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Abstract: The multi-leader-follower game can be looked on as a generalization of the Nash

equilibrium problem and the Stackelberg game, which contains several leaders and a number

of followers. Recently, the multi-leader-follower game has been drawing more and more at-

tention, for example, in electricity power markets. However, when we formulate a general

multi-leader-follower game as a single-level game, it will give rise to a lot of problems, such as

the lack of convexity and the failure of constraint qualifications. In this paper, to get rid of these

difficulties, we focus on a class of multi-leader-follower games that satisfy some particular, but

still reasonable assumptions, and show that these games can be formulated as ordinary Nash

equilibrium problems, and then as variational inequalities. We establish some results on the

existence and uniqueness of a leader-follower Nash equilibrium. We also present illustrative

numerical examples from an electricity power market model.
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role in many application areas of economics, engineering and science; see [3, 4].

The Stackelberg game, also called the single-leader-follower game, arises from the oligopolis-

tic competition. In a Stackelberg game, there is a distinctive player, called the leader, who op-

timizes the upper-level problem and a number of remaining players, called the followers, who

optimize the lower-level problems jointly. In particular, the leader can anticipate the response

of the followers, and then use this ability to select his optimal strategy. At the same time, each

follower selects her optimal strategy according to the strategies of the leader and the followers.

When dealing with more complex practical problems, such as a deregulated electricity mar-

ket, we have to consider the competition among several firms and a different type of agents.

The corresponding problem is called the multi-leader-follower game, which has several lead-

ers and followers. Each leader can also anticipate the response of the followers, and uses this

ability to select his strategy to compete with the other leaders. At the same time, each follower

selects his optimal strategy according to the strategies of all leaders as well as the other follow-

ers. We are particularly interested in the situation, where no player can improve his status by

changing his strategy unilaterally, which we call a leader-follower Nash equilibrium, or simply

a L/F Nash equilibrium.

The multi-leader-follower game has recently been studied by some researchers and used to

model several problems in applications. Pang and Fukushima [5] introduced a class of remedial

models for the multi-leader-follower game, that can be formulated as a generalized Nash equi-

librium problem (GNEP) with convexified strategy sets; they also proposed some oligopolis-

tic competition models in electricity power markets, that led to multi-leader-follower games.

Based on the strong stationarity conditions of each leader in a multi-leader-follower game,

Leyffer and Munson [6] derived a family of nonlinear complementarity problem (NCP), non-

linear programming problem, and mathematical program with equilibrium constraints (MPEC)

formulations of the multi-leader-follower game. They also reformulated the game as a square

nonlinear complementarity problem by imposing an additional restriction. Outrata [7] con-

verted a kind of multi-leader-follower games to the equilibrium problems with equilibrium con-

straints (EPECs) and presented some Karush-Kuhn-Tucher (KKT) type of necessary conditions

for equilibria. Sherali [8] considered a special multi-leader-follower game where each leader

anticipates the response explicitly by the aggregate follower reaction curve. He also showed

the existence and uniqueness of the equilibrium of the game called generalized-Stackelberg-

Nash Cournot equilibrium, and then proposed a numerical approach to find a generalized-

Stackelberg-Nash Cournot equilibrium. Unlike the above deterministic multi-leader-follower

games, DeMiguel and Xu [9] considered a stochastic multi-leader-follower game. They intro-
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duced a new concept called stochastic multiple-leader Stackelberg-Nash-Cournot equilibrium

and showed the existence and uniqueness results under some assumptions. They proposed also

a numerical approach to seek the Stackelberg-Nash-Cournot equilibrium with a sample average

approximation method. Even with these efforts, we still have to face a lot of problems when

we deal with the multi-leader-follower game, because of the inherent difficulties such as the

lack of convexity and the failure of constraint qualifications.

In this paper, we consider a simplified multi-leader-follower game with one follower, which

still has wide applications; see [5,10,11]. Under some particular assumptions on the cost func-

tions of both leaders and follower, as well as the constraints in the follower’s problem, we show

that the game can be reduced to a NEP, which may further be reformulated as a variational in-

equality (VI). Moreover, under suitable assumptions, we establish the existence and uniqueness

of a L/F Nash equilibrium. We also consider an optimization reformulation of the VI and give

some conditions that guarantee a stationarity point of the optimization problem to be a L/F

Nash equilibrium. Finally, we present illustrative numerical examples of an electricity power

market that consists of two or three firms as the leaders and the independent system operator

(ISO) as the follower.

The organization of the paper is as follows. In the next section, we collect some basic defi-

nitions and present some preliminary results that will be used later. In Section 3, we introduce

the particular multi-leader-follower game considered in the paper, and formulate it as a NEP.

In Section 4, we reformulate it as a VI and show some conditions that ensure the existence and

uniqueness of a L/F Nash equilibrium. In Sections 5 and 6, we give an application in an elec-

tricity power market, and show some illustrative numerical examples from this model. Finally,

in Section 7, we conclude the paper.

