiple zonal-band structure on both a β plane and a rotating
two-dimensional sphere when turbulent motion is driven by a small-scale
stochastic forcing (e.g. Williams [18], Vallis and Maltrud [17], Nozawa and
Yoden [13], Huang and Robinson [5]).

A recent numerical experiment of forced two-dimensional turbulence on
a rotating sphere shows, however, that when the time integration is carried
much further than the previous studies, multiple zonal flows merge passing
over the Rhines scale and large scale two or three alternating zonal jets
remain at the final stage (Obuse et al. [14]). Mergers of zonal jets and
emergence of a zonal structure larger than the Rhines scale are also observed
when the small-scale forcing is a white noise type instead of the Markovian
type explained in Nozawa and Yoden [13] and Obuse et al. [14] (Huang et
al. [6]).

One of the possible interpretations of such a merger of zonal jets is that the
state with multiple zonal jets may be dynamically unstable and the transition
to a stable state with wider and fewer zonal jets may occur. It is accordingly
tempted to examine the stability of zonal jets driven and maintained by a
small-scale forcing and background small-scale turbulent motions.

However, it is difficult to investigate the stability of zonal flows induced
by a small-scale stochastic forcing, because it is hard to construct a tractable
and reasonable physical configuration. We therefore investigate the stabil-
ity of zonal flows induced by a small-scale deterministic forcing instead of a
stochastic forcing as a first step. Manfroi and Young [10] investigated the evo-
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lution of zonal flows on a β plane when there is a homogeneous zonal flow and
a small-scale sinusoidal transversal flow as a background base flow. They de-
rived a time evolution equation of zonal flows with a small-scale background
flow by using a multiple-scale expansion technique. This equation is a special
case of Cahn-Hilliard equation [3], and we call it Manfroi-Young equation for
clarity. From numerical experiments of the Manfroi-Young equation, when
the bottom drag is absent, a multiple zonal band structure, i.e. the structure
with multiple zonal jets emerges, and the gradual disappearances of the zonal
jet occur one by one, forming a thin prograde jet and a broad retrograde jet
in the considered periodic domain. They also pointed out that the structure
with one set of alternating zonal jets is the final state by using a Lyapunov
functional analysis. Since the evolution of the zonal band structure seen in
their numerical experiment is similar to long-time behaviour of zonal jets
on a rotating sphere mentioned above, we may deduce some physical insight
about the stability of zonal flows induced by small-scale stochastic forcing
by examining the system derived by Manfroi and Young more precisely.

Therefore in this paper, based on the work of Manfroi and Young [10],
we investigate the stability of zonal jets with a background small-scale flow.
§2 briefly introduces the model and the equation used in Manfroi and Young
[10], and in §3, we derive a steady analytical solution of the Manfroi-Young
equation. In §4, we investigate the linear stability of the steady solution both
numerically and partially analytically, and also confirm its final state numer-
ically. The discussions and the conclusions are given in the final section.

2 The Manfroi-Young equation

To investigate zonal flows induced by a small-scale deterministic forcing in-
stead of a stochastic forcing, Manfroi and Young [10] derived the governing
equation of a zonal flow having a small-scale sinusoidal transversal flow be-
hind it on a β plane, and studied their temporal evolution. Here, we briefly
explain their derivation of the governing equation.

Let us consider an incompressible forced two-dimensional flow on a β
plane where the governing equation for such flow is written as [11]1

∂Z

∂t
+ J(Ψ, Z) + β

∂Ψ

∂x
= F + ν∇2Z. (1)

1The vorticity equation in Vallis [11] takes into account of a large-scale drag, which
will not be employed in this paper.
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Here t, Ψ, and Z = ∇2Ψ are the time, the stream function, and the vortic-
ity. F and ν are the vorticity forcing function and the kinematic viscosity
coefficient. J(A, B) is the Jacobian operator: J(A,B) ≡ (∂A/∂x)(∂B/∂y)−
(∂A/∂y)(∂B/∂x), and ∇ = (∂/∂x, ∂/∂y).

