<table>
<thead>
<tr>
<th>Title</th>
<th>On the connected components of moduli spaces of Kisin modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Imai, Naoki</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Algebra (2012), 349(1): 1-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/151711</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 Elsevier Inc.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
ON THE CONNECTED COMPONENTS OF MODULI SPACES OF KISIN MODULES

NAOKI IMAI

Abstract. We give a proof of a conjecture on the connected components of moduli spaces of Kisin module, which is valid also in the case $p = 2$.

Introduction

Let K be a p-adic field, and let V_F be a two-dimensional continuous representation of the absolute Galois group G_K over a finite field \mathbb{F} of characteristic p. Take a ϕ-module M_F corresponding to the Galois representation V_F, that is a projective scheme over \mathbb{F}. Let $\mathcal{M}_{V_F,0}$ be a closed subscheme of $\mathcal{M}_{V_F,0}$ determined by the condition that p-adic Hodge type is $v = 1$.

In the case $p > 2$, a Kisin module in M_F corresponds a finite flat models of V_F, and $\mathcal{M}_{V_F,0}$ is called a moduli space of finite flat models of V_F. In this case, Kisin conjectured that the non-ordinary locus of $\mathcal{M}_{V_F,0}$ is connected. (In fact, this is a special case of [Kis, Conjecture 2.4.16].) This conjecture was proved by Kisin in [Kis] if K is totally ramified over \mathbb{Q}_p, by Gee in [Gee] if V_F is the trivial representation, and by the author in [Ima] for general K and V_F. In the proof in [Ima], we need the condition $p > 2$. In this paper, we prove the conjecture for all p. The main theorem is the following.

Theorem. The non-ordinary locus of $\mathcal{M}_{V_F,0}$ is geometrically connected.

The outline of the proof is the same as the proof in [Ima], but we need some more sophisticated arguments to treat the case $p = 2$.

Acknowledgment. The author would like to thank Mark Kisin for suggesting him to consider the problem of the connectedness in the case $p = 2$. He is grateful to a referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let p be a prime number, and k be a finite extension of \mathbb{F}_p of cardinality $q = p^n$. The Witt ring of k is denoted by $W(k)$, and let $K_0 = W(k)[1/p]$. Let K be a totally ramified extension of K_0 of degree e, and \mathcal{O}_K be the ring of integers of K. The absolute Galois group of K is denoted by G_K. Let \mathbb{F} be a finite field of characteristic p. The formal power series ring of u over \mathbb{F} is denoted by $\mathbb{F}[[u]]$, and its quotient field is denoted by $\mathbb{F}((u))$. Let v_u be the valuation of $\mathbb{F}((u))$ normalized by $v_u(1) = 1$. For a field F, the algebraic closure of F is denoted by \overline{F} and the separable closure of F is denoted by F_{sep}. 1
1. Preliminaries

First of all, we recall some notation from [Kis], and the interested reader should consult [Kis] for more detailed definitions.

We put \(\mathcal{G} = W(k)[[u]] \). Let \(\mathcal{O}_E \) be the \(p \)-adic completion of \(\mathcal{G}[1/u] \). There is an action of \(\phi \) on \(\mathcal{O}_E \) determined by Frobenius on \(W(k) \) and \(u \mapsto u^p \). We take and fix a uniformizer \(\pi \) of \(\mathcal{O}_K \). We choose elements \(\pi_m \in \bar{K} \) such that \(\pi_0 = \pi \) and \(\pi_{m+1}^p = \pi_m \) for \(m \geq 0 \), and put \(K_\infty = \bigcup_{m \geq 0} K(\pi_m) \). Let \(\Phi \mathcal{O}_{E,F} \) be the category of finite \(\mathcal{O}_E \otimes_{\mathbb{Z}_p} \mathbb{F} \)-modules \(M \) equipped with \(\phi \)-semi-linear map \(M \to M \) such that the induced \(\mathcal{O}_E \otimes_{\mathbb{Z}_p} \mathbb{F} \)-linear map \(\phi^*(M) \to M \) is an isomorphism. Let \(\text{Rep}_F(G_{K_\infty}) \) be the category of finite-dimensional continuous representations of \(G_{K_\infty} \) over \(\mathbb{F} \). Then the functor

\[
T : \Phi \mathcal{O}_{E,F} \to \text{Rep}_F(G_{K_\infty}) : M \mapsto (k((u))^\text{sep} \otimes_k k((u)) M)^{\phi = 1}
\]

gives an equivalence of abelian categories as in [Kis, (1.1.12)]. Here \(\phi \) acts on \(k((u))^{\text{sep}} \) by the \(p \)-th power map.

