ON THE CONNECTED COMPONENTS OF MODULI SPACES
OF KISIN MODULES

NAOKI IMAI

Abstract. We give a proof of a conjecture on the connected components of
moduli spaces of Kisin module, which is valid also in the case \(p = 2 \).

Introduction

Let \(K \) be a \(p \)-adic field, and let \(V_F \) be a two-dimensional continuous representation
of the absolute Galois group \(G_K \) over a finite field \(\mathbb{F} \) of characteristic \(p \). Take
a \(\phi \)-module \(M_\phi \) corresponding to the Galois representation \(V_F \). As in [Kis, Corollary 2.1.13],
we can construct a moduli space \(\mathcal{M}_{V_F,0}^\times \) of Kisin modules in \(M_\phi \),
that is a projective scheme over \(\mathbb{F} \). Let \(\mathcal{M}_{V_F,0} \) be a closed subscheme of \(\mathcal{M}_{V_F,0}^\times \)
determined by the condition that \(p \)-adic Hodge type is \(v = 1 \).

In the case \(p > 2 \), a Kisin module in \(M_\phi \) corresponds a finite flat models of
\(V_F \), and \(\mathcal{M}_{V_F,0} \) is called a moduli space of finite flat models of \(V_F \). In this case,
Kisin conjectured that the non-ordinary locus of \(\mathcal{M}_{V_F,0}^\times \) is connected. (In fact,
this is a special case of [Kis, Conjecture 2.4.16].) This conjecture was proved by
Kisin in [Kis] if \(K \) is totally ramified over \(\mathbb{Q}_p \), by Gee in [Gee] if \(V_F \) is the trivial
representation, and by the author in [Ima] for general \(K \) and \(V_F \). In the proof in
[Ima], we need the condition \(p > 2 \). In this paper, we prove the conjecture for all
\(p \). The main theorem is the following.

Theorem. The non-ordinary locus of \(\mathcal{M}_{V_F,0}^\times \) is geometrically connected.

The outline of the proof is the same as the proof in [Ima], but we need some
more sophisticated arguments to treat the case \(p = 2 \).

Acknowledgment. The author would like to thank Mark Kisin for suggesting him
to consider the problem of the connectedness in the case \(p = 2 \). He is grateful to a
referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let \(p \) be a prime
number, and \(k \) be a finite extension of \(\mathbb{F}_p \) of cardinality \(q = p^n \). The Witt ring
of \(k \) is denoted by \(W(k) \), and let \(K_0 = W(k)[1/p] \). Let \(K \) be a totally ramified
extension of \(K_0 \) of degree \(e \), and \(\mathcal{O}_K \) be the ring of integers of \(K \). The absolute
Galois group of \(K \) is denoted by \(G_K \). Let \(\mathbb{F} \) be a finite field of characteristic \(p \).
The formal power series ring of \(u \) over \(\mathbb{F} \) is denoted by \(\mathbb{F}[[u]] \), and its quotient field is
denoted by \(\mathbb{F}((u)) \). Let \(v_u \) be the valuation of \(\mathbb{F}((u)) \) normalized by \(v_u(u) = 1 \). For
a field \(F \), the algebraic closure of \(F \) is denoted by \(\overline{F} \) and the separable closure of
\(F \) is denoted by \(F^\mathrm{sep} \).
1. Preliminaries

First of all, we recall some notation from [Kis], and the interested reader should consult [Kis] for more detailed definitions.