Suppose a steady base flow with the velocity

(uB, vB) =

(
−∂ΨB

∂y
,
∂ΨB

∂x

)
= (UB,mΨB0 sin mx)

is driven by a suitable forcing function on this β plane, where ΨB, uB and vB

are the stream function, x and y components of the base flow, respectively, UB

and ΨB0 are constants, and m is an integer. Now assume that the base flow
is slightly unstable, that is, the Reynolds number of the base flow R ≡ ΨB0/ν
is slightly larger than the critical Reynolds number Rc,

R = Rc(1 + ε2), (2)

where ε is a small parameter. Then we write the total stream function of the
flow as Ψ = ΨB(x) + ψ(x, y, t), where ψ(x, y, t) is the stream function of the
disturbance flow and, from Eq. (1), satisfies

∂ζ

∂t
+ UB

∂ζ

∂x
+ mΨB0

(
∂ζ

∂y
+ m2∂ψ

∂y

)
sin(mx) + J(ψ, ζ) + β

∂ψ

∂x
= ν∇2ζ, (3)

in which ζ ≡ ∇2ψ is the vorticity of the disturbance flow. Introducing new
variables,

(x̂, ŷ) ≡ (mx,my), t̂ ≡ tm2ν, ψ̂ ≡ ψ

ν
,

we nondimensionalize Eq. (3) as

∂ζ̂

∂t̂
+ ûB

∂ζ̂

∂x̂
+ R

(
∂ζ̂

∂ŷ
+

∂ψ̂

∂ŷ

)
sin x̂ + J(ψ̂, ζ̂) + β̂

∂ψ̂

∂x̂
= ∇̂2ζ̂ , (4)

where

ûB ≡ uB

mν
, β̂ ≡ β

m3ν
.

We, hereafter, drop the notation ˆ for the dimensionless variables and oper-
ators for simplicity.
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Using the small parameter ε defined in (2), we now perform perturbation
expansions of the stream function of the disturbance flow ψ, UB, and the β
parameter:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · ,

UB = UB0 + εUB1 + ε2UB2 + · · · ,

β = β0 + εβ1 + ε2β2 + · · · ,

(5)

and multiple-scale expansions:

∂

∂x
→ ∂

∂x
+ ε6 ∂

∂ξ
,

∂

∂y
→ ε

∂

∂η
,

∂

∂t
→ ε4 ∂

∂τ
, (6)

where η, τ and ξ are defined as

η ≡ εy, τ ≡ ε4t, ξ ≡ ε6x. (7)

Substituting the expanded variables and operators (5), (6), and (7) into
Eq. (4), then we obtain the equation for the O(1) elements

∂4ψ0

∂x4
− UB0

∂3ψ0

∂x3
− β0

∂ψ0

∂x
= 0,

which is satisfied if ψ0 depends on ξ, η, τ as

ψ0 = A(ξ, η, τ).

Substituting the expanded variables and operators (5), (6), and (7) into Eq.
(4) again, we next take the x-mean of it. By gathering the O(ε6) elements,
we obtain

∂

∂τ

∂2A

∂η2
+ 2

∂4A

∂η4
+ 3

∂6A

∂η6
− ∂3

∂η3

[(
β1 − UB1 +

∂A

∂η

)2
∂A

∂η

]

+
1

3

∂3

∂η3

(
∂A

∂η

)3

+ β0
∂A

∂ξ
= 0.

(8)

Considering the ξ-independent solution A(η, τ) of Eq. (8), Eq. (8) can
be integrated over η twice. After all, the governing equation for the O(1)
elements of the x-independent disturbance flow U(η, τ)

U(η, τ) ≡ −∂A(η, τ)

∂η
,
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is obtained as

∂U

∂τ
= −(2 − γ2)

∂2U

∂η2
− 3

∂4U

∂η4
− 2γ

∂2U2

∂η2
+

2

3

∂2U3

∂η2
, (9)

where γ is defined as
γ ≡ β1 − UB1.

Eq. (9) governs zonal flows having a small-scale sinusoidal transversal back-
ground flow. We call Eq. (9) the Manfroi-Young equation, and investigate
the linear stability of its steady solutions. The full derivation of Eq. (9) is
available in §4 in Manfroi and Young [10].

The Manfroi-Young equation is a special form of the one-dimensional
Cahn-Hilliard equation [3] whose steady solutions and their stabilities have
attracted much attention. Langer [9] studied the linear stability of the one-
dimensional steady solution of the form of tanh, and also gave an intuitive
explanation for the general stability criterion for a steady solution with a
periodic boundary condition in an arbitrary dimensional case, which was
extended to the cases of a natural boundary condition, or a null flux boundary
condition, by Novick-Cohen and Segel [12]. Bettinson and Rowlands [2]
performed linear stability analysis of a one-dimensional steady kink solution
to a general Cahn-Hilliard equation in an infinite domain for both small- and
large-wavenumber three-dimensional perturbations, and gave an approximate
formula for eigenvalues by perturbation methods. The linear stability of
a steady one-dimensional kink-antikink solution, which is called a bubble
solution, and of a multibubble solution was studied by Argentina et al. [1].
The bifurcations originating from varying system size are discussed for both
a periodic boundary condition and a natural boundary condition. Villain-
Guillot [19] suggested that steady non-symmetric soliton-lattice solutions,
which belong to the family of the soliton-lattice solutions discussed in Novick-
Cohen and Segel [12] are linearly unstable. Although a great deal of research
has been carried out for the stability of steady solutions of the Cahn-Hilliard
equation, to the best of the authors’ knowledge, the steady solution which
consists of one bump in an infinite domain and their linear stabilities relevant
to the present β plane problem have not been investigated yet. Thus in
the following two sections, we derive steady solutions of the Manfroi-Young
equation analytically and investigate their linear stability both numerically
and analytically.
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3 Analytical derivation of the steady solution

