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(Received 10 July 2011; accepted 17 October 2011; published online 10 November 2011)

We consider statistical mechanical properties of the primitive chain network (PCN) model for en-
tangled polymers from its dynamic equations. We show that the dynamic equation for the segment
number of the PCN model does not reduce to the standard Langevin equation which satisfies the
detailed balance condition. We propose heuristic modifications for the PCN dynamic equation for
the segment number, to make it reduce to the standard Langevin equation. We analyse some equi-
librium statistical properties of the modified PCN model, by using the effective free energy obtained
from the modified PCN dynamic equations. The PCN effective free energy can be interpreted as the
sum of the ideal Gaussian chain free energy and the repulsive interaction energy between slip-links.
By using the single chain approximation, we calculate several distribution functions of the PCN
model. The obtained distribution functions are qualitatively different from ones for the simple slip-
link model without any direct interactions between slip-links. © 2011 American Institute of Physics.
[doi:10.1063/1.3658775]

I. INTRODUCTION

The primitive chain network (PCN) model1, 2 is a slip-
link type mesoscopic coarse-grained model for entangled
polymeric systems.3 To simulate rheological properties ef-
ficiently, the PCN model represents entangled polymers as
a network like structure of which topology dynamically
changes. Simulations based on the PCN model can reproduce
rheological properties of entangled polymers well with rela-
tively small computational costs, and it has been applied to
various systems including branched polymers4, 5 or bidisperse
polymers.6 Although the PCN model achieved success in pre-
dicting various rheological behaviours of entangled polymers,
its statistical properties are still not fully understood.

In recent years, various primitive path analysis
methods7–9 have been developed to extract statistical
properties of network structures in entangled polymers
quantitatively from atomistic or coarse-grained molecular
models (such as the molecular dynamics simulations). It is
an interesting question whether the extracted statistical data
agree with the ones obtained by the PCN model, to discuss
consistency or relation between the models. Quite recently,
the network statistics of the PCN model were systematically
examined.10 The statistical properties of the PCN model are
shown to be qualitatively in agreement with the primitive
path analysis data. However, the analysis is conducted only
for simulation results, and from the theoretical view point,
how the network statistics is determined in the PCN model is
still not clear. The PCN model is a dynamical model which
is constructed in a rather phenomenological way. This makes
theoretical analysis for the equilibrium statistics of the PCN
model difficult. Moreover, the thermodynamic validity of

a)Author to whom correspondence should be addressed. Electronic mail:
uneyama@scl.kyoto-u.ac.jp.

the PCN model is not guaranteed from the view point of the
statistical mechanics.

To achieve the thermal equilibrium state, the detailed bal-
ance condition is required to be satisfied. If the detailed bal-
ance condition is satisfied for a model, we can utilize the
standard statistical mechanics to analyze the model. Namely,
the equilibrium probability distribution is given by the Boltz-
mann type equilibrium distribution with the thermodynamic
potential. In the vicinity of the equilibrium state, dynamical
behaviours such as the relaxation or linear response proper-
ties can be related to the correlation functions of fluctuations
in equilibrium.11–13 The detailed balance condition is a strong
condition, and thus, it is not always satisfied in a phenomeno-
logically constructed dynamical model. Therefore, it is de-
sired to examine whether the PCN model satisfies the detailed
balance condition or not. So far, most of the previous works
for the PCN model focused on dynamical properties such
as rheological properties. As far as the authors know, the anal-
ysis of the PCN model from the view point of statistical me-
chanics has never been shown explicitly in the literatures. (It
would be fair to mention that several researchers have noticed
that the PCN model or some other slip-link models do not sat-
isfy the detailed balance condition, although it has not been
stressed in published literatures. For some slip-link models,
the statistical mechanical analysis or the modeling consistent
with the detailed balance condition have been done.14, 15)

In this work, first we attempt to interpret the dynamic
equations of the PCN model as the Langevin equations. We
show that the PCN dynamic equations do not satisfy the de-
tailed balance condition, and therefore, the PCN model does
not have the thermal equilibrium state. Then, we propose pos-
sible modifications to recover the detailed balance condition,
in a heuristic way. Even if we modify the PCN model, the
resulting thermodynamic potential (effective free energy) of
the PCN model is not identical to the free energy of the
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slip-link model without any direct interactions. In the PCN
model, there is the effective repulsive interaction between
neighboring slip-links on a polymer chain. Based on the ob-
tained effective free energy and the single chain approxima-
tion, finally we calculate several equilibrium probability dis-
tribution functions analytically. We compare analytical results
with other theories as well as PCN simulation data.

II. STATISTICAL MECHANICAL INTERPRETATION
OF PCN DYNAMIC EQUATIONS

A. PCN dynamic equations

In the PCN model,1, 2 entangled polymers are represented
as a network structure which consists of nodes (slip-linked
points and chain ends) and bonds which connect nodes. For
simplicity, we limit ourselves to monodisperse linear poly-
mer systems with the polymerization index (number of seg-
ments) being N. The state of the system is described by the
set of coarse-grained variables: positions of slip-linked nodes
and end nodes, numbers of segments between two neighbor-
ing nodes, and the connectivity information. For convenience,
we express the index of the kth node in the ith chain as (i, k).
We express the position of the (i, k) node as Ri,k , and the
number of segments between the (i, k − 1) and (i, k) nodes
as Ni, k. We also express the number of subchains in the ith
chain as Zi. The 0th and Zith nodes in the ith chain represent
chain ends, whereas other nodes represent slip-linked nodes.
A slip-linked node is assumed to be spatially coupled to the
partner node. We express this by introducing a connectivity
map for the node index, C (the (i, k) node is coupled to the
C(i, k) node). Two nodes connected by slip-links, (i, k) and
C(i, k), share the same node position

Ri,k = RC(i,k) (for all slip-linked nodes). (1)

The state of the system can be completely described by {Ri,k},
{Ni, k}, {Zi}, and C. (The information of C is not important
in the following arguments, and thus, we do not describe it
explicitly.)

In absence of external flow (deformation) field, the PCN
dynamic equations2 are described as follows: (Although there
are several different versions of the PCN model, in this work
we employ the version described in Ref. 2)

ζ
d Ri,k(t)

dt
= 3kBT

b2

∑′

j,l

Rj,l − Ri,k

Nj,l

+
√

2kBT ζw
(R)
i,k (t),

(2)

dNi,k(t)

dt
=

⎧⎪⎨
⎪⎩

−Ji,1(t) (k = 1),

−Ji,k(t) + Ji,k−1(t) (2 ≤ k ≤ Zi − 1),

Ji,Zi−1(t) (k = Zi),
(3)

ζ

2ρi,k

Ji,k(t) ≡ 3kBT

b2

[ |Ri,k+1 − Ri,k|
Ni,k+1

− |Ri,k − Ri,k−1|
Ni,k

]

+
√

kBT ζw
(N)
i,k (t), (4)

where ζ is the friction coefficient of a node, kB is the
Boltzmann constant, T is the temperature, b is the segment
size, and Ji, k(t) is the flux of the segment number on the (i, k)
node. The summation in the right-hand side of Eq. (2) is taken
for all nodes connected to the target (topological neighbor
nodes). The topological neighbor nodes are (i, k ± 1) and (i′,
k′ ± 1) (with (i′, k′) = C(i, k)) for a slip-linked node, and (i, k
+ 1) or (i, k − 1) for an end node. ρ i, k is the segment density
along the polymer chain on the (i, k) node and is defined as
the arithmetic average of local densities in two neighboring
bonds

ρi,k({Ri,k}, {Ni,k}) ≡ 1

2

[
Ni,k

|Ri,k−Ri,k−1|+
Ni,k+1

|Ri,k+1 − Ri,k|
]

.

(5)
w

(R)
i,k (t) and w

(N)
i,k (t) are Gaussian white noises which satisfy

the following relations:〈
w

(R)
i,k (t)

〉 = 0,
〈
w

(R)
i,k (t)w(R)

j,l (t ′)
〉 = δij δklδ(t − t ′)1, (6)

〈
w

(N)
i,k (t)

〉 = 0,
〈
w

(N)
i,k (t)w(N)

j,l (t ′)
〉 = δij δklδ(t − t ′), (7)

〈
w

(R)
i,k (t)w(N)

j,l (t ′)
〉 = 0, (8)

where 〈. . . 〉 means the statistical average and 1 is the unit
tensor.

We note that the (osmotic) repulsive force terms1 are
dropped in the dynamic equations (2)–(4). The repulsive force
is required only to cancel the artificial attractive interaction
in multi chain slip-link systems,16 and its contribution is not
essential in the analysis in this work. (Actually, it is empiri-
cally known that as long as the repulsion is sufficiently strong
to avoid aggregation, the PCN model shows almost the same
statistics.)

To specify the PCN dynamics completely, we also need
the network reconstruction rules. Whether the network is re-
constructed or not is determined by the number of segments
in chain end bonds. If the number of segments in a chain
end bond becomes larger than a certain criterion, a new pair
of slip-linked nodes are constructed. On the other hand, if
the number of the segments in an chain end bond becomes
smaller than another criterion, the slip-link attached to that
bond is destructed. The criteria are given as 3N0/2 and N0/2,
with N0 being the average number of segments in a bond.
Although the network reconstruction rules affect the statis-
tics rather strongly,10 how they affect the statistics is not so
clear. (It is reported that other reconstruction rules10, 17 can
improve several statistical properties.) In this work, we do not
consider about the reconstruction process and concentrate on
the dynamic equations for {Ri,k} and {Ni, k} (Eqs. (2)–(4)).

B. Detailed balance condition in the PCN model

Because the PCN model is designed as a dynamical
model, its static properties are not clear from its dynamic
equations (2)–(4). Moreover, the existence of the thermo-
dynamic potential (the free energy) is generally not guar-
anteed for such a phenomenological dynamical model. If
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Eqs. (2)–(4) satisfy the detailed balance condition, the forces
are expressed as variations of the free energy. (In the follow-
ings, we call such forms as the variational forms.) Then, we
can construct the free energy from Eqs. (2)–(4). In this sec-
tion, we attempt to interpret the PCN dynamic equations as
Langevin equations18 which satisfy the detailed balance con-
dition.

