ON THE CONNECTED COMPONENTS OF MODULI SPACES OF KISIN MODULES

NAOKI IMAI

Abstract

We give a proof of a conjecture on the connected components of moduli spaces of Kisin module, which is valid also in the case $p=2$.

Introduction

Let K be a p-adic field, and let $V_{\mathbb{F}}$ be a two-dimensional continuous representation of the absolute Galois group G_{K} over a finite field \mathbb{F} of characteristic p. Take a ϕ-module $M_{\mathbb{F}}$ corresponding to the Galois representation $V_{\mathbb{F}}(-1)$. As in [Kis, Corollary 2.1.13], we can construct a moduli space $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}$ of Kisin modules in $M_{\mathbb{F}}$, that is a projective scheme over \mathbb{F}. Let $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}$ be a closed subscheme of $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}$ determined by the condition that p-adic Hodge type is $\mathbf{v}=1$.

In the case $p>2$, a Kisin module in $M_{\mathbb{F}}$ corresponds a finite flat models of $V_{\mathbb{F}}$, and $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}$ is called a moduli space of finite flat models of $V_{\mathbb{F}}$. In this case, Kisin conjectured that the non-ordinary locus of $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}$ is connected. (In fact, this is a special case of [Kis, Conjecture 2.4.16].) This conjecture was proved by Kisin in [Kis] if K is totally ramified over \mathbb{Q}_{p}, by Gee in [Gee] if $V_{\mathbb{F}}$ is the trivial representation, and by the author in [Ima] for general K and $V_{\mathbb{F}}$. In the proof in [Ima], we need the condition $p>2$. In this paper, we prove the conjecture for all p. The main theorem is the following.

Theorem. The non-ordinary locus of $\mathscr{G}_{\mathscr{R}_{V_{\mathbb{F}}, 0}}^{\mathbf{v}}$ is geometrically connected.
The outline of the proof is the same as the proof in [Ima], but we need some more sophisticated arguments to treat the case $p=2$.

Acknowledgment. The author would like to thank Mark Kisin for suggesting him to consider the problem of the connectedness in the case $p=2$. He is grateful to a referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let p be a prime number, and k be a finite extension of \mathbb{F}_{p} of cardinality $q=p^{n}$. The Witt ring of k is denoted by $W(k)$, and let $K_{0}=W(k)[1 / p]$. Let K be a totally ramified extension of K_{0} of degree e, and \mathcal{O}_{K} be the ring of integers of K. The absolute Galois group of K is denoted by G_{K}. Let \mathbb{F} be a finite field of characteristic p. The formal power series ring of u over \mathbb{F} is denoted by $\mathbb{F}[[u]]$, and its quotient field is denoted by $\mathbb{F}((u))$. Let v_{u} be the valuation of $\mathbb{F}((u))$ normalized by $v_{u}(u)=1$. For a field F, the algebraic closure of F is denoted by \bar{F} and the separable closure of F is denoted by $F^{\text {sep }}$.

1. Preliminaries

First of all, we recall some notation from [Kis], and the interested reader should consult [Kis] for more detailed definitions.

We put $\mathfrak{S}=W(k)[[u]]$. Let $\mathcal{O}_{\mathcal{E}}$ be the p-adic completion of $\mathfrak{S}[1 / u]$. There is an action of ϕ on $\mathcal{O}_{\mathcal{E}}$ determined by Frobenius on $W(k)$ and $u \mapsto u^{p}$. We take and fix a uniformizer π of \mathcal{O}_{K}. We choose elements $\pi_{m} \in \bar{K}$ such that $\pi_{0}=\pi$ and $\pi_{m+1}^{p}=\pi_{m}$ for $m \geq 0$, and put $K_{\infty}=\bigcup_{m \geq 0} K\left(\pi_{m}\right)$. Let $\Phi \mathrm{M}_{\mathcal{O}_{\mathcal{E}}, \mathbb{F}}$ be the category of finite $\mathcal{O}_{\mathcal{E}} \otimes_{\mathbb{Z}_{p}} \mathbb{F}$-modules M equipped with ϕ-semi-linear map $M \rightarrow M$ such that the induced $\mathcal{O}_{\mathcal{E}} \otimes_{\mathbb{Z}_{p}} \mathbb{F}$-linear map $\phi^{*}(M) \rightarrow M$ is an isomorphism. Let $\operatorname{Rep}_{\mathbb{F}}\left(G_{K_{\infty}}\right)$ be the category of finite-dimensional continuous representations of $G_{K_{\infty}}$ over \mathbb{F}. Then the functor