Now, we consider a steady solution U0(η) of Eq. (9), having one bump and
U0 → UW as η → ±∞, where UW is a constant2. The equation and boundary
conditions for the U0 are

−(2−γ2)
d2U0

dη2
− 3

d4U0

dη4
− 2γ

d2U2
0

dη2
+

2

3

d2U3
0

dη2
= 0, (10a)

U0 → UW ,
dU0

dη
→ 0 as η → ±∞. (10b)

To solve Eq. (10a), we first integrate it over η twice, and use conditions
(10b)3. Multiplying dU0/dη to both hand sides of the obtained equation,
and integrating it with η again, we have

dU0

dη
= ±1

3

√
−V (U0). (11)

Here, the potential V (U0) is defined as

V (U0) ≡ −U4
0 + 4γU3

0 + 3(2 − γ2)U2
0 − 6C1U0 − 3C2, (12)

and the constants of integration C1 and C2 are

C1 = (2 − γ2)UW + 2γU2
W − 2

3
U3

W ,

C2 = U4
W − 8

3
γU3

W − (2 − γ2)U2
W .

(13)

To realize the solution U0 that takes the same value UW at η → ±∞, the
potential V (U0) should have the shape shown in Fig. 1, specifically; V (U0)
must take a double root UW and two other different real roots UE and UR

(UE 6= UR)4 V (U0), as a consequence, should be expressed as

V (U0) = (U0 − UW )2(U0 − UE)(U0 − UR),

UE < UR, UW 6= UE, UW 6= UR.
(14)

2The steady solution having the eastward/westward bump is expressed as a steady
solution with an/a eastward/westward jet hereafter.

3We adopt natural conditions d2U0/dη2, d3U0/dη3 → 0 (η → ±∞)
4UW ,UE correspond to the UW , UE in Fig. 3 in Manfroi and Young[10], and UR is the

rest root. For the case U0 is an eastward jet, UW and UE give the westward and eastward
maximum values of the U0, respectively; for the case U0 is a westward jet, UR and UW

give the westward and eastward maximum values of the U0, respectively.
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Figure 1: Examples of the shape of potential V (U0) which realizes a solution
U0(η) that satisfies U0 → UW as η → ±∞. UW < UE < UR for V (U0) which
realizes U0 with an eastward jet (Left: for the case γ = −5, UW = 1), while
UE < UR < UW for V (U0) which realizes U0 with a westward jet (Right: for
the case γ = 5, UW = −1).

From the definitions (12) and (13), on the other hand, V (U0) can be
factorized as

V (U0) = −(U0 − UW )2{U0
2−2(2γ−UW )U0−(6−3γ2+8γUW−3UW

2)}. (15)

As V (U0) has to be factorized to the form of Eq. (14), there must exist two
different real roots UE and UR in addition to UW . For the discriminant of
the last factor of equation(15) to be positive, we have

γ − 1

2

√
6(γ2 + 2) < UW < γ +

1

2

√
6(γ2 + 2). (16)

Note that in the case where

UW = γ−1

2

√
6(γ2 + 2) (17a)

or

UW = γ+
1

2

√
6(γ2 + 2), (17b)

V (U0) has two real double roots UW and UE = UR, the only solution of (10a)
and (10b) is U0 = UW

5. The parameters UW , UE, and UR should satisfy

5Apart from this uniform solution, if we do not assume that U0 should converge to a
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UW < UE < UR (for an eastward jet) or UE < UR < UW (for a westward jet)
as shown in Fig. 1. Therefore, the last factor of (15),

U2
0 − 2(2γ − UW )U0 − (6 − 3γ2 + 8γUW − 3U2

W ) = (U0 − UE)(U0 − UR),

has to be positive at U0 = UW , and thus

UW < γ − 1

2

√
2(γ2 + 2) or γ +

1

2

√
2(γ2 + 2) < UW , (18)

should be satisfied. Again note that the case

UW = γ−1

2

√
2(γ2 + 2) (19a)

or

UW = γ+
1

2

√
2(γ2 + 2). (19b)

corresponds to the situation that either UE or UR is the same value as the
double root UW .