We put $\mathcal{S} = W(k)[[u]]$. Let $\mathcal{O}_\mathcal{S}$ be the p-adic completion of $\mathcal{S}[1/u]$. There is an action of ϕ on $\mathcal{O}_\mathcal{S}$ determined by Frobenius on $W(k)$ and $u \mapsto u^p$. We take and fix a uniformizer π of \mathcal{O}_K. We choose elements $\pi_m \in \mathcal{K}$ such that $\pi_0 = \pi$ and $\pi_{m+1}^p = \pi_m$ for $m \geq 0$, and put $K_\infty = \bigcup_{m \geq 0} K(\pi_m)$. Let $\text{Phi}\mathcal{O}_\mathcal{S}, \mathcal{F}$ be the category of finite $\mathcal{O}_\mathcal{S} \otimes_{\mathcal{Z}_p} \mathcal{F}$-modules M equipped with ϕ-semi-linear map $M \to M$ such that the induced $\mathcal{O}_\mathcal{S} \otimes_{\mathcal{Z}_p} \mathcal{F}$-linear map $\phi^* (M) \to M$ is an isomorphism. Let $\text{Rep}_\mathcal{F}(G_{K_\infty})$ be the category of finite-dimensional continuous representations of G_{K_∞} over \mathcal{F}.

Then the functor

$$T : \text{Phi}\mathcal{O}_\mathcal{S}, \mathcal{F} \to \text{Rep}_\mathcal{F}(G_{K_\infty}) : M \mapsto (k((u))^{\text{sep}} \otimes_{k((u))} M)^{\phi=1}$$

gives an equivalence of abelian categories as in [Kis, (1.1.12)]. Here ϕ acts on $k((u))$ by the p-th power map.

Let $V_\mathcal{F}$ be a continuous two-dimensional representation of G_K over \mathcal{F}. We take the ϕ-module $M_\mathcal{F} \in \text{Phi}\mathcal{O}_\mathcal{S}, \mathcal{F}$ such that $T(M_\mathcal{F})$ is isomorphic to $V_\mathcal{F}(-1)|_{G_{K_\infty}}$. Here (-1) denotes the inverse of the Tate twist.

From now on, we assume $\mathcal{O}_\mathcal{S} \subseteq \mathcal{F}$ and fix an embedding $k \to \mathcal{F}$. This assumption does not matter, because we may extend \mathcal{F} to prove the main theorem. We consider the isomorphism

$$\mathcal{O}_\mathcal{S} \otimes_{\mathcal{Z}_p} \mathcal{F} \cong k((u)) \otimes_{\mathcal{F}_p} \mathcal{F} \cong \prod_{\sigma \in \text{Gal}(k/\mathcal{F}_p)} \mathcal{F}((u)) : \left(\sum a_i u^i \right) \otimes b \mapsto \left(\sum \sigma(a_i) b u^i \right)_{\sigma}$$

and let $\epsilon_\sigma \in k((u)) \otimes_{\mathcal{F}_p} \mathcal{F}$ be the primitive idempotent corresponding to σ. Take $\sigma_1, \ldots, \sigma_n \in \text{Gal}(k/\mathcal{F}_p)$ such that $\sigma_{i+1} = \sigma_i \circ \phi^{-1}$. Here we regard ϕ as the p-th power Frobenius, and use the convention that $\sigma_{n+1} = \sigma_1$. In the following, we often use such conventions. Then we have $\phi(\epsilon_\sigma) = \epsilon_{\sigma_{i+1}}$, and $\phi : M_\mathcal{F} \to M_\mathcal{F}$ determines $\phi : \epsilon_\sigma M_\mathcal{F} \to \epsilon_{\sigma_{i+1}} M_\mathcal{F}$.

For $(A_i)_{1 \leq i \leq n} \in GL_2(\mathcal{F}((u)))^n$, we write

$$M_\mathcal{F} \sim (A_1, A_2, \ldots, A_n) = (A_i)$$

if there is a basis $\{e_1^i, e_2^i\}$ of $\epsilon_\sigma M_\mathcal{F}$ over $\mathcal{F}((u))$ such that $\phi \left(\begin{pmatrix} e_1^i \\ e_2^i \end{pmatrix} \right) = A_i \left(\begin{pmatrix} e_1^{i+1} \\ e_2^{i+1} \end{pmatrix} \right)$.