2 Preliminaries

We start this section with some notations. A function G : Rn → Rt is called a Ck function

iff it is k times continuously differentiable. The gradient ∇f(x) of a differentiable function

f : Rn → R is regarded as a column vector. Furthermore, we denote the n ×m (transposed)

Jacobian matrix of a differentiable function F : Rn → Rm at a given point x by ∇F (x). For a

real-valued function f(x, y) with the variable x ∈ Rn and y ∈ Rm, the partial gradients with

respect to x and y are denoted by ∇xf(x, y) ∈ Rn and ∇yf(x, y) ∈ Rm, respectively. The

partial Hessian matrix obtained by first differentiating with respect to y and then with respect

to x is written as the matrix ∇2
yxf(x, y) ∈ Rm×n. A vector is regarded as a column vector.
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However, if a vector x is composed of several subvectors, x1, · · · , xn, it is denoted, for the sake

of notation, as (x1, · · · , xn) instead of ((x1)T , · · · , (xn)T )T , where T denotes transposition.

2.1 Multi-Leader-Follower Games with One Follower

In this subsection, we describe a multi-leader-follower game with one follower and define

the corresponding L/F Nash equilibrium. First, we introduce the NEP and the Nash equilib-

rium.

In a NEP, there are N players labelled by integers ν = 1, · · · , N . Player ν’s strategy is

denoted by the vector xν ∈ Rnν and his cost function θν(x) depends on the strategies of all

players, which are collectively denoted by the vector x ∈ Rn consisting of the subvectors

xν ∈ Rnν , ν = 1, · · · , N , and n = n1 + · · · + nN . Player ν’s strategy set Xν ⊆ Rnν

is independent of the strategies of the other players, which are denoted collectively by x−ν =

(x1, · · · , xν−1, xν+1, · · · , xN) ∈ Rn−nν . For every fixed, but arbitrary, player ν, x−ν ∈ X−ν :=
∏N

ν′=1,ν′ 6=ν Xν′ , which consists of all players’ strategies except player ν, player ν solves the

following optimization problem with his own variable xν :

minimize
xν

θν(x
ν , x−ν) s.t. xν ∈ Xν , (1)

where we denote θν(x) = θν(x
ν , x−ν) to emphasize the role of xν in this problem. A strategy

tuple x∗ ≡ (x∗,ν)N
ν=1 ∈ X ≡ ∏N

ν=1 Xν is called a Nash Equilibrium (NE) iff for all ν =

1, · · · , N ,

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν), ∀xν ∈ Xν .

A typical multi-leader-follower game with N leaders and one follower can be described as

follows. Let Xν ⊆ Rnν denote the strategy set of leader ν, ν = 1, · · · , N . We assume that the

strategy set of each leader Xν be independent of the strategies of other rival leaders. We also

denote each leader’s objective function by θν(x
ν , x−ν , y), ν = 1, · · · , N , which is dependent

on his own strategy xν and all the other rival leader’s strategies denoted by x−ν ∈ X−ν ≡
∏N

ν′=1,ν′ 6=ν Xν′ and also on the follower’s strategy denoted by y.

Let γ(x, y) and K(x) denote, respectively, the follower’s objective function and strategy set,

which depend on the leaders’ strategy tuple x. For each given strategy tuple x of the leaders,

the follower chooses his strategy by solving the following optimization problem with variable

y:

minimize
y

γ(x, y) s.t. y ∈ K(x).
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We denote the set of optimal solutions to this problem by Y (x). Now, we define the concept of

Nash equilibrium for the above multi-leader-follower game with N leaders and one follower.

Definition 2.1. A strategy tuple x∗ = (x∗,1, · · · , x∗,N) ∈ X of the leaders’ strategies is called

a L/F Nash equilibrium, where L/F means leader-follower, iff there exist N strategies of the

follower denoted by a tuple (y∗,1, · · · , y∗,N) such that y∗,ν ∈ Y (x∗), ν = 1, · · · , N , and

(x∗,ν , y∗,ν) is an optimal solution of leader ν’s problem, ν = 1, · · · , N , which is to seek (xν , yν)

to

minimize
xν ,yν

θν(x
ν , x∗,−ν , yν) s.t. xν ∈ Xν , yν ∈ Y (xν , x∗,−ν).

Here, for each ν = 1, · · · , N , Y (xν , x∗,−ν) is the set of the follower’s optimal responses

anticipated by leader ν, when leader ν chooses strategy xν and the other leaders’ strategies x−ν

are fixed at x∗,−ν . The above definition of a L/F Nash equilibrium is based on the assumption

that leader ν optimizes his objective value by anticipating the follower’s response yν from the

response set Y (xν , x∗,−ν) optimistically. This definition for the multi-leader-follower game ex-

tends that of an optimistic Stackelberg game considerd by Lignola and Morgan [12]. Note that

the follower will actually choose his optimal strategy y∗ ∈ Y (x∗) responding to all leaders’

strategies x∗, which may be different from the optimistic anticipations yν by the leaders. How-

ever, such complication is completely avoided, when the follower’s optimal response Y (x) is a

singleton for any x, which is the case for the game we consider in Section 3 of this paper.

2.2 Variational Inequality

The variational inequality VI(S, F ) is to find a vector x∗ ∈ S such that

F (x∗)T (x− x∗) ≥ 0 for all x ∈ S,

where S ⊆ Rn is a nonempty, closed and convex set and F : Rn → Rn is a given function.

Here we assume the function F to be continuously differentiable. Applications of a varia-

tional inequality can be found in various areas, such as transportation systems, mechanics, and

economics; see [13, 14].

Suppose that the feasible set S can be represented as

S := {x ∈ Rn : h(x) = 0, g(x) ≤ 0},

where h : Rn → Rp is an affine function and g : Rn → Rm is a continuously differentiable

convex function. Then under a suitable constraint qualification, a solution x of VI(S, F ), along
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with some Lagrange multipliers µ ∈ Rp and λ ∈ Rm, satisfies the following KKT conditions:

F (x) +∇h(x)µ +∇g(x)λ = 0,

h(x) = 0,

g(x) ≤ 0, λ ≥ 0, λT g(x) = 0.