The conditions (16) and (18) are shown in Fig. 2 where the hatched
regions give (γ, UW ) corresponding to a steady solution U0 which has one
bump and takes the value UW at η → ±∞. The upper hatched region
corresponds to U0 with a westward jet, while lower hatched region to U0

with an eastward jet.
Under the conditions of (16) and (18), U0 has a double real root UW and

two other different real roots UE and UR;

UE = 2γ − UW −
√

−2U2
W + 4γUW + γ2 + 6, (20)

UR = 2γ − UW +
√

−2U2
W + 4γUW + γ2 + 6. (21)

same value, UW , as η goes to ±∞, Eq. (10a) has a sigmoid solution

U0sig = ±
(

UE +
UW − UE

exp[(η − c)(UW − UE)/3] + 1

)
,

where c is a constant which determine the center position of these solutions. These solution
U0sig are the asymptotic forms of the rising and decreasing curves of U0, i .e. U0 is made
by superposing two U0sig of different signs.
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Figure 2: The regions of (γ, UW ) which realize one-bump steady solution U0.
The upper and lower hatched regions correspond to U0 with an eastward jet
and with a westward jet, respectively. The boundary curves are, from above,
(17b)(dark green), (19b)(brown), (19a)(light blue), and (17a)(purple).

Eq. (11) is then written as

dU0

dη
= ±1

3

√
(U0 − UW )2(U0 − UE)(U0 − UR). (22)

A steady solution with an eastward jet U0east(η) (UW ≤ U0east(η) ≤ UE) is
obtained by integrating the equation (22) as∫ η

ηE

dη = ±3

∫ U0east(η)

UE

dU0

(U0 − UW )
√

(U0 − UE)(U0 − UR)
,
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Figure 3: Examples of steady solutions with an eastward jets; (γ, UW ) =
(5.0,−1.363961):dashed line, (5.0, 0.5):thicker solid line, (5.0, 1.28):thinner
solid line.

where ηE is defined to satisfy U0east(ηE) = UE, which leads to

U0east(η) =
a2

eastUR tanh2
[

(UR−UW )aeast

6
η
]
− UE

a2
east tanh2

[
(UR−UW )aeast

6
η
]
− 1

, (23a)

aeast ≡
√

UE − UW

UR − UW

. (23b)

Examples of U0east(η) are shown in Fig. 3 for some combinations of γ and
UW . Jets near the boundary curve (17a) have trapezoid-like shape; jets near
the boundary curve (19a) are almost flat; and jets apart from the boundaries
have sharp shapes. A steady solution with a westward jet U0west(η) (UR ≤
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U0west(η) ≤ UW ) is similarly obtained as

U0west(η) =
a2

westUE tanh2
[

(UE−UW )awest

6
η
]
− UR

a2
west tanh2

[
(UE−UW )awest

6
η
]
− 1

, (24a)

awest ≡
√

UR − UW

UE − UW

. (24b)

Note that no steady solution exists on the boundary curves (17a), (17b),
(19a), and (19b).

4 Linear stability of steady isolated jets

4.1 Characteristic equation and eigenvalues

To investigate the linear stability of a steady solution U0(η), we first derive
its characteristic equation. Consider the case in which a sufficiently small
perturbation v(η, τ) is added to the steady solution U0(η). Substituting U =
U0 + v for U in Eq. (9), we linearize it with respect to v. Further, we assume
v to be in the following form,

v = exp(στ)f(η),

where f(η) is a certain function, which satisfies,

f → 0,
df

dη
→ 0 as η → ±∞.

Then, we have

σf =
d2

dη2

{
[−(2 − γ2) + (2U2

0 − 4γU0)]f − 3
d2f

dη2

}
. (25)

Assume that σ 6= 0. By integrating Eq. (25) over η twice, we find∫ ∞

−∞

∫ η

−∞
f(η′)dη′ dη = 0, 6.

6We assume d2f/dη2, d3f/dη3 → 0 (η → ±∞) as in equation(10a)
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Now rewriting f(η) as

f(η) =
d2g(η)

dη2
, g(η) → 0,

dg(η)

dη
→ 0, as η → −∞.

We have

g(η) = g(η) − g(−∞) =

∫ η

−∞

∫ η′

−∞

d2g(η′′)

dη′′2 dη′′ dη′ =

∫ η

−∞

∫ η′

−∞
f(η′′) dη′′ dη′.

This means that, g, dg/dη → 0 as η → ±∞. Putting f = d2g/dη2 into Eq.
(25), and integrating this equation over η twice, the characteristic equation
is obtained as follows.

σg =
[
−(2 − γ2) + (2U2

0 − 4γU0)
] d2g

dη2
− 3

d4g

dη4
, (26)

g → 0,
dg

dη
→ 0 as η → ±∞.