We use the same notation for any sublattice $\mathfrak{M}_\mathcal{F} \subset M_\mathcal{F}$ similarly. Here and in the following, we consider only sublattices that are $\mathcal{S} \otimes_{\mathcal{Z}_p} \mathcal{F}$-modules.

Finally, for any sublattice $\mathfrak{M}_\mathcal{F} \subset M_\mathcal{F}$ with a chosen basis $\{e_1^1, e_2^1\}$, we take $B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathcal{F}((u)))^n$, the module generated by the entries of $\left(B_i \left(\begin{pmatrix} e_1^1 \\ e_2^1 \end{pmatrix} \right) \right)$ with the basis given by these entries is denoted by $B \cdot \mathfrak{M}_\mathcal{F}$. Note that $B \cdot \mathfrak{M}_\mathcal{F}$ depends on the choice of the basis of $\mathfrak{M}_\mathcal{F}$.

For each \mathcal{O}_p-algebra embedding $\psi : K \to \mathcal{K}$, we put $v_\psi = 1$ and set $v = (v_\psi)$. Then $\mathcal{H}^{\mathfrak{M}_{\psi}, 0}$ is the moduli space of Kisin modules with p-adic Hodge type v. The rational points of $\mathcal{H}^{\mathfrak{M}_{\psi}, 0}$ are described as in the following.

Proposition 1.1. If \mathcal{F}' is a finite extension of \mathcal{F}, the elements of $\mathcal{H}^{\mathfrak{M}_{\psi}, 0}(\mathcal{F}')$ naturally correspond to free $k[[u]] \otimes_{\mathcal{F}_p} \mathcal{F}'$-submodules $\mathfrak{M}_{\mathcal{F}'} \subset M_\mathcal{F} \otimes_{\mathcal{F}} \mathcal{F}'$ of rank 2 that satisfy the following:

(1) $\mathfrak{M}_{\mathcal{F}'}$ is ϕ-stable.
(2) For some (so any) choice of $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}'$-basis for $\mathcal{M}_{\mathbb{F}'}$, and for each $\sigma \in \text{Gal}(k/\mathbb{F}_p)$, the map
\[\phi : \epsilon_{\sigma} \mathcal{M}_{\mathbb{F}'} \rightarrow \epsilon_{\sigma \phi}^{-1} \mathcal{M}_{\mathbb{F}'} \]
has determinant $\alpha \in \mathbb{F}'[[u]]$.

Proof. This is [Gee, Lemma 2.2]. \qed

2. Main theorem

To prove the main theorem, in fact we prove that the non-ordinary component of $\mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}$ is rationally connected. We use the following two Lemmas to join two points by \mathbb{P}^1.

Lemma 2.1. Suppose $x_1, x_2 \in \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}(\mathbb{F})$ correspond to objects $\mathcal{M}_{1,\mathbb{F}}, \mathcal{M}_{2,\mathbb{F}}$ of $(\text{Mod}/\mathcal{S})_{\mathbb{F}}$ respectively. We fix bases of $\mathcal{M}_{1,\mathbb{F}}, \mathcal{M}_{2,\mathbb{F}}$ over $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}$. We assume that there is a nilpotent element $N = (N_i)_{1 \leq i \leq n}$ of $M_2(\mathbb{F}((u)))^n$ such that $\mathcal{M}_{1,\mathbb{F}} = (1 + N) \cdot \mathcal{M}_{1,\mathbb{F}}$. Let $A = (A_i)_{1 \leq i \leq n}$ be an element of $GL_2(\mathbb{F}((u)))^n$ such that $\mathcal{M}_{1,\mathbb{F}} \sim A$. If $\phi(N_i)A_iN_i+1 \in M_2(\mathbb{F}[[u]])$ for all i, then there is a morphism $\mathbb{P}^1 \rightarrow \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}$ sending 0 to x_1 and 1 to x_2.