According to the standard nonequilibrium statistical
physics,13, 19, 20 dynamics of the system in the vicinity of equi-
librium can be described well by the Langevin equations. If
we assume that there is no dynamic coupling between {Ri,k}
and {Ni, k}, nor the memory effect, the detailed-balanced
Langevin equations can formally be described as follows:

d Ri,k(t)

dt
= −

∑
j,l

L(R)
i,k;j,l · ∂Feff({Ri,k}, {Ni,k}, {Zi})

∂ Rj,l

+ kBT
∑
j,l

∂

∂ Rj,l

· L(R)
i,k;j,l + ξ

(R)
i,k (t), (9)

dNi,k(t)

dt
= −

∑
j,l

L
(N)
i,k;j,l

∂Feff({Ri,k}, {Ni,k}, {Zi})
∂Nj,l

+ kBT
∑
j,l

∂L
(N)
i,k;j,l

∂Nj,l

+ ξ
(N)
i,k (t). (10)

Here L(R)
i,k;j,l and L

(N)
i,k;j,l are the mobility matrices, which may

depend on stochastic variables such as {Ri,k} or {Ni, k}. (From
Onsager’s reciprocal relation, these mobility matrices are
symmetric.) Feff({Ri,k}, {Ni,k}, {Zi}) is the effective free en-
ergy of the system, and the (generalized) forces are expressed
as the derivatives of Feff. ξ

(R)
i,k (t) and ξ

(N)
i,k (t) are the Gaussian

random noises which satisfy the the fluctuation-dissipation re-
lations of the second kind. They can be expressed as follows,
by using Gaussian white noises wR

i,k(t) and w
(N)
i,k (t) (their sta-

tistical moments are given by Eqs. (6)–(8)):

ξ
(R)
i,k (t) = √

2kBT
∑
j,l

B(R)
i,k;j,l · w

(R)
j,l (t),

ξ
(N)
i,k (t) = √

2kBT
∑
j,l

B
(N)
i,k;j,lw

(N)
j,l (t),

(11)

∑
m,n

B(R)
i,k;m,n · [

B(R)
j,l;m,n

]T = L(R)
i,k;j,l ,

∑
m,n

B
(N)
i,k;m,nB

(N)
j,l;m,n = L

(N)
i,k;j,l ,

(12)

where BT represents the transposed matrix of B. In
Eqs. (9) and (10), the stochastic terms are interpreted follow-
ing the Ito calculus.18 The second terms in the right-hand
sides of Eqs. (9) and (10) are spurious (noise-induced) drift
terms, which are required to satisfy the detailed balance con-
dition (for the Ito form Langevin equations). The dynamics
described by Eqs. (9) and (10) is guaranteed to reach the equi-
librium state, of which statistics is simply determined by the
effective free energy Feff.

The PCN dynamic equation for {Ri,k} (Eq. (2)) seems to
be similar to the Langevin equation (9). Actually, it is straight-
forward to show that Eq. (2) can be reduced to Eq. (9) by

setting

L(R)
i,k;j,l = 1

ζ
δij δkl1, (13)

ξ
(R)
i,k =

√
2kBT

ζ
w

(R)
i,k (t), (14)

Feff({Ri,k}, {Ni,k}, {Zi}) = Feff,0({Ri,k}, {Ni,k}, {Zi})
+Feff,1({Ni,k}, {Zi}), (15)

Feff,0({Ri,k}, {Ni,k}, {Zi}) ≡ 3kBT

2b2

∑
i

Zi∑
k=1

(Ri,k − Ri,k−1)2

Ni,k

.

(16)
Here Feff,0({Ri,k}, {Ni,k}, {Zi}) is the free energy for ideal lin-
ear springs, and Feff,1({Ni,k}, {Zi}) is the remaining contribu-
tion to the free energy which is independent of {Ri,k}.

On the other hand, the PCN dynamic equation for {Ni, k}
(Eq. (3) together with Eq. (4)) is different from the standard
Langevin equation (10). The segment number flux in the PCN
dynamic equation (Eq. (4)) can be rewritten as follows:

Ji,k(t) = Mi,k

3kBT

ρi,kb2

[ |Ri,k+1 − Ri,k|
Ni,k+1

− |Ri,k − Ri,k−1|
Ni,k

]

+√
2kBT Mi,kwi,k(t), (17)

where we defined Mi, k as

Mi,k({Ri,k}, {Ni,k}) ≡ 2ρ2
i,k({Ri,k}, {Ni,k})

ζ
. (18)

Substituting Eq. (17) into Eq. (3), we have the following ex-
pression for the dynamic equation: (For simplicity, we con-
sider the case of 2 ≤ k ≤ Zi − 1 in Eq. (3). The generalization
to k = 1, Zi is straightforward.)

dNi,k(t)

dt
=−Mi,k

3kBT

ρi,kb2

[ |Ri,k+1−Ri,k|
Ni,k+1

−|Ri,k−Ri,k−1|
Ni,k

]

+Mi,k−1
3kBT

ρi,k−1b2

[|Ri,k−Ri,k−1|
Ni,k

−|Ri,k−1−Ri,k−2|
Ni,k−1

]

−√
2kBT Mi,kwi,k(t) + √

2kBT Mi,k−1wi,k−1(t).

(19)

Comparing the stochastic terms in Eqs. (19) and (10), we find
that the mobility matrix L

(N)
i,k;j,l can be expressed by using Mi, k

as

L
(N)
i,k;j,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mi,k + Mi,k−1 (i = j, l = k),

−Mi,k−1 (i = j, l = k − 1),

−Mi,k (i = j, l = k + 1),

0 (otherwise).

(20)

We also find that the deterministic terms in Eq. (19) cannot
be reduced to the variational form in Eq. (10). Namely, the
PCN model does not satisfy the detailed balance condition,
and thus, it does not have the thermal equilibrium state. The
steady state in the PCN model (in absence of external flow
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field) corresponds to a nonequilibrium steady state, where the
energy input and the energy dissipation is balanced.20

Nevertheless, PCN simulations by the original dynamic
equations can reproduce some equilibrium properties of en-
tangled polymers reasonably.10 This implies that, although
the PCN model is not detailed-balanced and does not have
the equilibrium state, it works as a good approximation of a
statistical mechanically sound, detailed-balanced dynamical
model. Keeping this in mind, we consider to remedy the PCN
model to satisfy the detailed balance condition in a heuris-
tic way. From Eqs. (19) and (10), the variational form for the
force can be realized, if the following relation holds:

3kBT

ρi,kb2

[ |Ri,k − Ri,k−1|
Ni,k

− |Ri,k+1 − Ri,k|
Ni,k+1

]

=
(

∂

∂Ni,k+1
− ∂

∂Ni,k

)
Feff({Ri,k}, {Ni,k}, {Zi}).

(21)

Clearly, Eq. (21) does not hold, if we use Eq. (5) as the def-
inition of ρ i, k. Conversely, if we do not use Eq. (5) as the
definition of ρ i, k, it becomes possible to satisfy Eq. (21). Be-
sides, there is no special reason to employ the arithmetic aver-
age form for ρ i, k. (Different models, such as a constant value
model, were also proposed and utilized.1) Thus, here we de-
fine the segment density along the chain ρ i, k to recover the
variational form

ρi,k({Ri,k}, {Ni,k}) ≡ 2

[ |Ri,k+1−Ri,k|
Ni,k+1

+|Ri,k − Ri,k−1|
Ni,k

]−1

.

(22)

The right-hand side of Eq. (22) is the harmonic average of
Ni,k+1/|Ri,k+1 − Ri,k| and Ni,k/|Ri,k − Ri,k−1|, whereas the
right-hand side of Eq. (5) is the arithmetic average of them.
By using the new definition (22), it is straightforward to show
that the condition (21) is satisfied and Feff,1 = 0.

Now the PCN dynamic equation for {Ni, k} (Eq. (19)) can
be rewritten as follows:

dNi,k(t)

dt
= −

∑
j,l

L
(N)
i,k;j,l

∂Feff,0({Ri,k}, {Ni,k}, {Zi})
∂Nj,l

+ ξ
(N)
i,k (t)

(23)
with

ξ
(N)
i,k (t) = −√

2kBT Mi,kw
(N)
i,k (t) + √

2kBT Mi,k−1w
(N)
i,k−1(t).

(24)
Although Eq. (23) is similar to Eq. (10), the spurious drift
term (the second term in the right-hand side of Eq. (10)) is
missing in Eq. (23). Therefore, in addition to employ a new
definition of ρ i, k (Eq. (22)), we add the spurious drift term
to the segment number flux equation (Eq. (4)). We modify the
definition for the segment flux (Eq. (4)) as

ζ

2ρi,k

Ji,k(t) ≡ 3kBT

b2

[ |Ri,k+1 − Ri,k|
Ni,k+1

− |Ri,k − Ri,k−1|
Ni,k

]

+ v
(N)
i,k +

√
kBT ζw

(N)
i,k (t), (25)

where v
(N)
i,k is the spurious drift velocity defined as

v
(N)
i,k ≡ 2kBT

(
∂

∂Ni,k+1
− ∂

∂Ni,k

)
ρi,k

= 4kBT
N2

i,k|Ri,k+1 − Ri,k| − N2
i,k+1|Ri,k − Ri,k−1|

(Ni,k|Ri,k+1 − Ri,k| + Ni,k+1|Ri,k − Ri,k−1|)2
.

(26)

The modified PCN dynamic equation for {Ni, k} (Eq. (3) to-
gether with Eqs. (22), (25), and (26)) reduces to Eq. (10).
Thus, the modified PCN dynamic equations satisfy the de-
tailed balance condition. It should be emphasized here that
the noise term in Eq. (10) is the multiplicative noise because
L

(N)
i,k;j,l depends on {Ni, k} (through Mi, k and ρ i, k). Although

the spurious drift term may not be intuitive, it naturally arises
as a property of the multiplicative noise,13, 21 and is required
to satisfy the detailed balance condition.