From the symmetry property of the characteristic equation, it easily follows
that investigating the linear stability of U0east with γ ≥ 0 is enough to know
the linear stability of all the U0 (Appendix). It is easily verified that the
characteristic equation (26) also holds for σ = 0.

We solve eigenvalue problem (26) numerically by the Fourier spectral
method, where U0, U

2
0 , g are expressed as

U0 =
K∑

k=−K

uk exp

(
ik

2π

L
η

)
,

U2
0 =

K∑
k=−K

dk exp

(
ik

2π

L
η

)
,

g =
K∑

k=−K

ck exp

(
ik

2π

L
η

)
.

We consider the domain [0, L] and a periodic boundary condition for η. The
width of the domain, L, was determined so that the numerical calculation
converges sufficiently (We have performed numerical calculations with both
L = 150 and L = 225, and have confirmed that the relative errors are less
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than 0.1%.). The width of the spatial grids was set to be around 10−3, and
the number of modes K was taken in the way that the maximum wavenumber
2πK/L becomes 10π for each case.

Fig. 4 shows the real parts of the first eigenvalues, σfr ≡ Max{Re(σ)|(γ, UW ) :
fixed}, for γ = 0.0, 1.0, and 5.0 and UW satisfying the conditions (16) and
(18). It is apparent that every σfr is positive and that the maximum value
of σfr becomes larger for the larger γ, while σfr converges to 0 as UW ap-
proaches the two boundary curves (17a) and (19a) (the purple and the light
blue curves in Figs. 2 and 4). The square roots of σfr are plotted in Fig.
5. It is clear that

√
σfr are aligned in the vicinity of the point on the two

boundaries (17a) and (19a), and the zeros on the line obtained by the least
square fitting are quite precisely on the boundaries (17a) and (19a) with the
relative errors less than 0.4% for γ = 0, 1.0, and 5.0. The numerical results
therefore show that the real part of every first eigenvalue is positive, implying
that the steady solutions U0(η; γ, UW ) are all linearly unstable.

4.2 The analytical evaluation of the eigenvalues

It is numerically showed in §4.1 that, for a fixed γ, the real part of the first
eigenvalues σfr = Max{Re(σ)|(γ, UW ) : fixed} has zeros of the second order
with respect to UW on the curves (17a) and (19a). This feature is partly
confirmed analytically below.

4.2.1 Around the upper boundary

On the boundary of the curve (19a), UW is given by

UW = γ − 1

2

√
2 (γ2 + 2) ≡ UWC

,

which give UE ≡ UEC
= UWC

and

UR = (2γ − UWC
) +

√
−2U2

WC
+ 4γUWC

+ γ2 + 6 ≡ URC
,

and then

UEC
− UWC

= 2(γ − UWC
) −

√
−2U2

WC
+ 4γUWC

+ γ2 + 6 = 0. (27)

Let us consider a point close to C(γ, UWC
): N(γ, UW = UWC

− δ), where δ is
positive and small. As UWC

= UEC
on the curve (19a), UE at the point N is
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expressed as UE = UW + ε, where

ε ≡ UE − UW

= 2(γ − UW ) −
√
−2U2

W + 4γUW + γ2 + 6 (28)

= 2(γ − UWC
+ δ) −

√
−2(UWC

− δ)2 + 4γ(UWC
− δ) + γ2 + 6. (29)

Using Eqs. (27) and (29), ε is given as

ε = 3δ + O(δ2). (30)

From (28) and (20), we have

2U2
W − 4γUW − (2 − γ2) =

4

3
(γ − UW )ε + O(ε2). (31)

Noting that a2 = O(
√

ε), the steady solution U0 on the point N can be
written from (23a) as

U0 ≡ UW + εS(
√

εη) + O(ε2)

where

S(
√

εη) = sech2

[√
UR − UW

6

√
εη

]
.

The characteristic equation (26) precise to O(ε) is, therefore,

σg =

[
(γ − UW )

(
4

3
− 4S(

√
εη)

)
ε

]
d2g

dη2
− 3

d4g

dη4
. (32)

Here, Eq. (31) has been used. Defining s ≡
√

εη, Eq. (32) becomes

σ1g =

[
(γ − UW )

(
4

3
− 4S(s)

)]
d2g

ds2
− 3

d4g

ds4
. (33)

where σ1 = σ/ε2. Hence, an eigenvalue σ given by Eq. (32) can be expressed
with an eigenvalue σ1 given by Eq. (33) as

σ = ε2σ1 = 9σ1δ
2 = 9σ1(UWC

− UW )2. (34)

where (30) has been used. Eq. (34) demonstrates that the eigenvalues in the
vicinity of the point C(γ, UWC

) behave as 9σ1(UWC
− UW )2.