Let \(V_F \) be a continuous two-dimensional representation of \(G_K \) over \(\mathbb{F} \). We take the \(\phi \)-module \(M_F \in \Phi \mathcal{O}_{E,F} \) such that \(T(M_F) \) is isomorphic to \(V_F(-1)|_{G_{K_\infty}} \). Here \((-1)\) denotes the inverse of the Tate twist.

From now on, we assume \(\mathbb{F}_{\text{alg}} \subset \mathbb{F} \) and fix an embedding \(k \to \mathbb{F} \). This assumption does not matter, because we may extend \(\mathbb{F} \) to prove the main theorem. We consider the isomorphism

\[
\mathcal{O}_E \otimes_{\mathbb{Z}_p} \mathbb{F} \cong k((u)) \otimes_{\mathbb{F}_p} \mathbb{F} \cong \prod_{\sigma \in \text{Gal}(k/\mathbb{F}_p)} \mathbb{F}(u) ; \left(\sum a_i u^i \right) \otimes b \mapsto \left(\sum \sigma(a_i)bu^i \right)_\sigma
\]

and let \(\epsilon_\sigma \in k((u)) \otimes_{\mathbb{F}_p} \mathbb{F} \) be the primitive idempotent corresponding to \(\sigma \). Take \(\sigma_1, \cdots, \sigma_n \in \text{Gal}(k/\mathbb{F}_p) \) such that \(\sigma_{i+1} = \sigma_i \circ \phi^{-1} \). Here we regard \(\phi \) as the \(p \)-th power Frobenius, and use the convention that \(\sigma_{n+1} = \sigma_n \). In the following, we often use such conventions. Then we have \(\phi(\epsilon_{\sigma_i}) = \epsilon_{\sigma_{i+1}} \), and \(\phi : M_F \to M_F \) determines \(\phi : \epsilon_\sigma, M_F \to \epsilon_{\sigma_{i+1}}, M_F \).

For \((A_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}(u))^n \), we write

\[
M_F \sim (A_1, A_2, \ldots, A_n) = (A_i)
\]

if there is a basis \(\{e_1, e_2\} \) of \(\epsilon_\sigma, M_F \) over \(\mathbb{F}(u) \) such that \(\phi \left(\begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \right) = A_i \left(\begin{pmatrix} e_1^{i+1} \\ e_2^{i+1} \end{pmatrix} \right) \).

We use the same notation for any sublattice \(\mathcal{M}_F \subset M_F \) similarly. Here and in the following, we consider only sublattices that are \(\mathcal{G} \otimes_{\mathbb{Z}_p} \mathbb{F} \)-modules.

Finally, for any sublattice \(\mathcal{M}_F \subset M_F \) with a chosen basis \(\{e_1, e_2\}_{1 \leq i \leq n} \) and \(B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}(u))^n \), the module generated by the entries of \(\left(B_i \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \right) \) with the basis given by these entries is denoted by \(B \cdot \mathcal{M}_F \). Note that \(B \cdot \mathcal{M}_F \) depends on the choice of the basis of \(\mathcal{M}_F \).

For each \(\mathbb{Q}_p \)-algebra embedding \(\psi : K \to \overline{K} \), we put \(v_\psi = 1 \) and set \(v = (v_\psi)_\psi \). Then \(\mathcal{M}_{v,0} \) is the moduli space of Kisin modules with \(p \)-adic Hodge type \(v \). The rational points of \(\mathcal{M}_{v,0} \) are described as in the following.