Before we proceed to detailed analysis, here we shortly
comment on the relation of our model to the GENERIC
framework in the nonequilibrium thermodynamics.22, 23 In our
modified PCN dynamic equations, the thermodynamic forces
are coupled to the symmetric mobility matrices. Such dy-
namic equations can straightforwardly be mapped onto the
GENERIC framework. The mobility matrices and the effec-
tive free energy in our model correspond to the friction ma-
trices and the entropy (with negative sign), respectively. They
form the irreversible, dissipative bracket parts. The reversible,
Poisson bracket parts do not exist in the modified PCN dy-
namic equations. Most of important properties in the nonequi-
librium thermodynamics, such as the positivity of the entropy
production, are automatically reproduced in the modified
PCN dynamic equations. (Notice that, however, this does not
mean that the modified PCN model is fully consistent with the
GENERIC framework and the nonequilibrium thermodynam-
ics. The repulsive interaction or the network reconstruction
process may be inconsistent with them.)

C. Effective free energy

The modified PCN dynamic equations introduced in
Sec. II B reduces to the detailed-balanced Langevin equation.
The equilibrium state of the modified PCN model is deter-
mined by the effective free energy Feff. The effective free en-
ergy of the modified PCN model can simply be expressed as

Feff({Ri,k}, {Ni,k}, {Zi}) = Feff,0({Ri,k}, {Ni,k}, {Zi})

= 3kBT

2b2

∑
i

Zi∑
k=1

(Ri,k − Ri,k−1)2

Ni,k

.

(27)

Notice that the effective free energy (27) is different from the
free energy of the ideal Gaussian chains. The free energy of
the Gaussian chains is expressed as

F0({Ri,k}, {Ni,k}, {Zi}) ≡ 3kBT

2b2

∑
i

Zi∑
k=1

(Rk − Rk−1)2

Nk

+ 3kBT

2

∑
i

Zi∑
k=1

ln Nk. (28)
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Comparing Eqs. (27) and (28), we find that the logarithm term
is missing in the PCN effective free energy.

We can rewrite the PCN effective free energy (Eq. (27))
as follows, by using the free energy of Gaussian chains (Eq.
(28))

Feff({Ri,k}, {Ni,k}, {Zi}) = F0({Ri,k}, {Ni,k}, {Zi})

+
∑

i

Zi∑
k=1

Ũslip-link(Nk), (29)

Ũslip-link(n) ≡ −3kBT

2
ln n. (30)

Here Ũslip-link(n) represents the effective interaction between
neighboring slip-links. (Strictly speaking, Ũslip-link also rep-
resents the effective interaction potential between a slip-link
and a chain end. In the following, we assume that the interac-
tion potentials between the slip-links and between a slip-link
and a chain end are always the same.) We note that Ũslip-link(n)
depends only on the number of segments between slip-links.
This means that the effective interaction between slip-links is
determined by the chemical distance, not by the spatial dis-
tance. Equation (30) is monotonically decreasing function of
n, and thus, the interaction between slip-links is purely repul-
sive. In addition, the effective potential diverges at the limit
of n → 0, and thus, slip-links strongly repel each other at the
short range (at the short chemical distance).

The second term in the right-hand side of Eq. (29) can
be interpreted as the total repulsive interaction energy of slip-
links. In this sense, we can say that the PCN model is based on
the Gaussian chain and repulsive slip-links. It is worth men-
tioning that such an effective repulsion between slip-links is
already suggested by the CReTA primitive path extraction for
Monte Carlo simulation data.9

III. EQUILIBRIUM PROBABILITY DISTRIBUTIONS
BY SINGLE CHAIN APPROXIMATION

A. Single chain approximation

In Sec. II the effective free energy for the modified PCN
model (Eq. (27)) is shown to be different from the free energy
for the Gaussian chains (Eq. (28)) due to the repulsive inter-
action between slip-links. This means that several equilibrium
statistical properties of the PCN model are qualitatively dif-
ferent from the ones of the Gaussian chains with slip-links
without any direct interactions. However, unfortunately, we
cannot calculate the equilibrium statistics of PCN analytically
from the effective free energy. (It is practically impossible to
calculate the statistical weight for strongly slip-linked multi
chain systems.) In this section, we calculate the equilibrium
statistical properties by using the mean field type single chain
approximation. (We notice that it is not clear whether the sin-
gle chain approximation employed in this work is really rea-
sonable for the PCN model or not. We employ the simplest
approximation to make the expressions simple and analyti-
cally tractable.)

Schieber24 proposed a single chain model with slip-links
in which slip-links behave as a sort of grand canonical gas
particles on a polymer chain. In his model, the number of
slip-linked subchains is controlled by the effective chemical
potential. There is no direct interaction between the slip-links,
and the polymer chain obeys the Gaussian statistics. Namely,
slip-links are placed on the target polymer chain and they do
not directly interact with each other via a potential (this model
corresponds to a sort of ideal model). In this work, we call his
model as “the single chain non-interacting slip-link model”
or simply as “the non-interacting slip-link model.” (The ex-
pression “non-interacting” may sound somehow un-natural
because the slip-links constrain the polymer chain and this
constraint effect can be interpreted as a sort of interaction.
Nonetheless, in this work we employ this expression because
in the followings we consider another model in which slip-
links directly “interact” with each other.) The statistics of the
single chain non-interacting slip-link model is briefly summa-
rized in Appendix A.

Here, we follow Schieber’s idea and consider the single
chain version of the modified PCN model. We may call this
as “the single chain repulsive slip-link model” or “the repul-
sive slip-link model” in the followings. This is because in our
model, neighboring slip-links interact each other via the re-
pulsive potential (Eq. (30)). In the single chain repulsive slip-
link model, the state of the system is expressed by the node
positions {Rk} (k represents the kth segment on the chain),
the numbers of segments {Nk}, and the number of subchains
Z. (Under the mean field type single chain approximation, the
connectivity map is not required.)

The effective free energy for a single Gaussian chain with
repulsive slip-links can be expressed as the single chain ver-
sion of Eq. (27),

Feff({Rk}, {Nk}, Z) = 3kBT

2b2

Z∑
k=1

(Rk − Rk−1)2

Nk

. (31)

Introducing the effective chemical potential for subchains,
ε, we define the following effective grand potential (grand
canonical thermodynamic potential) for the repulsive slip-link
model:

Jeff({Rk}, {Nk}, Z) ≡ Feff({Rk}, {Nk}, Z) − εZ. (32)

The effective chemical potential ε is determined from the fol-
lowing condition for the equilibrium average number of sub-
chains:

〈Z〉eq ≡ Z0 = N

N0
, (33)

where 〈. . .〉eq represents the equilibrium statistical average
calculated by the equilibrium probability distribution. Here,
N is the number of segments in a chain and N0 corre-
sponds to the equilibrium average number of segments in a
subchain.

All the equilibrium statistical properties can be calcu-
lated by the effective grand potential (Eq. (32)). The equilib-
rium statistical probability distribution is given as the standard
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Boltzmann distribution,

Peq({Rk}, {Nk}, Z) = 1

�	3(Z+1)NZ−1
δ

(
N −

Z∑
k=1

Nk

)

× exp

[
−Jeff({Rk}, {Nk}, Z)

kBT

]
,

(34)

where 	 is the thermal de Broglie wavelength and � is the
grand partition function. (The subscript “eq” in Eq. (34) refers
to the equilibrium state.) The thermal de Broglie wavelength
was introduced to make the grand partition function dimen-
sionless. The delta function in Eq. (34) comes from the con-
straint that the total number of segments in a chain is constant.
The grand partition function � is defined as

� ≡
∞∑

Z=1

1

	3(Z+1)NZ−1

∫
d{Rk}d{Nk} δ

(
N −

Z∑
k=1

Nk

)

× exp

[
−Jeff({Rk}, {Nk}, Z)

kBT

]
. (35)

Here, we introduced the shorthand notation for the integrals
over {Rk} and {Nk},

∫
d{Rk}d{Nk} ≡

Z∏
k=0

∫
d Rk

Z∏
k=1

∫ N

0
dNk. (36)

By calculating the integrals over {Rk}, Eq. (35) becomes
as follows:

� = V
	3

∞∑
Z=1

[ (
2πNb2

3	2

)3/2

eε/kBT

]Z 1

N5Z/2−1

×
∫

d{Nk} δ

(
N −

Z∑
k=1

Nk

) Z∏
k=1

N
3/2
k , (37)

where V is the volume of the system. The integrals over {Nk}
in Eq. (37) can analytically be calculated as

1

N5Z/2−1

∫
d{Nk} δ

(
N −

Z∑
k=1

Nk

) Z∏
k=1

N
3/2
k = (3

√
π/4)Z

�(5Z/2)
,

(38)
where �(x) is the gamma function.25 The detailed calculation
is described in Appendix B 1. By substituting Eq. (38) into
Eq. (37), finally we have the following expression:

� = V
	3

∞∑
Z=1

1

�(5Z/2)

[
3π2

4

(
2Nb2

3	2

)3/2

eε/kBT

]Z

= V
	3

ξE5/2,5/2(ξ ). (39)

Here, we defined the dimensionless effective fugacity ξ as

ξ ≡ 3π2

4

(
2Nb2

3	2

)3/2

eε/kBT . (40)

ξ is determined to satisfy the condition for 〈Z〉eq (Eq. (33)).
Eα, β(x) in the last line of Eq. (39) is the (generalized) Mittag-

Leffler function26 defined as

Eα,β(x) ≡
∞∑

n=0

xn

�(αn + β)
. (41)

Unfortunately, the Mittag-Leffler function is not easy to han-
dle. Therefore, in Secs. III C–III E, we derive simple and ap-
proximate expressions rather than exact expressions.