$$
T: \Phi \mathrm{M}_{\mathcal{O}_{\mathcal{E}}, \mathbb{F}} \rightarrow \operatorname{Rep}_{\mathbb{F}}\left(G_{K_{\infty}}\right) ; M \mapsto\left(k((u))^{\operatorname{sep}} \otimes_{k((u))} M\right)^{\phi=1}
$$

gives an equivalence of abelian categories as in [Kis, (1.1.12)]. Here ϕ acts on $k((u))^{\text {sep }}$ by the p-th power map.

Let $V_{\mathbb{F}}$ be a continuous two-dimensional representation of G_{K} over \mathbb{F}. We take the ϕ-module $M_{\mathbb{F}} \in \Phi \mathrm{M}_{\mathcal{O}_{\mathcal{E}}, \mathbb{F}}$ such that $T\left(M_{\mathbb{F}}\right)$ is isomorphic to $\left.V_{\mathbb{F}}(-1)\right|_{G_{K_{\infty}}}$. Here (-1) denotes the inverse of the Tate twist.

From now on, we assume $\mathbb{F}_{q^{2}} \subset \mathbb{F}$ and fix an embedding $k \hookrightarrow \mathbb{F}$. This assumption does not matter, because we may extend \mathbb{F} to prove the main theorem. We consider the isomorphism

$$
\mathcal{O}_{\mathcal{E}} \otimes_{\mathbb{Z}_{p}} \mathbb{F} \cong k((u)) \otimes_{\mathbb{F}_{p}} \mathbb{F} \xrightarrow{\sim} \prod_{\sigma \in \operatorname{Gal}\left(k / \mathbb{F}_{p}\right)} \mathbb{F}((u)) ;\left(\sum a_{i} u^{i}\right) \otimes b \mapsto\left(\sum \sigma\left(a_{i}\right) b u^{i}\right)_{\sigma}
$$

and let $\epsilon_{\sigma} \in k((u)) \otimes_{\mathbb{F}_{p}} \mathbb{F}$ be the primitive idempotent corresponding to σ. Take $\sigma_{1}, \cdots, \sigma_{n} \in \operatorname{Gal}\left(k / \mathbb{F}_{p}\right)$ such that $\sigma_{i+1}=\sigma_{i} \circ \phi^{-1}$. Here we regard ϕ as the p-th power Frobenius, and use the convention that $\sigma_{n+i}=\sigma_{i}$. In the following, we often use such conventions. Then we have $\phi\left(\epsilon_{\sigma_{i}}\right)=\epsilon_{\sigma_{i+1}}$, and $\phi: M_{\mathbb{F}} \rightarrow M_{\mathbb{F}}$ determines $\phi: \epsilon_{\sigma_{i}} M_{\mathbb{F}} \rightarrow \epsilon_{\sigma_{i+1}} M_{\mathbb{F}}$.

For $\left(A_{i}\right)_{1 \leq i \leq n} \in G L_{2}(\mathbb{F}((u)))^{n}$, we write

$$
M_{\mathbb{F}} \sim\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left(A_{i}\right)_{i}
$$

if there is a basis $\left\{e_{1}^{i}, e_{2}^{i}\right\}$ of $\epsilon_{\sigma_{i}} M_{\mathbb{F}}$ over $\mathbb{F}((u))$ such that $\phi\binom{e_{1}^{i}}{e_{2}^{i}}=A_{i}\binom{e_{1}^{i+1}}{e_{2}^{i+1}}$.
We use the same notation for any sublattice $\mathfrak{M}_{\mathbb{F}} \subset M_{\mathbb{F}}$ similarly. Here and in the following, we consider only sublattices that are $\mathfrak{S} \otimes_{\mathbb{Z}_{p}} \mathbb{F}$-modules.