Proof. This is [Gee, Lemma 2.4]. \qed

Lemma 2.2. Suppose $n \geq 2$. Let $\mathcal{M}_{\mathbb{F}}$ be the object of $(\text{Mod}/\mathcal{S})_{\mathbb{F}}$ corresponding to a point $x \in \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}(\mathbb{F})$. Fix a basis of $\mathcal{M}_{\mathbb{F}}$ over $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}$. Consider $U^{(i)} = (U^{(i)}_{j})_{1 \leq j \leq n} \in GL_2(\mathbb{F}((u)))^n$ such that $U^{(i)}_1 = \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$ and $U^{(i)}_j = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for all $j \neq i$. If $U^{(i)} : \mathcal{M}_{\mathbb{F}}$ is ϕ-stable, it corresponds to a point $x' \in \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}(\mathbb{F})$, and there is a morphism $\mathbb{P}^1 \rightarrow \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}$ sending 0 to x and 1 to x'. If $(U^{(i)})^{-1} : \mathcal{M}_{\mathbb{F}}$ is ϕ-stable, it corresponds to a point $x'' \in \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}(\mathbb{F})$, and there is a morphism $\mathbb{P}^1 \rightarrow \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}$ sending 0 to x and 1 to x''.

Proof. This is [Ima, Lemma 2.3]. \qed

To prove the main theorem, it suffices to show the following theorem. The strategy of the proof is the same as in [Ima], and we focus on the changed points in the case $p = 2$.

Theorem 2.3. Let \mathbb{F}' be a finite extension of \mathbb{F}. Suppose $x_1, x_2 \in \mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}(\mathbb{F}')$ correspond to objects $\mathcal{M}_{1,\mathbb{F}}, \mathcal{M}_{2,\mathbb{F}}$ of $(\text{Mod}/\mathcal{S})_{\mathbb{F}'}$ respectively. If $\mathcal{M}_{1,\mathbb{F}}$ and $\mathcal{M}_{2,\mathbb{F}}$ are both non-ordinary, then x_1 and x_2 lie on the same connected component of $\mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}$.

Proof. When $n = 1$, this was proved in [Kis], and we did not use the condition $p > 2$ in the proof. If $e < p - 1$, then $\mathcal{A}_{\mathbb{F}_{\mathcal{V}_0}}(\mathbb{F}')$ is one point by [Ray, Theorem 3.3.3]. So we may assume $n \geq 2$ and $e \geq p - 1$. Furthermore, replacing V_2 by $V_2 \otimes_{\mathbb{F}_p} \mathbb{F}'$, we may assume $\mathbb{F} = \mathbb{F}'$.

In the case where V_2 is reducible, the proof of [Ima, Theorem 2.4] goes on, even if $p = 2$. So, by a base change, we may assume that V_2 is absolutely irreducible. As in the proof of [Ima, Theorem 2.4], we can prove that, after extending the field \mathbb{F}, there exists a basis such that
\[
M_{\mathbb{F}} \sim \begin{pmatrix} \alpha_1 \& 0 \& u^{e_1} \\ 0 \& u^{e_1} \& 0 \end{pmatrix} \cdot \alpha_2 \begin{pmatrix} u^{e_2} \& 0 \& 0 \\ 0 \& u^{e_2} \& 0 \end{pmatrix} \cdots \cdots \alpha_n \begin{pmatrix} u^{e_n} \& 0 \& 0 \\ 0 \& 0 \& u^{e_n} \end{pmatrix}.
\]
where \(\alpha_i \in \mathbb{F} \), \(0 \leq s_i, t_i \leq e \), \(s_i + t_i = e \) and \(|s_i - t_i| \leq p + 1 \) for all \(i \). Note that we have proved that we may assume \(|s_i - t_i| \leq p + 1 \) for all \(i \) in the last paragraph of [Ima, p. 1197].