(2)

Conversely, if a triple (x, µ, λ) ∈ Rn+p+m satisfies (2), then x solves VI(S, F ). We call a

triple (x, µ, λ) ∈ Rn+p+m a KKT triple iff it satisfies the above KKT conditions. Moreover, the

corresponding x-vector is called a KKT point. For simplicity, when there is no possibility of

confusion, we shall often refer to a KKT triple simply as a KKT point.

The following definition will be useful in this paper.

Definition 2.2. Let X ⊆ Rn be a convex set. The mapping F : Rn → Rn is said to be

(a) monotone on X iff

[F (x)− F (y)]T (x− y) ≥ 0 ∀x, y ∈ X;

(b) strictly monotone on X iff

[F (x)− F (y)]T (x− y) > 0 ∀x, y ∈ X, x 6= y;

(c) strongly monotone on X with modulus α > 0 iff

[F (x)− F (y)]T (x− y) ≥ α‖x− y‖2 ∀x, y ∈ X.

Clearly, strong monotonicity implies strict monotonicity, and strict monotonicity implies

monotonicity. The following proposition shows the well known relations between these mono-

tonicity properties of F and the positive semidefiniteness or positive definiteness of the Jaco-

bian matrix ∇F (x) [15].

Proposition 2.1. Let mapping F : Rn → Rn be continuously differentiable and X ⊆ Rn be a

convex set. Then

(a) F is monotone on X if and only if the Jacobian matrix ∇F (x) is positive semidefinite for

all x ∈ X;

(b) F is strictly monotone on X if the Jacobian matrix ∇F (x) is positive definite for all

x ∈ X;

(c) F is strongly monotone on X if and only if the Jacobian matrix ∇F (x) is uniformly posi-

tive definite on X , which is equivalent to saying that the minimum eigenvalues of the symmetric

matrices ∇F (x) +∇F (x)T are bounded away from zero on X .
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As to the existence and uniqueness of a solution in the variational inequality, a number of

results are known. One of the most fundamental results relies on the compactness of the set X .

Other existence results can be obtained by imposing another condition, such as coerciveness of

the function F , instead of the compactness of X . On the other hand, under some monotonicity

assumptions on F , the following two results on the uniqueness of a solution can be presented

[16].

Proposition 2.2. If F is strictly monotone on S, and the VI(S, F ) has at least one solution,

then the solution is unique.

Proposition 2.3. If F is strongly monotone on S, then there exists a unique solution to the

VI(S, F ).

The following proposition shows a basic relation between the NEP and the VI [17].

Proposition 2.4. Consider the NEP where each player ν solves the optimization problem

(1). If each Xν is a nonempty, closed and convex subset of Rnν and, for each fixed x−ν ,

the function θν(x
ν , x−ν) is convex and continuously differentiable in xν , then a strategy tuple

x = (x1, · · · , xN) is a Nash equilibrium if and only if x solves the VI(X,F ), where

X ≡
N∏

ν=1

Xν and F (x) ≡ (∇xνθν(x))N
ν=1.

3 Multi-Leader-Follower Games with Special Structure

In this section, we concentrate on a multi-leader-follower game with the following special

structure:

Leader ν’s Problem (ν = 1, · · · , N).

minimize
xν

θν(x
ν , x−ν , y) := ων(x

ν , x−ν) + ϕν(x
ν , y)

subject to gν(xν) ≤ 0, hν(xν) = 0.

Follower’s Problem.

minimize
y

γ(x, y) := ψ(y)−
N∑

ν=1

ϕν(x
ν , y)

subject to y ∈ Y .

Here, all functions are assumed to be C2 functions. In particular, each function ων : Rn → R

is convex with respect to the variable xν . Functions gν : Rnν → Rsν are all convex and
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hν : Rnν → Rtν are all affine. Functions ψ, ϕν and set Y are assumed to have the following

explicit representations:

ϕν(x
ν , y) ≡ (xν)T Dνy, ν = 1, · · · , N,

ψ(y) ≡ 1

2
yT By + cT y,

Y ≡ {y ∈ Rm|Ay + a = 0}.

Here, Dν ∈ Rnν×m, ν = 1, · · · , N, c ∈ Rm, and matrix B ∈ Rm×m is assumed to be symmet-

ric and positive definite. Moreover, A ∈ Rp×m, a ∈ Rp, and matrix A has full row rank. Note

that the strategy set of the follower’s problem Y is an affine subset of Rm.

Then the above multi-leader-follower game can be written as follows:

Leader ν’s Problem (ν = 1, · · · , N).

minimize
xν

ων(x
ν , x−ν) + (xν)T Dνy

subject to gν(xν) ≤ 0, hν(xν) = 0.

Follower’s Problem.

minimize
y

1

2
yT By + cT y −

N∑
ν=1

(xν)T Dνy

subject to Ay + a = 0.

In this game, the objective functions of N leaders and the follower contain some related

terms. Specifically, the second term of the objective function appears in the follower’s objective

function in the negated form. Therefore, the game partly contains a kind of zero-sum structure

between each leader and the follower. An application of such special multi-leader-follower

games will be presented with some illustrative numerical examples later.