Fig. 6 shows the real parts of the first eigenvalues σfr, the two zeros
obtained from the fitted line in §4.1, and the analytical curve (34), for γ =
0.0, 1.0, and 5.0 and UW which satisfy the conditions (16) and (18). σ1 is
obtained as σ1 = 0.111111, 0.166668, and 1.500000, respectively, by solving
(33) numerically. The analytical curve fits fairly well with the first eigenvalues
in the vicinity of the point C(γ, UWC

).
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4.2.2 Around the lower boundary

For the eigenvalues at (γ, UW ) close to the other boundary curve (17a), we
analytically show below that the eigenvalues converge to zero as (γ, UW )
approaches an arbitrary point D on the boundary curve (17a).

Let us denote UW at D as UWD
,

UWD
= γ − 1

2

√
6(γ2 + 2),

and consider a point M close to the point D(γ, UWD
): M(γ, UW = UWD

+ δ),
where δ is positive and small. Then a defined in Eq. (23b) at M satisfies

a2 = 1 − ε + O(δ),

where ε is defined as

ε ≡
2
√

2
√

6(γ2 + 2)δ − 2δ2√
6(γ2 + 2)

.

Introducing α by

α ≡a

6
(UR − UW )

=

√
6(γ2 + 2)

6

(
1 − ε

2
+ O(δ)

)
,

we can write U0(η) as

U0(η) = γ − δ +
1

2

√
6(γ2 + 2)(1 + ε) −

√
6(γ2 + 2)

sech2(αη)/ε + tanh2(αη) + O(δ)

for small δ. Now write η as η = η0 + η′, where η0 is defined such that

sech(αη0) =
√

ε,

then, when δ → 0,

dU0(η0 + η′)

dη′ = −1

6
(−2U2

0 + 4γU0 + γ2 + 6),
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and after all, the characteristic equation (26) becomes

σg =

[
6
dU0

dη′ + 2(2 + γ2)

]
d2g

dη′2 − 3
d4g

dη′4 . (35)

Multiplying d2g†/dη′2, where g† is an adjoint solution of g, to both sides
of Eq. (35) and integrating this over η, we obtain

−σ

∫ ∣∣∣∣ dg

dη′

∣∣∣∣2 dη′ =

∫ [
6
dU0

dη′ + 2(2 + γ2)

] ∣∣∣∣ d2g

dη′2

∣∣∣∣2 dη′ +3

∫ ∣∣∣∣ d3g

dη′3

∣∣∣∣2 dη′. (36)

We next introduce φ ≡ d2g/dη′2, and define a function

I[φ] ≡
∫ [

6
dU0

dη′ |φ|
2 + 3

∣∣∣∣ dφ

dη′

∣∣∣∣2
]

dη′

=

∫ [
−3(γ2 + 2)sech2(αη′)|φ|2 + 3

∣∣∣∣ dφ

dη′

∣∣∣∣2
]

dη′. (37)

Now, we know that the Schrödinger equation(
− ~2

2m

d2

dx2
− A0sech

2βx

)
ψ = Eψ, A0 > 0, (38)

has its minimum eigenvalue (Landau-Lifshitz [8]),

E0 = −~2β2

8m

[
−1 +

√
1 +

8mA0

~2β2

]2

,

and therefore, we have∫ (
~2

2m

∣∣∣∣dψ

dx

∣∣∣∣2 − A0sech
2βx|ψ|2

)
dx ≥ E0

∫
|ψ|2dx.

Applying this to Eq. (37) yields

I[φ] ≥ −2(γ2 + 2)

∫
|φ|2dη′,

hence, from Eq. (36),

−σ

∫ ∣∣∣∣ dg

dη′

∣∣∣∣2 dη′ = I[φ] + 2(γ2 + 2)

∫
|φ|2dη′ ≥ 0;

this certifies the limit of the eigenvalue σ as δ → 0 is real and non-positive,
which, together with Fig. 4 and Fig. 5, indicates lim

δ→0
σ = 0 at the point D.
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4.3 The growth of an unstable eigenfunction and the
final flow field

As discussed above, every non-trivial steady solution U0(η) of Eq. (9) is
linearly unstable. The next question is the final state (at τ = ∞) of this
unstable jet when it is slightly perturbed.

Fig. 7 shows the first eigenfunction and the time development of U0 added
its first eigenfunction as the perturbation for the case (γ, UW ) = (1.0,−1.05).
The amplitude of the perturbation function is set to be 3% of that of U0.
The solution of Eq. (9) is numerically calculated with the Fourier spectral
method. The time integration is performed with the 4th order Runge-Kutta
method with a time step width ∆τ = 1.0×10−5. The boundary condition, the
width of the domain, the number of the mode K for the Fourier expansion,
and the number of the grid point are all set to be the same with those used
for the calculation for the eigenvalues in §4. In Fig. 7, the jet become flat
gradually, and the uniform flow is realised at the end. Note that it is easy to
verify that this uniform flow U = UW is linearly stable in the ranges shown
in Fig. 27.