B. Slip-linked subchain number distribution

First, we calculate the slip-linked subchain number dis-
tribution. The distribution function of the subchain number Z
can be expressed as follows:

Peq(Z) =
∫

d{Rk}d{Nk} Peq({Rk}, {Nk}, Z). (42)

By integrating Eq. (42) over {Rk} and {Nk}, we have the fol-
lowing expression:

Peq(Z) = ξZ−1

�(5Z/2)E5/2,5/2(ξ )
. (43)

Equation (43) cannot be expressed by elementary functions.
This is in contrast to the non-interacting slip-link model, of
which subchain number distribution is simply given as a Pois-
son distribution (Eq. (A7) in Appendix A).

We can utilize the saddle point approximation to obtain a
simple approximate form for Eq. (43) (see Appendix C 1),

Peq(Z) ≈
√

5Z0 + 1

4πZ2
0

exp

[
−5Z0 + 1

4Z2
0

(Z − Z0)2

]
. (44)

Figure 1 shows the subchain number distribution functions
for various values of Z0 by Eq. (43) (exact) and Eq. (44)
(approximation). For comparison, the distribution function of
the non-interaction slip-link model (Eq. (A7) in Appendix A)
is also shown in Figure 1. We find that the approximate form
(Eq. (44)) works very well even for relatively small Z0 such
as Z0 = 5.
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FIG. 1. The slip-linked subchain number distribution functions with various
values of Z0. Solid and dashed curves show the exact and approximate distri-
bution functions for the single chain repulsive slip-link model, respectively.
The dotted curves show the Poisson distribution which corresponds to the dis-
tribution of the single chain non-interacting slip-link model. Z0 = 5, 10, 20,
40, and 80 from left to right. The approximate distributions almost coincide
with the exact distributions.
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FIG. 2. Dependence of the variance of slip-linked subchain number
〈(Z − Z0)2〉eq on the average 〈Z〉eq = Z0. The solid and dashed curves show
the exact and approximate variances for the repulsive slip-link model, and
the dotted curve shows the variance for the non-interacting slip-link model
(〈(Z − Z0)2〉eq = Z0 − 1). The approximate curve is very close to the exact
curve.

The relation between the average and variance of Z is
easily obtained from Eq. (44),

〈(Z − Z0)2〉eq ≈ 2Z2
0

5Z0 + 1
≈ 2

5
Z0 (for Z0 � 1). (45)

Figure 2 shows the relation between 〈Z〉eq = Z0 and
〈(Z − Z0)2〉eq, calculated by the exact and approximate
forms. Again, we find that the approximate form (Eq. (44))
works well even for relatively small Z0. For sufficiently large
Z0, we find that the variance of the repulsive slip-link model
is smaller than the one for non-interacting slip-link model by
the factor 2/5 (see Eq. (A8) in Appendix A). The distribution
of Z of the repulsive slip-link model is sharper than the one of
the non-interacting slip-link model, as shown in Figure 1.

C. Segment number distribution

Second, we calculate the distribution function of the seg-
ment number in a subchain. We express the number of seg-
ments as n. The segment number distribution function Peq(n)
is expressed as follows:

Peq(n) =
∞∑

Z=1

∫
d{Rk}d{Nk}

×
[

1

Z

Z∑
l=1

δ(n − Nl)

]
Peq({Rk}, {Nk}, Z).

(46)

By calculating the integrals over {Rk} in Eq. (46), we have

Peq(n) = V
�	3N

∞∑
Z=1

ξZ

N5Z/2−2

∫
d{Nk}

[
1

Z

Z∑
l=1

δ(n − Nl)

]

× δ

(
N −

Z∑
k=1

Nk

) Z∏
k=1

N
3/2
k . (47)

Integrals over {Nk} in Eq. (47) can be calculated analytically.
For Z ≥ 2, we have

1

N5Z/2−2

∫
d{Nk}

[
1

Z

Z∑
l=1

δ(n−Nl)

]
δ

(
N−

Z∑
k=1

Nk

) Z∏
k=1

N
3/2
k

=
( n

N

)3/2 (
1 − n

N

)5(Z−1)/2−1 (3
√

π/4)Z−1

�(5(Z − 1)/2)
(48)

(see Appendix B 1), and for Z = 1 we have

1

N1/2

∫ N

0
dN1 δ(n − N1)δ(N − N1)N3/2

1 = δ
( n

N
− 1

)
.

(49)
Thus, Eq. (47) can be rewritten as follows:

Peq(n) = 4

3
√

πNE5/2,5/2(ξ )

[
δ
( n

N
− 1

)
+

∞∑
Z=2

( n

N

)3/2

×
(

1 − n

N

)5(Z−1)/2−1 ξZ−1

�(5(Z − 1)/2)

]
. (50)

As before, we can obtain a simple approximate expres-
sion by using the saddle point approximation. (See Appendix
C 2.) For sufficiently large Z0, Eq. (48) is approximated as

Peq(n) ≈ 25

6

√
10

π

n3/2

N
5/2
0

exp

(
− 5n

2N0

)
. (51)

Equation (51) is qualitatively different from one of the single
chain non-interacting slip-link model (Eq. (A12) in Appendix
A). Figure 3 shows the segment number distribution functions
for repulsive and non-interacting slip-link models, for suffi-
ciently large Z0. The distribution functions are normalized to
satisfy the following normalization condition:∫ ∞

0
d(n/N0) Peq(n/N0) = 1. (52)

We can observe differences between two models clearly. The
difference is especially large for small n. Equation (51) is not
a monotonically decreasing function and it has a maximum
at n/N0 = 3/5. Also, Eq. (51) approaches to 0 at the limit of
n → 0, while the distribution function of the non-interacting
slip-link model approaches to a non-zero constant. Intuitively,
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FIG. 3. The segment number distribution functions for sufficiently large Z0.
Solid and dotted curves show the distribution functions for the repulsive and
non-interacting slip-link models, respectively.
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this can be understood as the effect of the strong short-range
repulsion between the two neighboring slip-links.

D. Bond vector and bond length distributions

Finally, we calculate the distribution functions for the
bond vector and bond length. Here, we define the bond vec-
tor as the vector which connects the two successive slip-links
(or pair of a slip-link and a chain end) on the same chain. If
we express the bond vector as Q, the bond vector distribution
function Peq( Q) is expressed as follows:

Peq( Q) =
∞∑

Z=1

∫
d{Rk}d{Nk}

×
[

1

Z

Z∑
l=1

δ( Q − Rl + Rl−1)

]
Peq({Rk}, {Nk}, Z).

(53)

Equation (53) can be modified as follows:

Peq( Q) = V
�	3

(
3

2πb2

)3/2 1

N

∫ N

0
dn

(
N

n

)3/2

e−3 Q2/2nb2

×
∞∑

Z=1

ξZ

N5Z/2−2

∫
d{Nk}

Z∏
k=1

N
3/2
k

×
[

1

Z

Z∑
l=1

δ(n − Nl)

]
δ

(
N −

Z∑
k=1

Nk

)
. (54)

The integrals over {Nk} can be calculated in the same way as
the case of the segment number distribution function. Then,
we have

Peq( Q) =
(

3

2πb2

)3/2 ∫ N

0
dn

1

n3/2
e−3 Q2/2nb2

Peq(n).

(55)
For sufficiently large Z0, the bond vector distribution function
can be approximately expressed as follows, by using Eq. (51):

Peq( Q) ≈ 25

6

√
10

π

(
3

2πN0b2

)3/2 1

N0

×
∫ ∞

0
dn exp

(
− 3 Q2

2nb2
− 5n

2N0

)

= 75

2π2

| Q|
N2

0 b4
K1

(√
15

N0b2
| Q|

)
, (56)

where K1(x) is the first-order modified Bessel function of
the second kind.25 (The detailed calculation is described in
Appendix B 2.) From Eq. (56), the bond length distribution
function (the bond length Q is defined as Q ≡ | Q|) becomes

Peq(Q) = 4πQ2Peq( Q) ≈ 150

π

Q3

N2
0 b4

K1

(√
15

N0b2
Q

)
.

(57)
From Eq. (57), we find that the form of the bond length distri-
bution function is also different from one of the single chain
non-interacting slip-link model (Eq. (A15) in Appendix A).
Figure 4 shows the bond length distribution functions for re-
pulsive and non-interacting slip-link models, for sufficiently
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FIG. 4. The bond length distribution functions for sufficiently large Z0. Solid
and dotted curves show the distribution functions for the repulsive and non-
interacting slip-link models, respectively.

large Z0. The distribution functions are normalized to satisfy
the following normalization condition:∫ ∞

0
d(Q/

√
N0b2) Peq(Q/

√
N0b2) = 1. (58)

For small Q, the asymptotic form of Eq. (57) becomes

Peq(Q) ≈ 10
√

15

π

Q2

N
3/2
0 b3

∝ Q2 (for Q �
√

N0b2).

(59)
This dependence of the asymptotic form on Q is differ-
ent from the one for the non-interacting slip-link model
(Peq(Q) ∝ Q). The difference between two distributions is
especially large for small Q. This trend is similar to the
difference between the segment number distribution func-
tions. The position of the maximum of Eq. (57) is Q/

√
N0b2

≈ 0.616, whereas it is Q/
√

N0b2 = 1/
√

6 ≈ 0.408 for the
non-interacting slip-link model. As before, these properties
can be understood as the effect of the strong short-range re-
pulsion between slip-links.

E. Comparison with PCN simulations

The distribution functions obtained in preceding subsec-
tions (Secs. III B–III D) are based on the single subchain
approximation. However, the validity of the single chain ap-
proximation is not guaranteed for the PCN model. In this sub-
section, we perform PCN simulations with original and mod-
ified dynamic equations and directly calculate the distribution
functions.