Let \(\mathcal{M}_{\mathcal{F}, 0} \) be the \(\mathbb{F}_p \)-module generated by the basis giving the above matrix expression. Then \(\mathcal{M}_{\mathcal{F}, 0} \) satisfies the condition in Proposition 1.1. We take the point \(x_0 \) of \(\mathcal{F}_{\mathcal{F}, 0}(\mathbb{F}) \) corresponding to \(\mathcal{M}_{\mathcal{F}, 0} \). We are going to prove that \(x_0 \) and \(x_1 \) lie on the same connected component. We can prove that \(x_0 \) and \(x_2 \) lie on the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take \(B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}((u))) \) such that \(\mathcal{M}_{1, \mathcal{F}} = B \cdot \mathcal{M}_{0, \mathcal{F}} \) and \(B_i = \left(\begin{array}{cc} u_i & v_i \\ 0 & u_i \end{array} \right) \) for \(a_i \in \mathbb{Z} \) and \(v_i \in \mathbb{F}((u)) \). Then we put \(r_i = v_i(u_i) \). Now we have

\[
\phi(B_1) \left(\begin{array}{cc} 0 & u_1^r \\ u_1 & 0 \end{array} \right) B_1^{-1} = \left(\begin{array}{cc} \phi(v_1)u_1^{a_1} & u_1^{a_1} - \phi(v_1)v_1^r \\ v_1^r & -v_1^{a_1} \end{array} \right),
\]

\[
\phi(B_2) \left(\begin{array}{cc} u_1^r & 0 \\ 0 & u_1 \\ \end{array} \right) B_2^{-1} = \left(\begin{array}{cc} u_1^{a_1} - \phi(v_1)v_1^r & -u_1^{a_1} + v_1^r \\ v_1^r & u_1^{a_1} - \phi(v_1)v_1^r \end{array} \right)
\]

for \(2 \leq i \leq n \). On the right-hand sides, every component of the matrices is integral because \(\mathcal{M}_{1, \mathcal{F}} \) is \(\phi \)-stable.

First, we consider the case \(t_1 + pa_1 + a_2 > e \). In this case,

\[
(pr_1 + t_1 + a_2) + (r_2 + t_1 + pa_1) = e, \quad s_1 - pa_1 - a_2 = pr_1 + r_2 + t_1 < 0
\]

by the \(\phi \)-stability and the determinant conditions of \(\mathcal{M}_{1, \mathcal{F}} \). We have \(a_1 > r_1 \), because \(t_1 + pa_1 + a_2 > e \geq pr_1 + t_1 + a_2 \). Similarly, we have \(a_2 > r_2 \), because \(t_1 + pa_1 + a_2 > e \geq r_2 + t_1 + pa_1 \).

We consider the following operations:

\[
a_i \sim a_i - 1, \quad v_i \sim uv_i, \quad \text{if it preserves the } \phi \text{-stability of } B \cdot \mathcal{M}_{0, \mathcal{F}}.
\]

These operations replace \(x_1 \) by a point that lies on the same connected component as \(x_1 \) by Lemma 2.2. We prove that we can continue these operations until we get to the situation where \(t_1 + pa_1 + a_2 \leq e \). In other words, we reduce the problem to the case \(t_1 + pa_1 + a_2 \leq e \). If we can continue the operations endlessly, we get to the situation where \(t_1 + pa_1 + a_2 \leq e \), because the conditions \(s_i - pa_i + a_{i+1} \geq 0 \) for \(2 \leq i \leq n \) exclude that both \(a_1 \) and \(a_2 \) remain bounded below. Suppose we cannot continue the operations. This is equivalent to the following condition:

\[
s_n - pa_n + a_1 = 0 \quad \text{or} \quad r_2 + t_1 + pa_1 \leq p - 1,
\]

\[
pr_1 + t_1 + a_2 = 0 \quad \text{or} \quad t_2 + pa_2 - a_3 \leq p - 1,
\]

\[
s_i - pa_i - a_i = 0 \quad \text{or} \quad t_i + pa_i - a_{i+1} \leq p - 1 \quad \text{for each } 3 \leq i \leq n.
\]

If \(e \geq p \), there are only the following two cases, because \((pr_1 + t_1 + a_2) + (r_2 + t_1 + pa_1) = e \) and \((s_i - pa_i + a_{i+1}) + (t_i + pa_i - a_{i+1}) = e \) for \(2 \leq i \leq n \).