In the remainder of the paper, for simplicity, we will mainly consider the following game

with two leaders, labelled I and II. The results presented below can be extended to the case of

more than two leaders in a straightforward manner.

Leader I’s Problem.

minimize
xI

ωI(x
I, xII) + (xI)T DIy

subject to gI(xI) ≤ 0, hI(xI) = 0.

Leader II’s Problem.

minimize
xII

ωII(x
I, xII) + (xII)T DIIy

subject to gII(xII) ≤ 0, hII(xII) = 0.
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Follower’s Problem.

minimize
y

1

2
yT By + cT y − (xI)T DIy − (xII)T DIIy

subject to Ay + a = 0.

Since the follower’s problem is a strictly convex quadratic programming problem with

equality constraints, it is equivalent to finding a pair (y, λ) ∈ Rm×p satisfying the following

KKT system of linear equations:

By + c− (DI)
T xI − (DII)

T xII + AT λ = 0,

Ay + a = 0.
(3)

Note that, under the given assumptions, a KKT pair (y, λ) exists uniquely for each (xI, xII) and

is denoted by (y(xI, xII), λ(xI, xII)). By direct calculations, we have

y(xI, xII) =−B−1c−B−1AT (AB−1AT )−1(a− AB−1c)

+ [B−1(DI)
T −B−1AT (AB−1AT )−1AB−1(DI)

T ]xI

+ [B−1(DII)
T −B−1AT (AB−1AT )−1AB−1(DII)

T ]xII,

λ(xI, xII) = (AB−1AT )−1(a− AB−1c) + (AB−1AT )−1AB−1(DI)
T xI

+ (AB−1AT )−1AB−1(DII)
T xII.

Substituting y(xI, xII) for y in the leaders’ problems, the leaders’ objective functions can be

rewritten as

ωI(x
I, xII) + (xI)T DIy = ωI(x

I, xII) + (xI)T DIr

+ (xI)T DIGxI + (xI)T DIHxII,
(4)

ωII(x
I, xII) + (xII)T DIIy = ωII(x

I, xII) + (xII)T DIIr

+ (xII)T DIIGxI + (xII)T DIIHxII,
(5)

where G ∈ Rm×nI , H ∈ Rm×nII , and r ∈ Rm are given by

G = B−1(DI)
T −B−1AT (AB−1AT )−1AB−1(DI)

T ,

H = B−1(DII)
T −B−1AT (AB−1AT )−1AB−1(DII)

T ,

r = −B−1c−B−1AT (AB−1AT )−1(a− AB−1c).

Let the functions defined by (4) and (5) be denoted as ΘI : RnI+nII → R and ΘII : RnI+nII →
R, respectively. Then we can formulate the above multi-leader-follower game as the following

NEP, which we call the NEP(Θν , X
ν)II

ν=I, where Xν = {xν : gν(xν) ≤ 0, hν(xν) = 0}, ν =

I, II:
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Leader I’s Problem.

minimize
xI

ΘI(x
I, xII)

subject to gI(xI) ≤ 0, hI(xI) = 0.

Leader II’s Problem.

minimize
xII

ΘII(x
I, xII)

subject to gII(xII) ≤ 0, hII(xII) = 0.

Remark 3.1. Instead of solving the KKT system (3) explicitly, we may leave it as additional

constraints in each leader’s problem. This results in a GNEP, which has attracted much attention

recently [5, 18].

4 Existence and Uniqueness of L/F Nash Equilibrium

In this section, we further reformulate the NEP(Θν , X
ν)II

ν=I derived in the previous section

as a variational inequality, and discuss the existence and uniqueness of a L/F Nash equilibrium.

Throughout this section, we assume the sets X I and X II are nonempty.

In the NEP(Θν , X
ν)II

ν=I, the Hessian matrices of the leaders’ objective functions are calcu-

lated as

∇2
xIΘI(x

I, xII) = ∇2
xIωI(x

I, xII) + 2(DIB
− 1

2 )P (DIB
− 1

2 )T ,

∇2
xIIΘII(x

I, xII) = ∇2
xIIωII(x

I, xII) + 2(DIIB
− 1

2 )P (DIIB
− 1

2 )T ,

where matrix P ∈ Rm×m is given by

P = I −B− 1
2 AT (AB−1AT )−1AB− 1

2 .

Since P is a projection matrix, it is symmetric, idempotent, and positive semidefinite. By the

given assumption, functions ωI(x
I, xII) and ωII(x

I, xII) are both convex with respect to xI and

xII, respectively. Therefore the leaders’ objective functions in the NEP(Θν , X
ν)II

ν=I are both

convex with respect to xI and xII, respectively.

By Proposition 2.4, we can reformulate the NEP(Θν , X
ν)II

ν=I as the following variational

inequality denoted by the VI(X, F̂ ): Find a vector x∗ ∈ X := X I ×X II such that

F̂ (x∗)T (x− x∗) ≥ 0 for all x ∈ X,
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where x = (xI, xII) ∈ RnI+nII , Xν = {xν : gν(xν) ≤ 0, hν(xν) = 0}, ν = I, II and the function

F̂ : RnI+nII → RnI+nII is defined by

F̂ (x) ≡

 ∇xIΘI(x

I, xII)

∇xIIΘII(x
I, xII)


 =


 ∇xIωI(x

I, xII) + DIr + 2DIGxI + DIHxII

∇xIIωII(x
I, xII) + DIIr + DIIGxI + 2DIIHxII


 . (6)

Here we notice that matrices DIG and DIIH are symmetric from the definitions of G and H ,

respectively.