Proposition 1.1. If \(\mathbb{F}' \) is a finite extension of \(\mathbb{F} \), the elements of \(\mathcal{M}_{v,0}(\mathbb{F}') \) naturally correspond to free \(k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}' \)-submodules \(\mathcal{M}_{\mathbb{F}'} \subset M_F \otimes_{\mathbb{F}_p} \mathbb{F}' \) of rank 2 that satisfy the following:

1. \(\mathcal{M}_{\mathbb{F}'} \) is \(\phi \)-stable.
(2) For some (so any) choice of \(k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}'\)-basis for \(M_{\mathbb{F}'}\), and for each \(\sigma \in \text{Gal}(k/\mathbb{F}_p)\), the map

\[
\phi : \varepsilon_{\mathbb{F}'} \to \varepsilon_{\mathbb{F}'_n}
\]

has determinant \(a\alpha^e\) for some \(\alpha \in \mathbb{F}'[[u]]^\times\).

Proof. This is [Gee, Lemma 2.2]. \(\square\)

2. MAIN THEOREM

To prove the main theorem, in fact we prove that the non-ordinary component of \(\mathcal{X}_{V_0,0}\) is rationally connected. We use the following two Lemmas to join two points by \(\mathbb{P}^1\).

Lemma 2.1. Suppose \(x_1, x_2 \in \mathcal{X}_{V_0,0}(\mathbb{F})\) correspond to objects \(M_{1,2,2}\) of \((\text{Mod}/\mathfrak{S})_{\mathbb{F}}\) respectively. We fix bases of \(M_{1,2,2}\) over \(k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}\). We assume that there is a nilpotent element \(N = (N_i)_{1 \leq i \leq n}\) of \(M_2(\mathbb{F}[[u]])^n\) such that \(M_{1,2} = (1 + N) \cdot M_{1,2}\). Let \(A = (A_i)_{1 \leq i \leq n}\) be an element of \(GL_2(\mathbb{F}[[u]])^n\) such that \(M_{1,2} \sim A\). If \(\phi(N_i)A_iN_{i+1} \in M_2(\mathbb{F}[[u]])\) for all \(i\), then there is a morphism \(\mathbb{P}^1 \to \mathcal{X}_{V_0,0}\) sending \(0\) to \(x_1\) and \(1\) to \(x_2\).

Proof. This is [Gee, Lemma 2.4]. \(\square\)

Lemma 2.2. Suppose \(n \geq 2\). Let \(M_{\mathbb{F}}\) be the object of \((\text{Mod}/\mathfrak{S})_{\mathbb{F}}\) corresponding to a point \(x \in \mathcal{X}_{V_0,0}(\mathbb{F})\). Fix a basis of \(M_{\mathbb{F}}\) over \(k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}\). Consider \(U^{(i)} = (U^{(i)}_{j})_{1 \leq j \leq n}\) \(\in GL_2(\mathbb{F}[[u]])^{n}\) such that \(U^{(i)}_{j} = \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}\) and \(U^{(i)}_{j} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) for all \(j \neq i\). If \(U^{(i)} : M_{\mathbb{F}}\) is \(\phi\)-stable, it corresponds to a point \(x' \in \mathcal{X}_{V_0,0}(\mathbb{F})\), and there is a morphism \(\mathbb{P}^1 \to \mathcal{X}_{V_0,0}\) sending \(0\) to \(x\) and \(1\) to \(x'\). If \((U^{(i)})^{-1} : M_{\mathbb{F}}\) is \(\phi\)-stable, it corresponds to a point \(x'' \in \mathcal{X}_{V_0,0}(\mathbb{F})\), and there is a morphism \(\mathbb{P}^1 \to \mathcal{X}_{V_0,0}\) sending \(0\) to \(x\) and \(1\) to \(x''\).

Proof. This is [Ima, Lemma 2.3]. \(\square\)

To prove the main theorem, it suffices to show the following theorem. The strategy of the proof is the same as in [Ima], and we focus on the changed points in the case \(p = 2\).

Theorem 2.3. Let \(\mathbb{F}'\) be a finite extension of \(\mathbb{F}\). Suppose \(x_1, x_2 \in \mathcal{X}_{V_0,0}(\mathbb{F}')\) correspond to objects \(M_{1,2,2}\) of \((\text{Mod}/\mathfrak{S})_{\mathbb{F}'}\) respectively. If \(M_{1,2,2}\) are both non-ordinary, then \(x_1\) and \(x_2\) lie on the same connected component of \(\mathcal{X}_{V_0,0}\).