Case 1: \(pr_1 + t_1 + a_2 = 0, \ s_i - pa_i + a_{i+1} = 0 \) for \(2 \leq i \leq n \). Case 2: \(r_2 + t_1 + pa_1 \leq p - 1, \ t_1 + pa_i - a_{i+1} \leq p - 1 \) for \(2 \leq i \leq n \).

If \(e = p - 1 \), clearly it is in Case 2.

In the Case 1, we have a contradiction as in the proof of [Ima, Theorem 2.4]. So we may assume that it is in the Case 2.
Then we can show that
\[r_i < a_i, \quad pr_i + t_i - a_{i+1} = r_{i+1} + s_i - pa_i < 0 \quad \text{for } 2 \leq i \leq n \]
as in the proof of [Ima, Theorem 2.4]. Combining these equations with \(s_1 - pa_1 - a_2 = pr_1 + r_2 + t_1 \), we get
\[
- (p^n + 1)r_1 = (p^n + 1)a_1 + (s_n - t_n) + p(s_{n-1} - t_{n-1}) + \cdots + p^{n-3}(s_3 - t_3) + p^{n-2}(s_2 - t_2) - p^{n-1}(s_1 - t_1),
\]
\[
- (p^n + 1)r_2 = (p^n + 1)a_2 - (s_1 - t_1) - p(s_n - t_n) - \cdots - p^{n-3}(s_4 - t_4) - p^{n-2}(s_3 - t_3) - p^{n-1}(s_2 - t_2),
\]
\[
- (p^n + 1)r_3 = (p^n + 1)a_3 + (s_2 - t_2) - p(s_1 - t_1) - \cdots - p^{n-3}(s_5 - t_5) - p^{n-2}(s_4 - t_4) - p^{n-1}(s_3 - t_3),
\]
\[
\vdots
\]
\[
- (p^n + 1)r_n = (p^n + 1)a_n + (s_{n-1} - t_{n-1}) + p(s_{n-2} - t_{n-2}) + \cdots + p^{n-3}(s_2 - t_2) - p^{n-2}(s_1 - t_1) - p^{n-1}(s_n - t_n).
\]
As \(|s_i - t_i| \leq p + 1 \) and
\[
(p + 1) + p(p + 1) + \cdots + p^{n-1}(p + 1) = \left(\frac{p^n - 1}{p - 1} \right)(p + 1) < 3(p^n + 1),
\]
we get \(-a_i - 2 \leq r_i \leq -a_i + 2\). If \(e = p \), as \(|s_i - t_i| \leq p \) and
\[
p + p^2 + \cdots + p^n = \left(\frac{p^n - 1}{p - 1} \right)p < 2(p^n + 1),
\]
we get \(-a_i - 1 \leq r_i \leq -a_i + 1\). If \(e = p - 1 \), as \(|s_i - t_i| \leq p - 1 \) and
\[
(p - 1) + p(p - 1) + \cdots + p^{n-1}(p - 1) = \left(\frac{p^n - 1}{p - 1} \right)(p - 1) < (p^n + 1),
\]
we get \(-a_i = r_i\).
As \(r_2 + t_1 + pa_1 \leq p - 1 \), we have
\[
pa_1 \leq t_1 + pa_1 \leq p - 1 - r_2 \leq a_2 + p + 1.
\]
For \(2 \leq i \leq n \), as \(t_i + pa_i - a_{i+1} \leq p - 1 \), we have
\[
pa_i \leq t_i + pa_i \leq a_{i+1} + p - 1.
\]
Take an index \(i_0 \) such that \(a_{i_0} \) is the greatest. If \(2 \leq i_0 \leq n \), we get \(a_{i_0} \leq 1 \) by \(pa_{i_0} \leq a_{i_0 + 1} + p - 1 \leq a_{i_0} + p - 1 \). If \(i_0 = 1 \) and \(a_1 \geq 3 \), we get \(a_2 \geq 3 \), by \(pa_1 \leq a_2 + p + 1 \), and this contradicts the case where \(2 \leq i_0 \leq n \). So, if \(i_0 = 1 \), we have \(a_1 \leq 2 \). Combining \(-a_i - 2 \leq r_i \) and \(r_i < a_i \), we get \(a_i \geq 0 \). Hence \(0 \leq a_i \leq 2 \) and \(0 \leq a_i \leq 1 \) for \(2 \leq i \leq n \).
First, we assume \(a_2 = 0 \). Now we have \(-2 \leq r_2 \leq -1 \). Comparing \(t_1 + pa_1 + a_2 > e \) with \(r_2 + t_1 + pa_1 \leq p - 1 \), we get \(e \leq p - 2 - r_2 \). If \(r_2 = -2 \), we get \(e \leq p \). Then we have \(-a_2 - 1 \leq r_2 \), and this is a contradiction. If \(r_2 = -1 \), we get \(e \leq p - 1 \). Then we have \(-a_2 = r_2 \), and this is a contradiction.
Next, we assume \(a_2 = 1 \). As \(0 \leq t_i + pa_i - a_{i+1} \leq p - 1 \) for \(2 \leq i \leq n \), we have \(a_i = 1 \) for all \(i \) and \(t_i = 0 \) for \(2 \leq i \leq n \). As \(r_2 + pa_1 + t_1 \leq p - 1 \), we have \(r_2 \leq -1 \).
As \(p r_2 + t_2 - a_3 = r_3 + s_2 - p a_2 \), we have \(r_1 = p r_2 + p - e - 1 \leq -e - 1 \). If \(e \geq p + 1 \), then \(-a_3 - 2 \leq r_1 \) and \(r_3 \leq -e - 1 \leq -4 \). This is a contradiction. If \(e = p \), then \(-a_3 - 1 \leq r_3 \) and \(r_3 \leq -e - 1 \leq -3 \). This is a contradiction. If \(e = p - 1 \), then \(-a_3 = r_3 \) and \(r_3 \leq -e - 1 \leq -2 \). This is a contradiction.