The VI Lagrangian function is written as

L̂(x, µ, λ) = F̂ (x) +




∑sI
i=1 λI

i∇gI
i(x

I)
∑sII

i=1 λII
i ∇gII

i (xII)


 +




∑tI
j=1 µI

j∇hI
j(x

I)
∑tII

j=1 µII
j∇hII

j (xII)


 ,

where λ = (λI, λII) ∈ RsI+sII and µ = (µI, µII) ∈ RtI+tII . The Jacobin matrix ∇xL̂(x, µ, λ) of

the VI Lagrangian function with respect to x is written as

∇xL̂(x, µ, λ) =


 ∇2

xIIωII(x
I, xII) ∇2

xIIxIωII(x
I, xII)

∇2
xIxIIωI(x

I, xII) ∇2
xIIωII(x

I, xII)




+


 2DIB

− 1
2 PB− 1

2 (DI)
T DIB

− 1
2 PB− 1

2 (DII)
T

DIIB
− 1

2 PB− 1
2 (DI)

T 2DIIB
− 1

2 PB− 1
2 (DII)

T




+




∑sI
i=1 λI

i∇2gI
i(x

I) 0

0
∑sII

i=1 λII
i ∇2gII

i (xII)


 .

Lemma 4.1. The matrix

 2DIB

− 1
2 PB− 1

2 (DI)
T DIB

− 1
2 PB− 1

2 (DII)
T

DIIB
− 1

2 PB− 1
2 (DI)

T 2DIIB
− 1

2 PB− 1
2 (DII)

T




is positive semidefinite.

Proof. Set Q = B− 1
2 PB− 1

2 , which is symmetric and positive semidefinite. Then we can write

 2DIB

− 1
2 PB− 1

2 (DI)
T DIB

− 1
2 PB− 1

2 (DII)
T

DIIB
− 1

2 PB− 1
2 (DI)

T 2DIIB
− 1

2 PB− 1
2 (DII)

T




=


 2DIQ(DI)

T DIQ(DII)
T

DIIQ(DI)
T 2DIIQ(DII)

T


 .
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Consider the following products of matrices:

 DI

1
2
DI

1
2
DII DII





 2Q 0

0 2Q





 DI

1
2
DI

1
2
DII DII




T

=




5
2
DIQ(DI)

T 2DIQ(DII)
T

2DIIQ(DI)
T 5

2
DIIQ(DII)

T




= 2


 2DIQ(DI)

T DIQ(DII)
T

DIIQ(DI)
T 2DIIQ(DII)

T


−




3
2
DIQ(DI)

T 0

0 3
2
DIIQ(DII)

T


 .

Since the matrices


 2Q 0

0 2Q


 and




3
2
DIQ(DI)

T 0

0 3
2
DIIQ(DII)

T


 are both positive semidef-

inite, the matrix

 2DIQ(DI)

T DIQ(DII)
T

DIIQ(DI)
T 2DIIQ(DII)

T




is also positive semidefinite.

Theorem 4.1. If the function

F0(x) = F0(x
I, xII) ≡


 ∇xIωI(x

I, xII)

∇xIIωII(x
I, xII)


 (7)

is strictly monotone, and the NEP(Θν , X
ν)II

ν=I has at least one solution, then the solution is

unique.

Proof. By Lemma 4.1, the matrix

 2DIB

− 1
2 PB− 1

2 (DI)
T DIB

− 1
2 PB− 1

2 (DII)
T

DIIB
− 1

2 PB− 1
2 (DI)

T 2DIIB
− 1

2 PB− 1
2 (DII)

T




is positive semidefinite. It then follows from the definitions of matrices G, H and P that the

function

F̃ (x) ≡

 DIr + 2DIGxI + DIHxII

DIIr + DIIGxI + 2DIIHxII




is monotone. By the given assumption, the function F̂ = F0 + F̃ is therefore strictly monotone.

Moreover, by Proposition 2.2, if the VI(X, F̂ ) has at least one solution, then the solution is

unique. In view of (6), this in turn implies that the NEP(Θν , X
ν)II

ν=I has a unique solution by

Proposition 2.4.
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Theorem 4.2. If the function F0 defined by (7) is strongly monotone, then the NEP(Θν , X
ν)II

ν=I

has a unique solution.

Proof. In a similar manner to the proof of Theorem 4.1, we can deduce that function F̂ =

F0 + F̃ is strongly monotone. Then, by Proposition 2.3, the VI(X, F̂ ) has a unique solution.

Hence, by Proposition 2.4, the NEP(Θν , X
ν)II

ν=I has a unique solution.

Remark 4.1. The NEP(Θν , X
ν)II

ν=I has a nonempty, compact solution set when function F̂ is

coercive or X is bounded.

5 The Multi-Leader-Follower Game in Deregulated Electricity Market

Privatization and restructuring of the edregulated electricity markets have taken place in

many countries, although an excessive free market also has a possibility to bring about some

trouble. Under this situation, a lot of researchers have paid much attention to the noncooper-

ative competition problems in this area, see [5, 10, 19]. In this section, we present a simple

model of competitive bidding under some macroeconomic regulation. We will show that it

can be formulated as the multi-leader-follower game that we have considered in the previous

sections.