5 Discussions and Conclusions

In this paper, we have considered zonal jet flows on a β plane subject to the
effect of a background small-scale non-zonal flow. Using the evolution equa-
tion developed by Manfroi and Young [10], analytical solutions for steady
isolated jets have been obtained. The linear stability of the steady jets has
been investigated both numerically and partially analytically, and it is found
that the steady jet solutions are all linearly unstable. Numerical time inte-
grations of the evolution equation also showed that the perturbed unstable
steady jet solution gradually decreases its amplitude, and becomes a uniform
flow in the long run.

Comparing the results shown in this paper to the numerical experiment
performed by Manfroi and Young [10], there seems to be a disagreement

7U = UW is linearly stable if

UW ≤ γ − 1
2

√
2(γ2 + 2) or γ +

1
2

√
2(γ2 + 2) ≤ UW .
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at first sight. Every steady jet solution is linearly unstable, whilst the jets
appear in the numerical simulation in Manfroi and Young [10] disappear one
by one quite deliberatively, ending up with one jet in the considering domain
at the final stage.

This disagreement may be caused by the fact that the first eigenvalues
have zeros of second order on the curves (17a), (17b), (19a), and (19b). In
Manfroi and Young [10], they only fixed γ in advance in their numerical
simulation, where UW was “selected” spontaneously by the system itself and
the resultant parameters (γ, UW ) was very close to the boundary curve (17a),
which suggests that the zonal jets in the simulation are almost marginally
stable. This implies that although the jets seen in the numerical simulation
in Manfroi and Young [10] really were linearly unstable, their instability was
very weak and the jets have behaved as if they had been linearly stable.

Concerning the difference between the analyses in Manfroi and Young
[10] and our study, we also have to mention the differences of the boundary
condition. The solution in Manfroi and Young [10] is affected by the periodic
boundary condition, and alternative eastward westward jets rather than an
isolated jet are observed. We, on the other hand, perform the analyses in the
infinitely extended domain. For the calculations of the eigenvalue problems
and numerical time integrations, we take a sufficiently large computational
domain in order that the amplitude of disturbances may vanish when it is far
from the isolated jets. Note that the eigenfunction decays spatially slower
than the jet. The periodic boundary condition allows the baseline shift of the
jet profile, which does not occur when the equation is considered in an infinite
domain. Therefore, strictly speaking, the result of our analyses cannot be
applied to the final state of their solution.

Nevertheless, we may find a point of our result consistent with the nu-
merical experiment by Manfroi and Young [10]. Disappearance of the thin
jet seen in Fig. 3 in Manfroi and Young [10] at τ = 500–600 may be caused
by the intrinsic instability of the jet obtained in the present study, firstly
because the baseline of the jet does not vary during the disappearance of the
jet, consistently with the presumption of our analysis, and secondary because
the stability of the thin jet is considered not to be affected by the adjacent
jets, as the eigenfunction of the unstable disturbance is concentrated around
the basic jet (Fig. 7).

The applicability of the results of the present study to the merger/disappearance
of the zonal jets in the problems of stochastically forced two-dimensional tur-
bulence on a β plane or a rotating sphere (Chekhlov et al. [4], Obuse et al.
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[14]) is not clear, because the background turbulence in the case in Chekhlov
et al. [4] and Obuse et al. [14] consists of a lot of wavy modes varying in
time, and the background single sinusoidal flow adopted in this study may
be too simple to incorporate the effect of turbulence. However, the notion of
the instability of a jet caused by the background flow appears to work in the
complex flow at least phenomenologically, and deserves further investigation.

Appendix: The symmetry of the characteristic

equation (26)

Here, we show that it is sufficient to investigate U0east with γ ≥ 0 to know
the linear stability of all steady solutions U0(η). For the sake of convenience,
we divide the parameter region which realizes U0 into four sectors:

Reast+ ≡ {(γ, UW ) | γ − 2
√

6(γ2 + 2) < UW < γ − 1

2

√
2(γ2 + 2), γ ≥ 0},

Reast− ≡ {(γ, UW ) | γ − 2
√

6(γ2 + 2) < UW < γ − 1

2

√
2(γ2 + 2), γ ≤ 0},

Rwest+ ≡ {(γ, UW ) | γ + 2
√

6(γ2 + 2) > UW > γ +
1

2

√
2(γ2 + 2), γ ≥ 0},

Rwest− ≡ {(γ, UW | γ + 2
√

6(γ2 + 2) > UW > γ +
1

2

√
2(γ2 + 2), γ ≤ 0}.