The simulations are performed for linear monodisperse
polymers with Z0 = 5, 10, 20, and 40. The osmotic terms
to prevent aggregation of slip-links2, 10 are added to Eqs. (2),
(4), and (17). The network reconstruction is used to realize
the steady state (that is the equilibrium state for the modi-
fied model). The employed rule was NR1 in Ref. 10 (which
is briefly explained in Sec. II A). The unit cell dimension for
periodic boundary condition is 12

√
N0b2 and the total bond

number in the cell is ∼10 × 123. The distribution functions
are obtained for 10 independent simulations and the averages
are reported here for noise reduction purposes.
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FIG. 5. The slip-linked subchain number distribution functions by single
chain models and PCN simulations. Curves are theoretical predictions by
single chain models and symbols are simulation data. Z0 = 5, 10, 20, and
40 from left to right.

Figure 5 shows the comparison of the subchain number
distribution functions Peq(Z) calculated by the single chain
models and the PCN simulations. As shown in Figure 5, the
data of the modified PCN model agree well with the repulsive
slip-link model. The original PCN model gives a subchain
number distribution function which is broader than the repul-
sive slip-link model but still sharper than the non-interacting
slip-link model. Considering the roughness of the single chain
approximation, the agreement between the modified PCN
model and the repulsive slip-link model is rather surprising.
The CReTA primitive path extraction by Tzoumanekas and
Theodorou9 also shows subchain number distributions which
are sharper than the Poissonian, but still broader than Eq. (44).
Thus, these models will be in between the non-interacting
slip-link model and the repulsive slip-link model (if we as-
sume that the repulsive interaction between slip-links is the
main reason which causes non-Poissonian distribution).

Figure 6 shows the comparisons of the segment number
distribution functions Peq(n) for Z0 = 40. (The sharp peaks
of Peq(n) by the PCN simulations around n/N0 = 0.1 are the
artifacts due to the cutoff of the segment number.10 In the fol-
lowings, we neglect these artificial peaks.) Unlike the case
of the subchain number distribution, we can observe the de-
viation of the modified PCN model data from the repulsive
slip-link model. As shown in Figure 6, the segment number
distribution function of the modified PCN model is somehow
shifted to large n region. However, the asymptotic behavior
of the modified PCN model at small n is consistent with the
repulsive slip-link model (Peq(n) ∝ n3/2). The original PCN
model gives the distribution between the non-interacting and
the repulsive slip-link models. This seems to be qualitatively
similar to the case of the subchain number distribution. Here
it is worth mentioning that the CReTA primitive path extrac-
tion data9 gives the qualitatively similar asymptotic behavior,
P(n) → 0 at n → 0, to the modified PCN model and the re-
pulsive slip-link model. We will discuss the segment number
distribution functions later in detail (Sec. IV B).

Figure 7 shows the bond length distribution functions
Peq(Q) for Z0 = 40. We can find the bond length distribu-
tion function of the modified PCN model deviates from the
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FIG. 6. The segment number distribution functions calculated by single
chain models and PCN simulations (for Z0 = 40). Curves and symbols rep-
resent the results by single chain models and PCN simulations, respectively.

repulsive slip-link model. This result is physically natural be-
cause the bond length distribution function and the segment
number distribution function are expected to be related each
other. In the single chain model, actually their relation is sim-
ply expressed by Eq. (55). The bond length distribution func-
tion of the modified PCN model is slightly shifted to large Q
region. The asymptotic behavior of the modified PCN model
at small Q is also consistent with the repulsive slip-link model
(Peq(Q) ∝ Q2). The original PCN model data are again be-
tween the non-interacting and repulsive slip-link models.

We can observe that both the original and modified PCN
simulation data have relatively large probability for large Q.
This implies that subchains in the system are stretched com-
pared with the ideal Gaussian subchains. This would be be-
cause chains are required to form a connected, tetra-functional
network structure in the PCN model. (In the PCN model,
a slip-link spatially binds two chains, and the bound chains
will be somehow stretched.) This can be interpreted as a
result of the interchain force-balance condition imposed in
the PCN model (this condition is automatically imposed by
Eqs. (1) and (2)). The possible chain conformations are lim-
ited compared with the single chain model, where no such
constraint exists. As a result, the bond length distribution
function becomes broader and deviates from the distribution
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FIG. 7. The bond length distribution functions calculated by single chain
models and PCN simulations (for Z0 = 40). Curves and symbols represent
the results by single chain models and PCN simulations, respectively.
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function in the single chain model. This is qualitatively con-
sistent with the simulation result. Also, the segment number
distribution would shift to large segment number direction,
which is again qualitatively consistent with the simulation re-
sult. Therefore, we expect the constraint for chains to be the
origin of the deviation of Peq(Q). The origin of the deviation
of Peq(n) will also be the same.

In the single chain model, effects of the surrounding
chains are expressed only by the effective chemical potential
ε. Such a rough approximation would not be fully applicable
to describe the statistics of slip-linked multi chains. The effec-
tive chemical potential controls only the number of slip-linked
subchains, and the statistics of bond vectors or segment num-
bers are determined only by the effective free energy. If inter-
actions between the target chain and the surrounding chains
are not simple and cannot be described by a single parameter
ε, the single chain model cannot reproduce the PCN simula-
tion results. To analyze the statistical properties of the PCN
model theoretically, therefore, we will need to improve the
single chain approximation to take account of the effects of
surrounding chains. For example, some sort of spatial corre-
lation effect may be took into account to the model, by using
the connectivity information (such as the connectivity map C
in the PCN model). Several radial distribution functions of
nodes are obtained by the CReTA primitive path extraction.9

Kindt and Briels21 modeled that the average number of entan-
glements between two chains as a function of the distance
between centers of mass of chains for their highly coarse-
grained single particle model of entangled polymers. If we
use the connectivity information and reproduce these spatial
correlations, several statistical properties may be improved.
Of course, there are other possible factors which affect the sta-
tistical properties of the PCN model. (As we mentioned, the
network reconstruction rule10 affects several statistical prop-
erties of the PCN model. Recent simulation results show that
the spatial correlation between nodes is somewhat affected
by the form of the interaction potential between nodes, al-
though rheological properties are almost unchanged.27 Such
a local structural change may affect the distribution functions
to some extent. If we directly control the spatial correlations
of slip-links by controlling the reconstruction rules and the
connectivity information, the distribution functions will be
affected.)

IV. DISCUSSION

A. Detailed balance condition and effective
free energy

As shown in Sec. II B, the PCN dynamic equations can
be reduced to the detailed-balanced Langevin equations with
two modifications. It is rather surprising that simple modifi-
cations can reproduce rather complicated, detailed-balanced
Langevin equations. The modified (detailed-balanced) ver-
sion of the PCN model can reproduce several probability dis-
tribution functions which are qualitatively similar to the ones
predicted by the single chain repulsive slip-link model.

Here, we consider the original PCN dynamic equation
for {Ni, k} (Eqs. (3) and (4)) again. The fact that we only need

relatively minor modifications for the original PCN dynam-
ics equations implies that the original PCN dynamics itself is
already a reasonable approximation for a statistical mechan-
ically sound model. Actually, we can show that the original
PCN model approximately satisfies the detailed balance con-
dition under a certain condition. We consider the most proba-
ble value of Ni, k under a given {Ri,k} and Zi. The most proba-
ble state {N̄i,k} minimizes the effective free energy (Eq. (27)).
N̄i,k is simply given as

N̄i,k = ρ̄i |Ri,k − Ri,k−1|, (60)

where ρ̄i is the most probable value of the monomer den-
sity along the chain on the ith chain (ρ̄i,k is independent of
k, and thus, we simply describe it as ρ̄i). If the deviation of
Ni, k from the most probable value is small, we can rewrite
Ni, k as Ni,k = N̄i,k + δNi,k and expand the free energy or the
dynamic equation into power series of {δNi, k}. Expanding
Eqs. (25), (22), and (27) into power series and retaining only
the leading order terms, we have

Feff({Ri,k}, {Ni,k}, {Zi})

≈ 3kBT

2b2

∑
i

Zi∑
k=1

[
(Ri,k − Ri,k−1)2

N̄i,k

+ δN2
i,k

ρ̄2
i N̄i,k

]
, (61)

ρi,k({Ri,k}, {Ni,k}) ≈ ρ̄i , (62)

Ji,k(t)≈ 2ρ̄2
i

ζ

3kBT

b2

[
δNi,k

ρ̄2
i N̄i,k

− δNi,k+1

ρ̄2
i N̄i,k+1

]
+

√
4ρ̄2

i kBT

ζ
w

(N)
i,k (t).

(63)
The original PCN model, Eqs. (4) and (5) also reduce to
Eqs. (62) and (63), respectively. Therefore, the original PCN
model satisfies the detailed balance condition, if {Ni, k} is in
the vicinity of the most probable state {N̄i,k}. (Intuitively, this
is because the segment density ρ i, k is not sensitive to the
node index k in the vicinity of the most probable state. The
harmonic and arithmetic averages are almost the same and
the spurious drift velocity is negligibly small, under this con-
dition.) Unfortunately, this condition is not always satisfied
even in equilibrium, because δNi, k is generally not negligibly
small due to the thermal fluctuation. Nevertheless, the proba-
bility that {Ni, k} is close to {N̄i,k} is expected not to be small.
Thus, we consider that the analysis performed here qualita-
tively explains why the original PCN model works as a good
approximation.

The new definition for the segment density ρ i, k (Eq. (22))
proposed in this work is expressed as the harmonic average
of the local densities in two neighboring bonds. Although this
form is not intuitive, from the view point of the discretiza-
tion scheme, it is not unreasonable. The PCN dynamic equa-
tion for {Ni, k} (Eqs. (3) and (4)) is interpreted as the stochas-
tic diffusion equation on one-dimensional discrete lattice. At
the continuum limit, the PCN dynamic equation will reduce
to the stochastic partial differential equation28 which con-
tains the multiplicative noise. To discretize the multiplicative
noises appear in the stochastic partial differential equations,
non-arithmetic averages are sometimes preferred than the
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simple arithmetic average. For example, the multiplicative
noise in the dynamic density functional equation can accu-
rately be discretized with the geometric average form.29 (The
geometric or harmonic average is zero, if one of the averaged
numbers is zero, whereas the arithmetic average is nonzero.
Such a property is required to generate the multiplicative
noise accurately and stably.) Thus, we expect that the har-
monic average form is more natural than the arithmetic av-
erage form.