In this model, there are several firms and one market maker, called the ISO, who employs

a market cleaning mechanism to collect the electricity from firms by paying the bid costs,

determine the price of electricity and sell it to consumers. We omit the problem of consumers,

which means any quantity of electricity power can be consumed. The structure of the model can

be described as follows. Again, for simplicity, we assume there are only two firms I and II. The

two firms are competing for market power in an electricity network with M nodes. We assume

that firms I and II produce the electricity with fixed quantities aI and aII, respectively, and send

it to all nodes. A firm receives its profit by dispatching electricity with the bid parameters

to the ISO at each node. Let ρν = (ρν
1, · · · , ρν

M)T , ν = I, II, denote firm ν’s bid parameter

vectors, where the components ρν
i are the bid parameters to nodes i = 1, · · · ,M . The vector

q = (qI, qII) ∈ R2M with qν = (qν
1 , · · · , qν

M)T , ν = I, II, denotes the quantities supplied by the

firms, or more specifically, qI
i and qII

i denote the quantities of electricity supplied by firm I and

firm II at nodes i = 1, · · · ,M , respectively. Each firm ν will submit a bid function bν(q, ρ
ν)

to the ISO. The function bν represents how much revenue firm ν will receive by selling the

electricity power. At the same time, each firm also needs to consider the transaction cost

ων(ρ
ν) = 1

2
(ρν)T diag(ζν

1 , · · · , ζν
M)ρν , where ζν

i , i = 1, · · · ,M, are given positive constants.
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Each firm ν tries to determine its bid parameter vector ρν by minimizing the difference

between its transaction cost and revenue, i.e., by solving the following optimization problem

with variables ρν :

minimize
ρν

1

2
(ρν)T diag(ζν

1 , · · · , ζν
M)ρν − bν(q, ρ

ν)

subject to 0 ≤ ρν
i ≤ ξν

i , i = 1, · · · ,M,

where ξν
i , i = 1, · · · ,M , are positive empirical upper bounds set by the firm ν, ν = I, II. We

further assume that the firms’ bid functions are given by

bν(q, ρ
ν) ≡ ρν

1q
ν
1 + · · ·+ ρν

Mqν
M = −(ρν)T Dνq, ν = I, II,

where Dν ∈ RM×2M are bid matrices of firm ν, which are defined by DI = (−I, 0) and

DII = (0,−I), where I is the identity matrix and 0 is the zero matrix. We will write the

constraints of the above problem as

gν(ρν) ≤ 0,

where

gν(ρν) =
(
−ρν

1, · · · , −ρν
M , ρν

1 − ξν
1 , · · · , ρν

M − ξν
M

)T

.

Remark 5.1. Pang and Fukushima [5] also considered a multi-leader-follower game with an

application in a deregulated electricity market model where the firms are required to bid on

their revenue functions. Here we extend their model by considering the transaction cost in each

leader’s objective function.

Moreover, we assume that some economic interventionism works in this electricity model in

order to maintain some equilibrium between the quantities of electricity at each node from two

firms, which is represented by some quadratic terms denoted by 1
2
εi(

qI
i

aI − qII
i

aII )
2, i = 1, · · · ,M ,

where aν , ν = I, II, are the quantities of electricity produced by firm I, II, respectively, and

each economic interventionism parameter εi is positive and small. We assume aν , ν = I, II,

are fixed. Under the economic interventionism, the ISO tries to let each firm ν supply the

electricity in such a way that the quantity tends to be proportional to his total amount aν at

each node. At the same time, the ISO employs a market mechanism to determine a set of nodal

prices and electricity quantities from each firm at each node in order to maximize its profit (the

revenue minus the bid costs), or minimize the negative profit. We further assume that, at each

node, the affine demand curves determine the prices pi as a function of the total quantity of

electricity from firms I and II as follows.

pi(q
I
i, q

II
i ) := αi − βi(q

I
i + qII

i ), i = 1, · · · ,M,
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where αi and βi are given positive constants.

Then the ISO minimizes its negative profit by solving the following optimization problem

with variables q = (qI, qII):

minimize
q

M∑
i=1

[βi

2
(qI

i + qII
i )2 − αi(q

I
i + qII

i )
]

+
1

2

M∑
i=1

εi

(qI
i

aI −
qII
i

aII

)2
+ bI(q, ρ

I) + bII(q, ρ
II)

subject to
M∑
i=1

qI
i − aI = 0,

M∑
i=1

qII
i − aII = 0.

Note that the first two terms of the ISO’s objective function is rewritten as

M∑
i=1

[βi

2
(qI

i + qII
i )2 − αi(q

I
i + qII

i )
]

+
1

2

M∑
i=1

εi

(qI
i

aI −
qII
i

aII

)2
=

1

2
qT Bq + cT q,

where

B =




β1 + 2ε1

(aI)2
· · · 0 β1 − ε1

aIaII · · · 0
... . . . ...

... . . . ...

0 · · · βM + 2εM

(aI)2
0 · · · βM − εM

aIaII

β1 − ε1

aIaII · · · 0 β1 + 2ε1

(aII)2
· · · 0

... . . . ...
... . . . ...

0 · · · βM − εM

aIaII 0 · · · βM + 2εM

(aII)2




, c =




−α1

...

−αM

−α1

...

−αM




.

Notice that matrix B is positive definite. Moreover, the constraints of the ISO can be rewritten

as

Aq + a = 0,

where

A =


 1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1


 ∈ R2×2M , a =


 −aI

−aII


 .