Proof. When \(n = 1\), this was proved in [Kis], and we did not use the condition \(p > 2\) in the proof. If \(e < p - 1\), then \(\mathcal{X}_{V_0,0}(\mathbb{F}')\) is one point by [Ray, Theorem 3.3.3]. So we may assume \(n \geq 2\) and \(e \geq p - 1\). Furthermore, replacing \(V_{\mathbb{F}}\) by \(V_{\mathbb{F}'} \otimes_{\mathbb{F}_p} \mathbb{F}'\), we may assume \(V_{\mathbb{F}'} = \mathbb{F}'\).

In the case where \(V_{\mathbb{F}}\) is reducible, the proof of [Ima, Theorem 2.4] goes on, even if \(p = 2\). So, by a base change, we may assume that \(V_{\mathbb{F}'}\) is absolutely irreducible. As in the proof of [Ima, Theorem 2.4], we can prove that, after extending the field \(\mathbb{F}\), there exists a basis such that

\[
M_{\mathbb{F}} \sim \begin{pmatrix}
\alpha_1 \begin{pmatrix} 0 & u^{s_1} \\ u^{t_1} & 0 \end{pmatrix} & \alpha_2 \begin{pmatrix} u^{s_2} & 0 \\ 0 & u^{s_2} \end{pmatrix} & \cdots & \alpha_n \begin{pmatrix} u^{s_n} & 0 \\ 0 & u^{s_n} \end{pmatrix}
\end{pmatrix}
\]
where \(\alpha_i \in \mathbb{F} \), \(0 \leq s_i, t_i \leq e \), \(s_i + t_i = e \) and \(|s_i - t_i| \leq p + 1 \) for all \(i \). Note that we have proved that we may assume \(|s_i - t_i| \leq p + 1 \) for all \(i \) in the last paragraph of [Ima, p. 1197]

Let \(\mathcal{M}_{\mathcal{F},0} \) be the \(k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F} \)-module generated by the basis giving the above matrix expression. Then \(\mathcal{M}_{\mathcal{F},0} \) satisfies the condition in Proposition 1.1. We take the point \(x_0 \) of \(\mathcal{C}_{\mathcal{F},0}(\mathbb{F}) \) corresponding to \(\mathcal{M}_{\mathcal{F},0} \). We are going to prove that \(x_0 \) and \(x_1 \) lie on the same connected component. We can prove that \(x_0 \) and \(x_2 \) lie on the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take \(B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}(u)) \) such that \(\mathcal{M}_{1,\mathcal{F}} = B \cdot \mathcal{M}_{0,\mathcal{F}} \) and \(B_i = \begin{pmatrix} u & v_i \\ 0 & u_i \end{pmatrix} \) for \(a_i \in \mathbb{Z} \) and \(v_i \in \mathbb{F}(u) \). Then we put \(r_i = v_u(v_i) \). Now we have

\[
\phi(B_1) \begin{pmatrix} 0 & u \\ u^* & 0 \end{pmatrix} B_2^{-1} = \begin{pmatrix} \phi(v_1)u^{*1+a_2} & u^{*1-pa_1-a_2} - \phi(v_1)v_2u^{*1} \\ -v_2u^{*1+pa_1} & -v_2u^{*1+pa_1} \end{pmatrix},
\]

\[
\phi(B_2) \begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix} B_3^{-1} = \begin{pmatrix} \phi(v_3)u^{*1-pa_1+1-a_1} - v_3u^{*1+1-a_1} & 0 \\ u^{*1+pa_1-a_1+1} & u^{*1+pa_1-a_1+1} \end{pmatrix}
\]

for \(2 \leq i \leq n \). On the right-hand sides, every component of the matrices is integral because \(\mathcal{M}_{1,\mathcal{F}} \) is \(\phi \)-stable.

First, we consider the case \(t_1 + pa_1 + a_2 > e \). In this case,

\[
(pr_1 + t_1 + a_2) + (r_2 + t_1 + pa_1) = e, \quad s_1 - pa_1 - a_2 = pr_1 + r_2 + t_1 < 0
\]

by the \(\phi \)-stability and the determinant conditions of \(\mathcal{M}_{1,\mathcal{F}} \). We have \(a_1 > r_1 \), because \(t_1 + pa_1 + a_2 > e \geq pr_1 + t_1 + a_2 \). Similarly, we have \(a_2 > r_2 \), because \(t_1 + pa_1 + a_2 > e \geq r_2 + t_1 + pa_1 \).