Thus we may assume \(t_1 + p a_1 + a_2 \leq e \). We put \(\mathcal{M}_{3,F} = \left(\begin{pmatrix} u^{-a_1} & 0 \\ 0 & u^{a_1} \end{pmatrix} \right)_i \mathcal{M}_{0,F} \), then

\[
\mathcal{M}_{3,F} \sim \left(\begin{array}{ccc} 0 & u^{s_1-pa_1-a_2} & 0 \\ u_{t_1+pa_1+a_2} & 0 & 0 \\ 0 & u_{t_2+pa_2-a_3} & 0 \\ \vdots & \vdots & \vdots \\ 0 & u_{t_i+pa_i-a_{i+1}} & 0 \end{array} \right),
\]

and \(\mathcal{M}_{1,F} = \left(\begin{pmatrix} 1 & v_i u^{-a_i} \\ 0 & 1 \end{pmatrix} \right)_i \mathcal{M}_{3,F} \). Note that \(\mathcal{M}_{3,F} \) satisfies the conditions of Proposition 1.1, and let \(x_3 \) be the point of \(\mathcal{R}^N_{V_{p,0}} \) corresponding to \(\mathcal{M}_{3,F} \). If we put \(N_i = \left(\begin{pmatrix} 0 & 0 \\ 0 & v_i u^{-a_i} \end{pmatrix} \right) \), then