Therefore, the electricity market model under consideration can be formulated as the fol-

lowing multi-leader-follower game:

Firm (Leader) I’s Problem.

minimize
ρI

1

2
(ρI)T diag(ζ I

1, · · · , ζ I
M)ρI + (ρI)T DIq

subject to gI(ρI) ≤ 0.
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Firm (Leader) II’s Problem.

minimize
ρII

1

2
(ρII)T diag(ζ II

1 , · · · , ζ II
M)ρII + (ρII)T DIIq

subject to gII(ρII) ≤ 0.

ISO (Follower)’s Problem.

minimize
q

1

2
qT Bq + cT q − (ρI)T DIq − (ρII)T DIIq

subject to Aq + a = 0.

In light of the analysis in the previous sections, we can further reformulate the multi-leader-

follower game as the following VI: Find a vector ρ∗ = (ρ∗,I, ρ∗,II) ∈ X = X I × X II such

that

F̂ (ρ∗)T (ρ− ρ∗) ≥ 0 for all ρ ∈ X, (8)

where

ρ = (ρI, ρII) = (ρI
1, · · · , ρI

M , ρII
1 , · · · , ρII

M)T ,

Xν = {ρν : gν(ρν) ≤ 0}, ν = I, II,

gν(ρν) = (−ρν
1, · · · ,−ρν

M , ρν
1 − ξν

1 , · · · , ρν
M − ξν

M)T , ν = I, II,

F̂ (ρ) =


 diag(ζ I

1, · · · , ζ I
M)ρI + DIr + 2DIGρI + DIHρII

diag(ζ II
1 , · · · , ζ II

M)ρII + DIIr + DIIGρI + 2DIIHρII


 .

Remark 5.2. The assumption that the follower’s problem does not contain inequality con-

straints would narrow down the range of applications of the model. In fact, the approach

presented in this paper cannot be extended directly to the inequality constrained case. Never-

theless we may still try to make some further efforts to deal with inequality constraints based

on the current approach. Suppose that the follower solves the optimization problem

minimize
q

1

2
qT By + cT q − (ρI)T DIq − (ρII)T DIIq

subject to Aq + a = 0, q ≥ 0.

A possible idea to deal with the inequality constraint q ≥ 0 is the following: First, we just ig-

nore it, apply the above-mentioned VI formulation, and find a L/F Nash equilibrium. Next, we

check the components of q in the equilibrium. If they are all nonnegative, then we accept the

current equilibrium as a solution of the problem. Otherwise, we set the negative components

of q to be 0, or in other words, we discard those components. Then we try to find a L/F Nash
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equilibrium of the reduced problem by ignoring the inequality constraint q ≥ 0 again. Repeat-

ing this heuristic procedure, we will eventually obtain an approximate L/F Nash equilibrium of

the original game.

6 Numerical Experiments

In this section, we show numerical results for the electricity market model described in the

previous section.

Note that X in (8) can be represented as X = {ρ ∈ R2M |0 ≤ ρν
i ≤ ξν

i , i = 1, · · · ,M, ν =

I, II}. Thus the VI is a box-constrained variational inequality (BVI), denoted by BVI(X, F̂ (ρ)).

To solve the BVI, Kanzow and Fukushima [20] present a nonsmooth Newton-type method

applied to the nonlinear equation involving the natural residual of the BVI. The algorithm uses

the D-gap function to ensure global convergence of the Newton-type method. We use the

following parameter setting in the implementation of Algorithm 3.2 in [20]:

α = 0.9, β = 1.2, δ = 0.6, ω = 10−6,

σ = 10−4, p = 2.1, η = 0.8, τ = 10−6.

First we solve a model with two firms I, II, who dispatch the electricity to two nodes i = 1, 2.

We set the problem data as follows:

α1 = 1.5, α2 = 1.8; β1 = 0.6, β2 = 0.7; aI = 1.2, aII = 1.8;

ξI
1 = 1, ξI

2 = 1, ξII
1 = 1, ξII

2 = 1; ζ I
1 = 1.2; ζ I

2 = 1, ζ II
1 = 1.3, ζ II

2 = 1.5.

We also set the problem data ε = (ε1, ε2) as listed in Table 1, where the corresponding com-

putational results ρ∗ = (ρ∗,I1 , ρ∗,I2 , ρ∗,II1 , ρ∗,II2 )T and q∗ = (q∗,I1 , q∗,I2 , q∗,II1 , q∗,II2 )T along with the

objective values of the firms and the ISO are shown.

We may observe from the table that the economic interventionism terms play an important

role in the distribution of electricity quantities at each node. As the economic interventionism

parameters εi, i = 1, 2, become larger, the ratio of electricity quantities supplied by firm I and

firm II gets closer to the ratio of the amount of electricity aI : aII = 1 : 1.5. For example,

when the ε changes from (0.001, 0.001) to (0.05, 0.05), the ratio at two nodes changes from

q∗,I1 : q∗,II1 = 1 : 1.5973 and q∗,I2 : q∗,II2 = 1 : 1.4223 to 1 : 1.5938 and 1 : 1.4251, respectively.

Also in this procedure, both firms’ optimal profits are nondecreasing, but the ISO’s profit is

decreasing.