We consider the following operations:

\[
a_i \sim a_i - 1, \quad v_i \sim uv_i, \quad \text{if it preserves the } \phi \text{-stability of } B \cdot \mathcal{M}_{0,\mathcal{F}}.
\]

These operations replace \(x_1 \) by a point that lies on the same connected component as \(x_1 \) by Lemma 2.2. We prove that we can continue these operations until we get to the situation where \(t_1 + pa_1 + a_2 \leq e \). In other words, we reduce the problem to the case \(t_1 + pa_1 + a_2 \leq e \). If we can continue the operations endlessly, we get to the situation where \(t_1 + pa_1 + a_2 \leq e \), because the conditions \(s_i - pa_i + a_{i+1} \geq 0 \) for \(2 \leq i \leq n \) exclude that both \(a_1 \) and \(a_2 \) remain bounded below. Suppose we cannot continue the operations. This is equivalent to the following condition:

\[
s_n - pa_n + a_1 = 0 \quad \text{or} \quad r_2 + t_1 + pa_1 \leq p - 1, \quad pr_1 + t_1 + a_2 = 0 \quad \text{or} \quad t_2 + pa_2 - a_3 \leq p - 1, \quad s_{i-1} - pa_{i-1} + a_i = 0 \quad \text{or} \quad t_i + pa_i - a_{i+1} \leq p - 1 \quad \text{for each } 3 \leq i \leq n.
\]

If \(e \geq p \), there are only the following two cases, because \((pr_1 + t_1 + a_2) + (r_2 + t_1 + pa_1) = e \) and \((s_i - pa_i + a_{i+1}) + (t_i + pa_i - a_{i+1}) = e \) for \(2 \leq i \leq n \).

Case 1: \(pr_1 + t_1 + a_2 = 0, \quad s_i - pa_i + a_{i+1} = 0 \) for \(2 \leq i \leq n \).

Case 2: \(r_2 + t_1 + pa_1 \leq p - 1, \quad t_i + pa_i - a_{i+1} \leq p - 1 \) for \(2 \leq i \leq n \).

If \(e = p - 1 \), clearly it is in Case 2.