We should note that the statistical properties of the PCN
network reconstruction rules10, 17 are not considered in this
work. The network reconstruction rules proposed so far do
not satisfy the detailed balance condition, and therefore, the
PCN model is not fully detailed-balanced, even if we employ
the modified dynamic equations. (Especially for small Z0, the
network reconstruction rule affects the statistical properties
significantly.) To understand the statistical properties of the
full PCN dynamics, the statistical mechanical analysis of the
network reconstruction rules is also required. It seems to be
difficult to satisfy the detailed balance condition in the net-
work reconstruction process of multi chain slip-link models
due to its intrinsic complicatedness, and thus, it is left for a
future work. (The exact equilibrium statistics of a slip-linked
multi chain system is not simple nor intuitive16 unlike a single
chain system.) Although we do not consider further modifica-
tions here, the current work will be useful to find strategies
for other modifications which improve the PCN model.

B. Segment number distribution

As we showed and discussed in Secs. II and III, the ef-
fective repulsive interaction between slip-links (Eq. (30))
affects statistical properties of the network qualitatively. We
expect that the statistics can further be changed by chang-
ing the interaction potential (or interaction strength) between
slip-links. In fact, if we consider the limit of the strong repul-
sion, distribution functions become much different from non-
interacting slip-link model (see Appendix D). Roughly speak-
ing, the variance of the subchain number distribution function
can be used to estimate the strength of the effective repulsive
interaction between slip-links. It is interesting to compare our
model (or our picture) with other models or primitive path ex-
traction results, and discuss whether our model is similar to
others or not.

Among the examined distribution functions, the segment
number distribution function seems to be the most sensitive
to the interaction between slip-links. The segment number
distribution of the single chain repulsive slip-link model is
qualitatively much different from that of the single chain non-
interacting slip-link model. The segment number distribution
functions which have similar forms to Eq. (51) are already
proposed by Tzoumanekas and Theodorou,9 and Greco.30

Here, we compare our model with these distribution func-
tions. Tzoumanekas and Theodorou proposed the following
empirical form for the segment number distribution, to fit their
CReTA primitive path extraction data:

Peq(n) = 1

N0

b̃c̃

c̃ − b̃
(e−b̃n/N0 − e−c̃n/N0 ). (64)

Here 1 < b̃ < 2 is a fitting parameter and c̃ = b̃/(b̃ − 1).
They reported that the segment number distribution functions
obtained by the CReTA can be fitted well to Eq. (64) with
b̃ = 1.30. Equation (64) can also be utilized to fit the distri-
bution functions by the original PCN model with the fitting
parameter b̃ = 1.96.10 This value is close to 2, and for such
a case, Eq. (64) can be approximated well by the following
simple form:

Peq(n) → 4n

N2
0

e−2n/N0 (b̃ → 2). (65)

Equation (65) is quite similar to Eq. (51). Tzoumanekas and
Theodorou proposed that the physical origin of such a non-
monotonic form of Eq. (64) is the effective repulsion (or the
blocking effect) between topological constraints, which de-
pends on the chemical distance. This is qualitatively the same
as our repulsive slip-link model. Of course, the CReTA prim-
itive path extraction results and their molecular model are dif-
ferent from the PCN model and our slip-link model. For ex-
ample, the CReTA primitive path data are taken for an atom-
istic polymer model, while the PCN model employs a rather
coarse-grained Gaussian chain model. Besides, it is not clear
whether the slip-links in the PCN model and the topological
constraints extracted by the CReTA have the same physical
properties. Thus, the distribution function by the PCN model
does not necessarily coincide with the one by the CReTA. Ac-
tually, at least the values of the fitting parameter b̃ for two
distributions are different. Nonetheless, we consider that the
similarity between the Tzoumanekas-Theodorou model and
our repulsive slip-link model implies that there are some com-
mon properties of slip-links (or topological constraints). (We
expect that the detailed form of the effective repulsive po-
tential between topological constraints in the Tzoumanekas-
Theodorou model is different from our repulsive slip-link
model. Judging from the distribution functions, the repulsive
interaction in their model seems to be weaker than our model.
But, the detail repulsion mechanisms in the Tzoumanekas-
Theodorou model or the CReTA results are not so clear. Fur-
ther investigations will be future works.)

On the other hand, in the Greco model, the segment num-
ber distribution function is given as

Peq(n) ∝ s(m̃)

√
n

N0
e−m̃2n/N0 + √

π

[
1

2
+ s2(m̃)

n

N0

]

× e(1/m̃2−2)n/N0 erfc

(
−s(m̃)

√
n

N0

)
, (66)

where m̃ ≥ 1 is the renormalized chemical potential (which
is used as a fitting parameter), s(x) ≡ (x2 − 1)/x, and erfc(x)
is the complementary error function.25 Equation (66) has
a similar form to Eq. (64).10, 30 In the Greco model, the
slip-links are non-interacting. The non-monotonic nature of
Eq. (66) comes from the fluctuation effect due to the small-
ness of the system. This is qualitatively different from our
model. It is interesting that different mechanisms (the fluctu-
ation effect and the repulsive interaction between slip-links)
give the similar result. Further progress of theories would be
required to understand the origin of non-monotonic segment
number distribution functions.
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Although there will be other factors (the osmotic force
between nodes, the network reconstruction, or constraint to
form the tetra-functional network structure), the interaction
between slip-links is one important factor which determines
the network statistics. The concept of the effective repulsive
interaction between slip-links will also be useful to consider
statistical properties of other models or methods, such as the
primitive path extraction methods7–9 or other slip-link based
models without explicit free energy model.31 For example, the
differences among various primitive path extraction methods
may be related to the differences of the effective slip-link in-
teraction potential models. Once we obtain the explicit form
of the effective interaction potential, it will be possible to tune
it so that the model reproduces the required equilibrium statis-
tics. We can employ the effective interaction potential for slip-
links determined from the network statistics by the primitive
path extraction methods to make the slip-link models com-
patible with the primitive path extraction data. (We can eas-
ily replace the effective free energy model by other models
to tune the statistics of the modified PCN model because the
forces in the modified PCN model are expressed as variational
forms.)

V. CONCLUSIONS

We showed that the PCN dynamic equations do not sat-
isfy the detailed-balance condition, and therefore, the PCN
model does not have the thermal equilibrium state. However,
by introducing heuristic modifications, the PCN dynamics can
be recovered to satisfy the detailed balance condition. We pro-
posed two modifications. One is to change the definition of
the segment density along the chain to the harmonic average
form (Eq. (22)), and another is to add the spurious drift term
to the monomer flux equation (Eq. (25)). From the modified
PCN model, we obtained the effective free energy from which
the equilibrium statistical properties of the PCN model are de-
termined. The effective PCN free energy has a different form
than the free energy of ideal Gaussian chains. This can be un-
derstood that the effective PCN free energy contains the con-
tribution from the repulsive interaction between slip-links.

To analyze the equilibrium statistical properties of the
PCN model, we constructed a single chain model with re-
pulsive slip-links. The equilibrium distribution functions de-
rived from the single chain repulsive slip-link model are
qualitatively different from the ones for the single chain non-
interacting slip-link model due to the repulsive interaction be-
tween slip-links. It was shown that the slip-linked subchain
number distribution function for the repulsive slip-link model
is much sharper than the one for non-interacting slip-links.
The interaction between slip-links strongly affects the seg-
ment number distribution function, especially if the segment
number is small. The equilibrium properties obtained from
the single chain slip-link model are qualitatively similar to the
PCN simulation results, although the agreement is not perfect.
We consider the repulsive interaction between slip-links is an
important factor which determines the statistical properties of
the PCN model. The repulsive slip-link picture would be use-
ful to improve the model statistics or design a new model.
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APPENDIX A: SINGLE CHAIN NON-INTERACTING
SLIP-LINK MODEL

In this appendix, we show a brief derivation of the
equilibrium distribution functions for the single chain non-
interacting slip-link model.24 (The derivation mainly follows
Ref. 24, but the expressions are slightly modified to allow the
direct comparison with the repulsive slip-link model in the
main text.) The free energy of a Gaussian chain with non-
interacting slip-links is expressed as the single chain version
of Eq. (28),

F0({Rk}, {Nk}, Z) ≡ 3kBT

2b2

Z∑
k=1

(Rk − Rk−1)2

Nk

+ 3kBT

2

Z∑
k=1

ln Nk. (A1)

As we mentioned in the main text, the Gaussian free energy
contains a term which is proportional to ln Ni, while the PCN
effective free energy (Eq. (27)) does not.