We also solved a larger electricity market model with three firms and five nodes, where the

following problem data are used:
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Table 1. The L/F Nash Equilibrium with Two Firms and Two Nodes

ε (0.001, 0.001) (0.005, 0.005) (0.01, 0.01) (0.05, 0.05)

(0.4139, 0.4137, (0.4142, 0.4135, (0.4146, 0.4132, (0.4173, 0.4113,
ρ∗

0.6429, 0.6428) 0.6430, 0.6427) 0.6432, 0.6426) 0.6440, 0.6419)

valL1 -0.2483 -0.2483 -0.2483 -0.2485

valL2 -0.5786 -0.5786 -0.5786 -0.5786

(0.5331, 0.6669, (0.5330, 0.6670, (0.5330, 0.6670, (0.5327, 0.6673,
q∗

0.8515, 0.9485) 0.8512, 0.9488) 0.8510, 0.9490) 0.8490, 0.9510)

valF -1.8425 -1.8424 -1.8424 -1.8422

Iter 2 2 2 2

Note1. valL1, valL2 and valF denote the optimal values of firm I, firm II and the ISO, respectively, and Iter denotes

the number of iterations.

Table 2. The L/F Nash Equilibrium with Three Firms and Five Nodes

(0.001, 0.001, 0.001, (0.005, 0.005, 0.005, (0.01, 0.01, 0.01, (0.05, 0.05, 0.05,
ε

0.001, 0.001) 0.005, 0.005) 0.01, 0.01) 0.05, 0.05)

(0.1799, 0.1789, (0.1831, 0.1780, (0.1869, 0.177, (0.2125, 0.1700,

0.1788, 0.1791, 0.1776, 0.1790, 0.1762, 0.1789, 0.1667, 0.1781,

0.1791; 0.3296, 0.1790; 0.3327, 0.1788; 0.3364, 0.1778; 0.3620,

0.3285, 0.3285, 0.3277, 0.3273, 0.3267, 0.3259, 0.3197, 0.3165,
ρ∗

0.3287, 0.3288; 0.3285, 0.3287; 0.3283, 0.3286; 0.3266, 0.3282;

0.2440, 0.2430, 0.2469, 0.2421, 0.2505, 0.2411, 0.2744, 0.2339,

0.2429, 0.2432, 0.2418, 0.2432, 0.2404, 0.2431, 0.2309, 0.2428,

0.2432) 0.2431) 0.2430) 0.2421)

valL1 -0.1078 -0.1091 -0.1107 -0.1202

valL2 -0.3952 -0.3978 -0.401 -0.4201

valL3 -0.2224 -0.2244 -0.2268 -0.2414

(0.5334, 0.1327, (0.5317, 0.1334, (0.5296, 0.1341, (0.5154, 0.1394,

0.1511, 0.1837, 0.1516, 0.1841, 0.1521, 0.1845, 0.1559, 0.1875,

0.1990; 1.0716, 0.1993; 1.0668, 0.1996; 1.0610, 0.2018; 1.0217,

0.2572, 0.2886, 0.2590, 0.2905, 0.2612, 0.2927, 0.2756, 0.3079,
q∗

0.4082, 0.3744; 0.4087, 0.3750; 0.4094, 0.3757; 0.4141, 0.3808;

0.8488, 0.1936, 0.8450, 0.1949, 0.8405, 0.1965, 0.8098, 0.2072,

0.2133, 0.2533, 0.2146, 0.2539, 0.2162, 0.2547, 0.2267, 0.2602,

0.2911) 0.2916) 0.2921) 0.2960)

valF -6.4479 -6.4419 -6.4346 -6.3871

Iter 4 23 3 14

Note 2. valL3 denotes the optimal value of firm III.
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α1 = 1.2, α2 = 1.5, α3 = 1.6, α4 = 1.8, α5 = 1.9; aI = 1.2, aII = 2.4, aIII = 1.8;

β1 = 0.2, β2 = 0.5, β3 = 0.6, β4 = 0.7, β5 = 0.8; ξI
1 = 1, ξI

2 = 3, ξI
3 = 5, ξI

4 = 2, ξI
5 = 6;

ξII
1 = 1, ξII

2 = 1, ξII
3 = 4, ξII

4 = 1.5, ξII
5 = 5; ξIII

1 = 1, ξIII
2 = 1.7, ξIII

3 = 1, ξIII
4 = 1, ξIII

5 = 2;

ζ I
1 = 1.1, ζ I

2 = 1.4, ζ I
3 = 1.7, ζ I

4 = 1.2, ζ I
5 = 1.3; ζ II

1 = 1.2, ζ II
2 = 1.5, ζ II

3 = 1.8, ζ II
4 = 1.5,

ζ II
5 = 1.3; ζ III

1 = 1.3, ζ III
2 = 1.6, ζ III

3 = 1.9, ζ III
4 = 1.2, ζ III

5 = 1.4.

We also set ε = (ε1, ε2, ε3, ε4, ε5) as listed in Table 2, where the corresponding numerical

results are shown. We may also observe similar properties to those for the pervious model from

the table. When the economic interventionism parameters εi, i = 1, · · · , 5, become larger, the

ratio of electricity quantities supplied by firms I , II and III gets closer to the ratio of the amount

of electricity aI : aII : aIII = 1 : 2 : 1.5, and the optimal profit of each firm increases, while that

of the ISO decreases.

7 Conclusions

Considering the difficulties of general multi-leader-follower games, this paper has focused

on a multi-leader-follower game with some particular structure, which contains one follower

whose optimization problem is a strictly convex quadratic program with equality constraints.

Then the multi-leader-follower game is formulated as a NEP, which can further be formulated

as a VI. We have shown the existence and uniqueness of a L/F Nash equilibrium. We have also

presented an application in electricity power markets with some numerical results.
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