\[
\phi(N_i) \left(\begin{array}{ccc} 0 & u^{s_1-pa_1-a_2} & 0 \\ u_{t_1+pa_1+a_2} & 0 & 0 \\ 0 & u_{t_2+pa_2-a_3} & 0 \end{array} \right) N_2 = \left(\begin{array}{ccc} 0 & \phi(v_i) v_2 u^{t_1} & 0 \\ 0 & 0 & 0 \end{array} \right),
\]

and

\[
\phi(N_i) \left(\begin{array}{ccc} 0 & u^{s_i-pa_i+a_{i+1}} & 0 \\ u_{t_i+pa_i-a_{i+1}} & 0 & 0 \end{array} \right) N_{i+1} = 0
\]

for \(2 \leq i \leq n \). Here we have \(v_n \phi(v_i) v_2 u^{t_1} \geq 0 \), because \(s_1 - pa_1 - a_2 \geq 0 \) and \(v_n \left(u^{s_1-pa_1-a_2} - \phi(v_i) v_2 u^{t_1} \right) \geq 0 \). Hence \(x_1 \) and \(x_3 \) lie on the same connected component by Lemma 2.1.

We are going to compare \(\mathcal{M}_{0,F} \) and \(\mathcal{M}_{3,F} \). First, we treat the case \(e \geq p \). We consider the operations that decrease \(|a_i| \) by 1 for an index \(i \) keeping the condition of \(\phi \)-stability. By Lemma 2.2, these operations do not affect which of the connected components \(x_3 \) lies on. We prove that we can continue the operations until we have \(a_i = 0 \) for all \(i \), that is, \(x_0 \) and \(x_3 \) lie on the same connected component. Suppose that we cannot continue the operations and there is some nonzero \(a_i \). The condition of \(\phi \)-stability is equivalent to

\[
C_1 : 0 \leq s_1 - pa_1 - a_2 \leq e, \quad C_2 : 0 \leq s_2 - pa_2 + a_3 \leq e, \\
\ldots, C_n : 0 \leq s_n - pa_n + a_1 \leq e.
\]

Note that if \(a_i \neq 0 \) or \(a_{i+1} \neq 0 \), we can decrease \(|a_i| \) or \(|a_{i+1}| \) keeping \(C_i \), because \(e \geq p \).

We put

\[
c_i = \sharp \{ i \leq j \leq i + 1 \mid we \ can \ decrease \ |a_j| \ keeping \ C_i \},
\]

and claim that \(\sharp \{ j \mid a_j \neq 0 \} = \sum_{i=1}^{n} c_i \). First, if \(a_i \neq 0 \), we have \(c_{i-1} \geq 1 \) and \(c_i \geq 1 \) from the above remark. So we have \(\sharp \{ j \mid a_j \neq 0 \} \leq \sum_{i=1}^{n} c_i \). Second, we count \(a_i \neq 0 \) in not both of \(C_{i-1} \) and \(C_i \), because we cannot continue the operations. So we have \(\sharp \{ j \mid a_j \neq 0 \} \geq \sum_{i=1}^{n} c_i \). Hence we have equality. From this equality, we have \(a_i \neq 0 \) and \(c_i = 1 \) for all \(i \). For \(2 \leq i \leq n \), we have \(a_i a_{i+1} > 0 \) because \(c_i = 1 \). So we have \(a_1 a_2 > 0 \), but this contradicts \(c_1 = 1 \).
In the case $e = p - 1$. We have $|pa_1 + a_2| \leq p - 1$ by C_1, and $|pa_i - a_{i+1}| \leq p - 1$ by C_i for $2 \leq i \leq n$. Summing up these inequalities after multiplying some p-powers so that we can eliminate a_j for $j \neq i$, we get $|(p^n + 1)a_i| \leq p^n - 1$. So we have $a_i = 0$ for all i.

Hence x_0 and x_3 lie on the same connected component. This completes the proof. \hfill \square

References

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

E-mail address: naoki@kurims.kyoto-u.ac.jp