The grand potential is defined as follows, by introducing
the effective chemical potential for a subchain, ε0:

J0({Rk}, {Nk}, Z) ≡ F0({Rk}, {Nk}, Z) − ε0Z. (A2)

The equilibrium statistical probability can be written as

Peq({Rk}, {Nk}, Z) = 1

�0	3(Z+1)NZ−1
δ

(
N −

Z∑
k=1

Nk

)

× exp

[
−J ({Rk}, {Nk}, Z)

kBT

]
(A3)

with �0 being the grand partition function. The grand parti-
tion function reduces to a simple form

�0 ≡
∞∑

Z=1

1

	3(Z+1)NZ−1

∫
d{Rk}d{Nk} δ

(
N −

Z∑
k=1

Nk

)

× exp

[
−J ({Rk}, {Nk}, Z)

kBT

]
= V

	3
ξ0e

ξ0 . (A4)

Here, we defined the dimensionless effective fugacity ξ 0 as

ξ0 ≡ eε0/kBT

(
2πb2

3	2

)3/2

. (A5)

The slip-linked subchain number distribution function be-
comes the Poisson distribution,

Peq(Z) =
∫

d{Rk}d{Nk} Peq({Rk}, {Nk}, Z)

= 1

(Z − 1)!
ξZ−1

0 e−ξ0 . (A6)

Equation (A6) can be rewritten by using the relation, 〈Z〉eq

= Z0 = ξ0 + 1,

Peq(Z) = 1

(Z − 1)!
(Z0 − 1)Z−1e−(Z0−1). (A7)
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The variance of Z is related to the average of Z as

〈(Z − Z0)2〉eq = Z0 − 1 ≈ Z0 (for Z0 � 1). (A8)

The segment number distribution function is expressed as

Peq(n) =
∞∑

Z=1

∫
d{Rk}d{Nk}

[
1

Z

Z∑
l=1

δ(n − Nl)

]

×Peq({Rk}, {Nk}, Z)

= e−ξ0

∞∑
Z=1

ξZ−1
0

ZN

Z∑
l=1

1

NZ−2

∫
d{Nk}

× δ(n − Nl)δ

(
N −

Z∑
k=1

Nk

)
. (A9)

The integrals over {Nk} can be calculated to be

1

NZ−2

∫
d{Nk} δ(n − Nl)δ

(
N −

Z∑
k=1

Nk

)

=
⎧⎨
⎩

Nδ(n − N ) (Z = 1),

1

(Z − 2)!

(
1 − n

N

)Z−2
(Z ≥ 2).

(A10)

Thus, Eq. (A9) can be reduced to the following form:

Peq(n) = e−(Z0−1)δ (n − N ) + Z0 − 1

N
exp

[
−(Z0 − 1)

n

N

]

= e1−N/N0δ(n − N ) + N − N0

N0N
e−n(N−N0)/NN0 ,

(A11)

where we used Z0 = N/N0 (notice that, this N0 is different
from Ne in Ref. 24). For large Z0, Eq. (A11) can be approxi-
mated by the exponential function

Peq(n) ≈ 1

N0
e−n/N0 . (A12)

The bond vector distribution function can be calculated
in a similar way,

Peq( Q) =
∞∑

Z=1

∫
d{Rk}d{Nk}

[
1

Z

Z∑
l=1

δ( Q − Rl + Rl−1)

]

×Peq({Rk}, {Nk}, Z)

=
(

3

2πb2

)3/2 ∫ N

0
dn

1

n3/2
e−3 Q2/2nb2

Peq(n).

(A13)

Substituting Eq. (A11) into Eq. (A13), we have

Peq( Q) =
(

3

2πNb2

)3/2

e−3 Q2/2Nb2−N/N0+1

+
(

3

2πN0b2

)3/2
N − N0

N0N

∫ N

0
dn

(
N0

n

)3/2

× exp

[
− 3 Q2

2nb2
− N − N0

N0N
n

]

=
(

3

2πNb2

)3/2

e−3 Q2/2Nb2−N/N0+1

+ 3

4πb2

N − N0

N0N

1

| Q|
[

exp

(√
6

b2

N − N0

N0N
| Q|

)

×erfc

(√
3

2Nb2
| Q| +

√
N

N0
− 1

)

+ exp

(
−

√
6

b2

N − N0

N0N
| Q|

)

× erfc

(√
3

2Nb2
| Q| −

√
N

N0
− 1

)]
, (A14)

where erfcx is the complementary error function.25 (See Ap-
pendix B 2 for details.) Although Eq. (A14) is exact, it is quite
complicated and not intuitive. It can be reduced to the follow-
ing simple approximate form for sufficiently large Z0:

Peq( Q) ≈ 3

2πN0b2| Q| exp

(
−

√
6

N0b2
| Q|

)
. (A15)

The bond length distribution function can be expressed as

Peq(Q) ≈ 6Q

N0b2
exp

(
−

√
6

N0b2
Q

)
. (A16)

Equation (A16) has a maximum at Q/
√

N0b2 = 1/
√

6.
As shown in the main text, the distribution functions for

the single chain non-interacting slip-link model are qualita-
tively different from the ones for the single chain repulsive
slip-link model. Such differences arise only from the differ-
ence of the interaction between neighboring slip-links.

APPENDIX B: CALCULATIONS OF INTEGRALS

In this appendix, we show the detailed calculations for
several integrals appear during the derivation of distribution
functions in the main text. Although the calculations are com-
plicated, we can obtain the analytic expressions by using spe-
cial functions such as the gamma function or the modified
Bessel function.

1. Integrals over {Nk}

First, we show the detailed calculation of the integral,
which appears in Eq. (38),

I1 ≡ 1

N5Z/2−1

∫
d{Nk} δ

(
N −

Z∑
k=1

Nk

) Z∏
k=1

N
3/2
k . (B1)
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To calculate the integral over {Nk}, we introduce the follow-
ing variable transform:

sk =

⎧⎪⎨
⎪⎩

0 (k = 0),

(Nk − Nk−1)/N (k = 1, 2, . . . , Z − 1),

1 (k = Z).

(B2)

The integral over {Nk} with the delta function can be trans-
formed into an integral over {sk} without a delta function,

1

NZ−1

Z∏
k=1

∫ N

0
dNk δ

(
N −

Z∑
k=1

Nk

)
=

Z−1∏
k=1

∫ sk+1

0
dsk.

(B3)

Equation (B1) can be modified as follows, by using the
transform (B3):

I1 =
Z−1∏
k=1

∫ sk+1

0
dsk

Z−1∏
l=0

(sl+1 − sl)
3/2. (B4)

We consider the integral over s1 in Eq. (B4). It can be modified
as ∫ s2

0
ds1 (s2 − s1)3/2s

3/2
1 = B(5/2, 5/2)s4

2 , (B5)

where B(x, y) is the beta function.25 Similarly, the integral
over s2 in Eq. (B4) can be calculated to be∫ s3

0
ds2 (s3 − s2)3/2

[
B(5/2, 5/2)s4

2

]
= B(5/2, 5/2)B(5/2, 10/2)s13/2

3 . (B6)

Iterating the same procedure, finally we have the
following expression for I1:

I1 =
Z−1∏
k=1

B(5/2, 5k/2) =
Z−1∏
k=1

�(5/2)�(5k/2)

�(5(k + 1)/2)
= �Z(5/2)

�(5Z/2)
,

(B7)
where we have utilized the relation between the beta and
gamma functions,25

B(x, y) = �(x)�(y)

�(x + y)
. (B8)

By substituting �(5/2) = 3
√

π/4 into Eq. (B7), we have
Eq. (38).

Next, we show the detailed calculation of the integral in
Eq. (48),

I2 ≡ 1

N5Z/2−2

∫
d{Nk}

[
1

Z

Z∑
l=1

δ(n − Nl)

]

× δ

(
N −

Z∑
k=1

Nk

) Z∏
k=1

N
3/2
k

= 1

Z

Z∑
l=1

Z−1∏
k=1

∫ sk+1

0
dskδ(ñ − (sl+1 − sl))

Z−1∏
m=0

(sm+1−sm)3/2,

(B9)

where we defined ñ ≡ n/N . The integral over {sk} can be
performed in the similar way to the case of I1,

I2 = 1

Z

Z∑
l=1

Z−1∏
k=l+1

∫ sk+1

0
dsk

Z−1∏
m=l+1

(sm+1 − sm)3/2

×
∫ sl+1

0
dsl δ(ñ − (sl+1 − sl))(sl+1 − sl)

3/2s
(5l−2)/2
l

×
l−1∏
m=1

B(5m/2, 5/2) = ñ3/2

Z

Z∑
l=1

Z−1∏
k=l+1

∫ sk+1

ñ

dsk

×
Z−1∏

m=l+1

(sm+1−sm)3/2(sl+1−ñ)(5l−2)/2
l−1∏
m=1

B(5m/2, 5/2).

(B10)

To simplify the expression, we introduce another variable
transform, uk = sk − ñ. Then, we have

I2 = ñ3/2

Z

Z∑
l=1

Z−1∏
k=l+1

∫ ũk+1

0
duk

Z−1∏
m=l+1

(um+1 − um)3/2u
(5l−2)/2
l+1

×
l−1∏
m=1

B(5m/2, 5/2)

= ñ3/2

Z

Z∑
l=1

(1 − ñ)[5(Z−1)−2]/2
Z−2∏
m=1

B(5m/2, 5/2). (B11)

Finally, we have the following expression for I2:

I2 = ñ3/2(1 − ñ)5(Z−1)/2−1 �Z−1(5/2)

�(5(Z − 1)/2)
. (B12)

Equation (B12) together with ñ = n/N and �(5/3) = 3
√

π/4
gives Eq. (48).

2. Integrals over n

Here, we show the detailed calculation of Eq. (56). The
integral over n in Eq. (56) can be modified as follows, by using
the variable transform t =

√
5b2/3N0 Q2n:

I3 ≡ 1

N0

∫ ∞

0
dn exp

(
− 3 Q2

2nb2
− 5

2

n

N0

)

=
√

3 Q2

5N0b2

∫ ∞

0
dt exp

[
− 1

2

√
15 Q2

N0b2

(
1

t
+ t

)]
.