(39)

Reast+, Reast−, Rwest+, and Rwest− correspond to U0east with γ ≥ 0, U0east

with γ ≤ 0, U0west with γ ≥ 0, and U0west with γ ≤ 0 respectively.
Now, take an arbitrary combination (γ, UW ) ∈ Reast+, and consider (−γ, UW−

2γ), which is in the sector Reast−. Then, from the definitions (20), (21), (23b),
and (23a), the relations

U−
Eeast = U+

Eeast − 2γ,

U−
Reast = U+

Reast − 2γ,

a−
east = a+

east,

U−
0east = U+

0east − 2γ,

(40)

hold. Subscripts east,
+ and − above represent eastward jet, Reast+, and Reast−

respectively; for example, U−
Eeast means UE at (−γ, UW −2γ) ∈ Reast−. Using
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Eq. (40), the characteristic equation (26) for U−
0east can be written as

σg =
[
−(2 − γ2) +

(
2
(
U−

0east

)2 − 4γU−
0east

)] d2g

dη2
− 3

d4g

dη4

=
[
−(2 − γ2) +

(
2
(
U+

0east

)2 − 4γU+
0east

)] d2g

dη2
− 3

d4g

dη4
,

which is the same characteristic equation for U+
0east. Hence, investigating the

stability of U+
0east will certainly tell the stability of U0east.

Next, take an arbitrary combination (γ, UW ) ∈ Reast+ again, and consider
(−γ,−UW ), which is easily show to be in the sector Rwest−. Then, from the
definitions (20), (21), (23b), and (23a), the relations

U−
Ewest = −U+

Reast,

U−
Rwest = −U+

Eeast,

a−
west = a+

east,

U−
0west = −U+

0east

(41)

hold. Using Eq. (41), the characteristic Eq. (26) for U−
0west appears to be

written as

σg =
[
−(2 − γ2) +

(
2
(
U−

0west

)2 − 4γU−
0west

)] d2g

dη2
− 3

d4g

dη4

=
[
−(2 − γ2) +

(
2
(
U+

0east

)2 − 4γU+
0east

)] d2g

dη2
− 3

d4g

dη4
,

which is the same characteristic equation for U+
0east. Hence, investigating the

stability of U+
0east will also certainly tell the stability of U0west. Consequently,

it is sufficient to investigate U0east ∈ Reast+ to know the linear stability of all
the U0.
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Figure 4: The real parts of the first eigenvalues (red squares) for γ = 0.0
(top), 1.0 (middle), and 5.0 (bottom). The purple and the light blue lines
denote the two boundaries (17a) and (19a), which also correspond to the
purple and the light blue curves in Fig. 2. The green circle and the blue
lozenge are the zeros obtained from the fitted lines shown in Fig. 5.
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Figure 5: The square roots of the real part of the first eigenvalues (red
squares) for γ = 0.0 (top), 1.0 (middle), and 5.0 (bottom). The purple and
the light blue lines denote the two boundaries (17a) and (19a), which also
correspond to the purple and the light blue curves in Fig. 2. The dark green
and the dark blue lines are the fitted lines from the data, and the green circle
and the blue lozenge are the zeros obtained from these fitted lines.

25



γ = 0.0

UW

0.06

0.00

0.04

0.02

0.00

0.08

0.14

0.04

1.5-1.5 1.0-1.0

10

6

8

0.0-0.5

4

2

0

0.5

 0.02

 0.10

 0.12

 0.06

0.03

0.05

0.01

-1.4 -1.2 -1.0-1.6-1.7 -1.5 -1.3 -1.1

γ = 1.0

-0.6-1.0 -0.2-0.4-0.8-1.2

UW

γ = 5.0

UW

Figure 6: The real part of the first eigenvalues numerically calculated in §4.1
(red squares) and the analytical curve (34) (dark blue curves) for γ = 0.0
(top), 1.0 (middle), and 5.0 (bottom). The purple and the light blue lines
correspond to the two boundaries (17a) and (19a). The green circle and the
blue lozenge are the zeros obtained from the fitted lines shown in §4.1.
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Perturbation (τ=0)
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Figure 7: The eigenfunction of the first eigenfunction (top row) and the tem-
poral variation of the U0 added the eigenfunction as a perturbation (middle
and bottom rows) for the case (γ, UW ) = (1.0,−1.05). Each panel is at time
τ = 0, 200, 230,(middle row, from the left to right) τ = 250, 300, and 1000
(the bottom row, from the left to the right).
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