In the Case 1, we have a contradiction as in the proof of [Ima, Theorem 2.4]. So we may assume that it is in the Case 2.
Then we can show that
\[r_i < a_i, \ p r_i + t_i - a_{i+1} = r_{i+1} + s_i - p a_i < 0 \text{ for } 2 \leq i \leq n \]
as in the proof of [Ima, Theorem 2.4]. Combining these equations with \(s_1 - p a_1 - a_2 = p r_1 + r_2 + t_1 \), we get
\[
- (p^n + 1)r_1 = (p^n + 1)a_1 + (s_n - t_n) + p(s_n-1 - t_{n-1}) + \cdots + p^{n-3}(s_3 - t_3) + p^{n-2}(s_2 - t_2) - p^{n-1}(s_1 - t_1),
\]
\[
- (p^n + 1)r_2 = (p^n + 1)a_2 - (s_1 - t_1) - p(s_n - t_n) - \cdots - p^{n-3}(s_4 - t_4) - p^{n-2}(s_3 - t_3) - p^{n-1}(s_2 - t_2),
\]
\[
- (p^n + 1)r_3 = (p^n + 1)a_3 + (s_2 - t_2) - p(s_1 - t_1) - \cdots - p^{n-3}(s_5 - t_5) - p^{n-2}(s_4 - t_4) - p^{n-1}(s_3 - t_3),
\]
\[
\vdots
\]
\[
- (p^n + 1)r_n = (p^n + 1)a_n + (s_{n-1} - t_{n-1}) + p(s_{n-2} - t_{n-2}) + \cdots + p^{n-3}(s_2 - t_2) - p^{n-2}(s_1 - t_1) - p^{n-1}(s_0 - t_0).
\]
As \(|s_i - t_i| \leq p + 1 \) and
\[
(p + 1) + p(p + 1) + \cdots + p^{n-1}(p + 1) = \left(\frac{p^n - 1}{p - 1} \right)(p + 1) < 3(p^n + 1),
\]
we get \(-a_i - 2 \leq r_i \leq -a_i + 2\). If \(e = p \), as \(|s_i - t_i| \leq p \) and
\[
p + p^2 + \cdots + p^n = \left(\frac{p^n - 1}{p - 1} \right)p < 2(p^n + 1),
\]
we get \(-a_i - 1 \leq r_i \leq -a_i + 1\). If \(e = p - 1 \), as \(|s_i - t_i| \leq p - 1 \) and
\[
(p - 1) + p(p - 1) + \cdots + p^{n-1}(p - 1) = \left(\frac{p^n - 1}{p - 1} \right)(p - 1) < (p^n + 1),
\]
we get \(-a_i = r_i\).
As \(r_2 + t_1 + pa_1 \leq p - 1 \), we have
\[
pa_1 \leq t_1 + pa_1 \leq p - 1 - r_2 \leq a_2 + p + 1.
\]
For \(2 \leq i \leq n \), as \(t_i + pa_i - a_{i+1} \leq p - 1 \), we have
\[
pa_i \leq t_i + pa_i \leq a_{i+1} + p - 1.
\]
Take an index \(i_0 \) such that \(a_{i_0} \) is the greatest. If \(2 \leq i_0 \leq n \), we get \(a_{i_0} \leq 1 \) by \(pa_{i_0} \leq a_{i_0+1} + p - 1 \leq a_{i_0} + p - 1 \). If \(i_0 = 1 \) and \(a_1 \geq 3 \), we get \(a_2 \geq 3 \), by \(pa_1 \leq a_2 + p + 1 \), and this contradicts the case where \(2 \leq i_0 \leq n \). So, if \(i_0 = 1 \), we have \(a_1 \leq 2 \). Combining \(-a_i - 2 \leq r_i \) and \(r_i < a_i \), we get \(a_i \geq 0 \). Hence \(0 \leq a_i \leq 2 \) and \(0 \leq a_i \leq 1 \) for \(2 \leq i \leq n \).

First, we assume \(a_2 = 0 \). Now we have \(-2 \leq r_2 \leq -1 \). Comparing \(t_1 + pa_1 + a_2 \geq c \) with \(r_2 + t_1 + pa_1 \leq p - 1 \), we get \(c \leq p - 2 - r_2 \). If \(r_2 = -2 \), we get \(c \leq p \). Then we have \(-a_2 - 1 \leq r_2 \), and this is a contradiction. If \(r_2 = -1 \), we get \(c \leq p - 1 \). Then we have \(-a_2 = r_2 \), and this is a contradiction.

Next, we assume \(a_2 = 1 \). As \(0 \leq t_i + pa_i - a_{i+1} \leq p - 1 \) for \(2 \leq i \leq n \), we have \(a_i = 1 \) for all \(i \) and \(t_i = 0 \) for \(2 \leq i \leq n \). As \(r_2 + pa_1 + t_1 \leq p - 1 \), we have \(r_2 \leq -1 \).
As \(pr_2 + t_2 - a_3 = r_3 + s_2 - pa_2 \), we have \(r_1 = pr_2 + p - e - 1 \leq -e - 1 \). If \(e \geq p + 1 \), then \(-a_3 - 2 \leq r_3 \) and \(r_3 \leq -e - 1 \leq -4 \). This is a contradiction. If \(e = p \), then \(-a_3 - 1 \leq r_3 \) and \(r_3 \leq -e - 1 \leq -3 \). This is a contradiction. If \(e = p - 1 \), then \(-a_3 = r_3 \) and \(r_3 \leq -e - 1 \leq -2 \). This is a contradiction.