(B13)

The integral in Eq. (B13) can be reduced to the first-order
modified Bessel function of the second kind. The integral ex-
pression of the first-order modified Bessel function of the sec-
ond kind becomes25

K1(x) =
∫ ∞

0
du e−x cosh u cosh u = 1

2

∫ ∞

−∞
du eu−x cosh u

= 1

2

∫ ∞

0
ds exp

[
−x

2

(
s + 1

s

)]
, (B14)

where we have used the variable transform s = e−u. By
substituting x =

√
15 Q2/N0b2 into Eq. (B14), we have the
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following expression for I3:

I3 = 2

5

√
15 Q2

N0b2
K1

(√
15 Q2

N0b2

)
. (B15)

This gives Eq. (56).
A similar integral also appears in Eq. (A14). The integral

in Eq. (A14) can be calculated as follows:

I4 ≡ N − N0

N0N

∫ N

0
dn

(
N0

n

)3/2

exp

[
− 3 Q2

2nb2
− N − N0

N0N
n

]

= 2(Z0 − 1)

Z
3/2
0

∫ ∞

1
dt exp

[
− 3 Q2

2Nb2
t2 − (Z0 − 1)

1

t2

]
,

(B16)

where we used the variable transform t = √
N/n. The inte-

gral over t in Eq. (B16) can be calculated by using the follow-
ing formula:25

∫ ∞

1
dt e−xt2−y/t2 =

√
π

4
√

x
[e2

√
xyerfc(

√
x + √

y)

+ e−2
√

xyerfc(
√

x−√
y)], (B17)

where erfcx is the complementary error function.25 Finally,
Eq. (B16) can be reduced to

I4 =
√

π (Z0 − 1)

Z
3/2
0

√
Nb2

6 Q2

[
exp

[√
6 Q2

Nb2
(Z0 − 1)

]

× erfc

(√
3 Q2

2Nb2
+

√
Z0−1

)
+ exp

[
−

√
6 Q2

Nb2
(Z0−1)

]

× erfc

(√
3 Q2

2Nb2
−

√
Z0 − 1

)]
. (B18)

This gives Eq. (A14).

APPENDIX C: CALCULATIONS OF SADDLE POINT
APPROXIMATIONS

1. Saddle point approximation for Peq(Z )

A simple approximate expression is demanding to ana-
lyze the statistical properties of the repulsive slip-link model.
Here, we attempt to calculate the approximate expression for
Eq. (43), for sufficiently large Z0. For convenience, we ap-
proximate Peq(Z) by a continuum distribution. The summa-
tion over Z is replaced by the integral as follows:

∞∑
Z=1

≈
∫ ∞

−∞
dZ. (C1)

We can utilize Stirling’s formula25 to approximate the
gamma function,

ξZ−1

�(5Z/2)
≈ exp

[
(Z − 1) ln ξ −

(
5Z

2
− 1

2

)
ln

5Z

2

+5Z

2
− 1

2
ln(2π )

]
. (C2)

Next, we expand the exponent around the saddle point,

f (Z) ≡ (Z − 1) ln ξ −
(

5Z

2
− 1

2

)
ln

5Z

2
+ 5Z

2
− 1

2
ln(2π )

≈ f (Z∗) + 1

2
f ′′(Z∗)(Z − Z∗)2, (C3)

where Z* is the saddle point value of Z, which satisfies the
saddle point equation,

f ′(Z∗) = ln ξ − 5

2
ln

5Z∗

2
+ 1

2Z∗ = 0. (C4)

The distribution function (Eq. (43)) can be approximated as a
Gaussian

Peq(Z) ≈ exp
[
f ′′(Z∗)(Z − Z∗)2/2

]
∫ ∞

−∞
dZ exp

[
f ′′(Z∗)(Z − Z∗)2/2

]

=
√

5Z∗ + 1

4π (Z∗)2
exp

[
−5Z∗ + 1

4(Z∗)2
(Z − Z∗)2

]
.

(C5)

The average value of Z is calculated to be

〈Z〉eq = Z0 ≈ Z∗. (C6)

Therefore, we can replace Z* in Eq. (C5) by Z0. Finally we
have Eq. (44) as the approximate form for the subchain num-
ber distribution function.

2. Saddle point approximation for Peq(n)

We consider to obtain a simple approximate expression
for Eq. (50). For sufficiently large Z0, we can use the follow-
ing approximate form:

∞∑
Z=2

(
1 − n

N

)5(Z−1)/2 ξZ−1

�(5(Z − 1)/2)

≈
∫ ∞

−∞
dZ exp

[
g(Z∗∗) + 1

2
g′′(Z∗∗)(Z − Z∗∗)2

]

=
√

2π

−g′′(Z∗∗)
eg(Z∗∗), (C7)

where we defined

g(Z) ≡ 5Z

2
ln

(
1 − n

N

)
+ Z ln ξ − 5Z − 1

2
ln

5Z

2
+ 5Z

2

− 1

2
ln(2π ) (C8)

and Z** is given via the following saddle point equation:

g′(Z∗∗) = 5

2
ln

(
1 − n

N

)
+ ln ξ − 5

2
ln

5Z∗∗

2
+ 1

2Z∗∗ = 0.

(C9)
From Eqs. (C4) and (C6), we have the following approximate
relation between Z** and Z0:

Z∗∗ ≈
(

1 − n

N

)
Z0. (C10)
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Then, we can write

∞∑
Z=2

(
1 − n

N

)5(Z−1)/2 ξ̃ Z−1

�(5(Z − 1)/2)
≈ Z0√

e

(
1 − n

N

)

× exp

[
5Z0

2

(
1 − n

N

)]
, (C11)

and the segment number distribution function can be ex-
pressed approximately as

Peq(n) ∝
( n

N

)3/2 (
1 − n

N

)−1 [(
1 − n

N

)

× exp

[
5Z0

2

(
1 − n

N

)]]
∝ n3/2 exp

(
− 5n

2N0

)
.

(C12)

By normalizing Eq. (C12), finally we have Eq. (51) as the
approximate form for Peq(n).

APPENDIX D: STRONG REPULSION LIMIT

In the main text and Appendix A, we calculated some
equilibrium distribution functions for repulsive and non-
interacting slip-link models, respectively. For comparison,
here we consider the case where the repulsive interaction be-
tween slip-links is quite strong. We call such a limit as the
strong repulsion limit. As we will show, slip-links form a
Wigner crystal like ordered structure in this limit.

We assume the following effective potential for slip-
links, instead of Eq. (30):

Ũslip-link(n) = −αkBT ln n. (D1)

Here, α is the parameter which represents the strength of the
repulsive interaction. (α = 0 and α = 3/2 correspond to the
non-interacting and repulsive slip-link models, respectively.)
At the strong repulsion limit, we set α → ∞.

The equilibrium probability distribution function and the
grand partition function are expressed as follows:

Peq({Rk}, {Nk}, Z) = eεZ/kBT

�	3(Z+1)NZ−1
δ

(
N −

Z∑
k=1

Nk

)

×
Z∏

k=1

N
α−3/2
k exp

[
−3(Rk − Rk−1)2

2Nkb2

]
, (D2)

� ≡
∞∑

Z=1

eεZ/kBT

	3(Z+1)NZ−1

∫
d{Rk}d{Nk} δ

(
N −

Z∑
k=1

Nk

)

×
Z∏

k=1

N
α−3/2
k exp

[
−3(Rk − Rk−1)2

2Nkb2

]
. (D3)

Since the repulsive interaction energy becomes very large at
the strong repulsion limit, we can reasonably utilize the sad-
dle point approximation for {Nk}. For α � 1, the distribution
of {Nk} is expected to be sufficiently sharp, and thus, the fluc-
tuations around the saddle point is negligible. Then, the grand

partition function can be approximated as

� ≈
∞∑

Z=1

eεZ/kBT

	3(Z+1)NZ−1

∫
d{Rk}

(
N

Z

)(α−3/2)Z

× exp

[
−3Z(Rk − Rk−1)2

2Nb2

]

= VN

	3

∞∑
Z=1

[ (
2πb2

3	2

)3/2
Nα−1

Zα
eε/kBT

]Z

. (D4)

For simplicity, we assume that the average number of
subchains is sufficiently large (Z0 � 1) and utilize the sad-
dle point approximation for Z. The result is

Peq(Z) ≈
(

α

2πZ0

)1/2

exp

[
− α

2Z0
(Z−Z0)2

]
→ δ(Z−Z0)

(α → ∞). (D5)

Thus, we find that the subchain number distribution simply
becomes the delta function. This means that there is essen-
tially no subchain number fluctuation in the strong repulsion
limit. Similarly, the segment number distribution function is
obtained as

Peq(n) ≈ δ(n − N0). (D6)

Equation (D6) means that the chemical distance between
two neighboring slip-links is constant (slip-links are placed
equidistantly on a chain). Equations (D5) and (D6) are nat-
urally derived from the dependence of the variances of Z
and n on α. From the results in Appendix A, the main text,
and this appendix, the variances are roughly estimated as
〈(Z − Z0)2〉eq ≈ Z0/(1 + α) and 〈(n − N0)2〉eq ≈ N2

0 /(1 +
α). At the strong repulsion limit (α → 0), both of them ap-
proach to zero and the distribution functions reduce to delta
functions (as Eqs. (D5) and (D6)). We can interpret such a
state as a sort of Wigner crystal. This situation seems to be
qualitatively different from most of the slip-link models, such
as the PCN model. It would rather be similar to the simple
tube model3 in which each tube segment contains a constant
number of segments. (But, of course, the slip-link model is
not equivalent to the tube model.) Anyway, the distribution
functions for Z and n at the strong repulsion limit are much
sharper than the distribution functions for the non-interacting
or repulsive slip-link models. Thus, we consider that these
distribution functions become sharper as the repulsive inter-
action between slip-links increases.

Because the segment number n is fixed to N0, the bond
vector distribution function is nothing but a Gaussian. The
bond vector and bond length distribution functions become

Peq( Q) ≈
(

3

2πN0b2

)3/2

exp

(
− 3 Q2

2N0b2

)
, (D7)

Peq(Q) ≈ 4√
π

(
3

2N0b2

)3/2

Q2 exp

(
− 3Q2

2N0b2

)
. (D8)

At the limit of small Q, we have Peq(Q) ∝ Q2 as the asymp-
totic form. This asymptotic behavior is similar to one of the
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repulsive slip-link model (Eq. (59)). Equation (D8) has a max-
imum at Q/

√
N0b2 = √

2/3 ≈ 0.816, which is larger than the
value for the repulsive slip-link model. Thus, we expect that
the value of Q/

√
N0b2 which gives the maximum increases

as the repulsive interaction increases.
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