Thus we may assume \(t_1 + pa_1 + a_2 \leq e \). We put \(\mathcal{M}_{3,F} = \begin{pmatrix} u^{-a_1} & 0 \\ 0 & u^{a_1} \end{pmatrix}_i \cdot \mathcal{M}_{0,F} \), then

\[
\mathcal{M}_{3,F} \sim \begin{pmatrix} 0 \\ u_{t_1 + pa_1 + a_2} \end{pmatrix} \cdot \begin{pmatrix} u^{-a_1} & u^{a_1} \\ 0 & 0 \end{pmatrix}, \quad \mathcal{M}_{0,F} = \begin{pmatrix} 0 \\ u_{t_1 + pa_2 + a_3} \end{pmatrix}
\]

and \(\mathcal{M}_{1,F} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \mathcal{M}_{3,F} \). Note that \(\mathcal{M}_{3,F} \) satisfies the conditions of Proposition 1.1, and let \(x_3 \) be the point of \(\mathcal{R}^{\mathbb{N}}_{V_0} \) corresponding to \(\mathcal{M}_{3,F} \). If we put \(N_i = \begin{pmatrix} 0 \\ v_i u^{-a_1} \end{pmatrix} \), then

\[
\phi(N_1) \begin{pmatrix} 0 \\ u_{t_1 + pa_1 + a_2} \end{pmatrix} N_2 = \begin{pmatrix} 0 \\ \phi(v_1) v_2 u_{t_1} \end{pmatrix}, \\
\phi(N_1) \begin{pmatrix} u^{a_1} \\ 0 \end{pmatrix} N_{i+1} = 0
\]

for \(2 \leq i \leq n \). Here we have \(v_i (\phi(v_1) v_2 u_{t_1}) \geq 0 \), because \(s_1 - pa_1 - a_2 \geq 0 \) and \(v_n (u^{a_1} - a_2 - \phi(v_1) v_2 u_{t_1}) \geq 0 \). Hence \(x_1 \) and \(x_3 \) lie on the same connected component by Lemma 2.1.

We are going to compare \(\mathcal{M}_{0,F} \) and \(\mathcal{M}_{3,F} \). First, we treat the case \(e \geq p \). We consider the operations that decrease \(|a_i| \) by 1 for an index \(i \) keeping the condition of \(\phi \)-stability. By Lemma 2.2, these operations do not affect which of the connected components \(x_3 \) lies on. We prove that we can continue the operations until we have \(a_i = 0 \) for all \(i \), that is, \(x_0 \) and \(x_3 \) lie on the same connected component. Suppose that we cannot continue the operations and there is some nonzero \(a_i \). The condition of \(\phi \)-stability is equivalent to

\[
C_1 : 0 \leq s_1 - pa_1 - a_2 \leq e, \quad C_2 : 0 \leq s_2 - pa_2 + a_3 \leq e, \\
\ldots, \quad C_n : 0 \leq s_n - pa_n + a_1 \leq e.
\]

Note that if \(a_i \neq 0 \) or \(a_{i+1} \neq 0 \), we can decrease \(|a_i| \) or \(|a_{i+1}| \) keeping \(C_i \), because \(e \geq p \).

We put

\[
c_i = \sharp \{ i \leq j \leq i + 1 \mid \text{we can decrease } |a_j| \text{ keeping } C_i \},
\]

and claim that \(\sharp \{ j \mid a_j \neq 0 \} = \sum_{i=1}^{n} c_i \). First, if \(a_i \neq 0 \), we have \(c_{i-1} \geq 1 \) and \(c_i \geq 1 \) from the above remark. So we have \(\sharp \{ j \mid a_j \neq 0 \} \leq \sum_{i=1}^{n} c_i \). Second, we count \(a_i \neq 0 \) in not both of \(C_{i-1} \) and \(C_i \), because we cannot continue the operations. So we have \(\sharp \{ j \mid a_j \neq 0 \} \geq \sum_{i=1}^{n} c_i \). Hence we have equality. From this equality, we have \(a_i \neq 0 \) and \(c_i = 1 \) for all \(i \). For \(2 \leq i \leq n \), we have \(a_i a_{i+1} > 0 \) because \(c_i = 1 \). So we have \(a_1 a_2 > 0 \), but this contradicts \(c_1 = 1 \).
In the case $e = p - 1$. We have $|pa_1 + a_2| \leq p - 1$ by C_1, and $|pa_i - a_{i+1}| \leq p - 1$ by C_i for $2 \leq i \leq n$. Summing up these inequalities after multiplying some p-powers so that we can eliminate a_j for $j \neq i$, we get $|(p^n + 1)a_i| \leq p^n - 1$. So we have $a_i = 0$ for all i.

Hence x_0 and x_3 lie on the same connected component. This completes the proof.

\[\square \]

References

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

E-mail address: naoki@kurims.kyoto-u.ac.jp