Finally, for any sublattice $\mathfrak{M}_{\mathbb{F}} \subset M_{\mathbb{F}}$ with a chosen basis $\left\{e_{1}^{i}, e_{2}^{i}\right\}_{1 \leq i \leq n}$ and $B=\left(B_{i}\right)_{1 \leq i \leq n} \in G L_{2}(\mathbb{F}((u)))^{n}$, the module generated by the entries of $\left\langle B_{i}\binom{e_{1}^{i}}{e_{2}^{i}}\right\rangle$ with the basis given by these entries is denoted by $B \cdot \mathfrak{M}_{\mathbb{F}}$. Note that $B \cdot \mathfrak{M}_{\mathbb{F}}$ depends on the choice of the basis of $\mathfrak{M}_{\mathbb{F}}$.

For each \mathbb{Q}_{p}-algebra embedding $\psi: K \rightarrow \bar{K}_{0}$, we put $v_{\psi}=1$ and set $\mathbf{v}=\left(v_{\psi}\right)_{\psi}$. Then $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}$ is the moduli space of Kisin modules with p-adic Hodge type \mathbf{v}. The rational points of $\mathscr{G}_{\mathscr{R}_{V_{\mathbb{F}}, 0}}^{\mathbf{v}}$ are described as in the following.

Proposition 1.1. If \mathbb{F}^{\prime} is a finite extension of \mathbb{F}, the elements of $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{v}\left(\mathbb{F}^{\prime}\right)$ naturally correspond to free $k[[u]] \otimes_{\mathbb{F}_{p}} \mathbb{F}^{\prime}$-submodules $\mathfrak{M}_{\mathbb{F}^{\prime}} \subset M_{\mathbb{F}} \otimes_{\mathbb{F}} \mathbb{F}^{\prime}$ of rank 2 that satisfy the following:
(1) $\mathfrak{M}_{\mathbb{F}^{\prime}}$ is ϕ-stable.
(2) For some (so any) choice of $k[[u]] \otimes_{\mathbb{F}_{p}} \mathbb{F}^{\prime}$-basis for $\mathfrak{M}_{\mathbb{F}^{\prime}}$, and for each $\sigma \in$ $\operatorname{Gal}\left(k / \mathbb{F}_{p}\right)$, the map

$$
\phi: \epsilon_{\sigma} \mathfrak{M}_{\mathbb{F}^{\prime}} \rightarrow \epsilon_{\sigma \circ \phi^{-1}} \mathfrak{M}_{\mathbb{F}^{\prime}}
$$

has determinant αu^{e} for some $\alpha \in \mathbb{F}^{\prime}[[u]]^{\times}$.
Proof. This is [Gee, Lemma 2.2].

2. Main theorem

To prove the main theorem, in fact we prove that the non-ordinary component of $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}$ is rationally connected. We use the following two Lemmas to join two points by \mathbb{P}^{1}.
Lemma 2.1. Suppose $x_{1}, x_{2} \in \mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}(\mathbb{F})$ correspond to objects $\mathfrak{M}_{1, \mathbb{F}}, \mathfrak{M}_{2, \mathbb{F}}$ of $(\operatorname{Mod} / \mathfrak{S})_{\mathbb{F}}$ respectively. We fix bases of $\mathfrak{M}_{1, \mathbb{F}}, \mathfrak{M}_{2, \mathbb{F}}$ over $k[[u]] \otimes_{\mathbb{F}_{p}} \mathbb{F}$. We assume that there is a nilpotent element $N=\left(N_{i}\right)_{1 \leq i \leq n}$ of $M_{2}(\mathbb{F}((u)))^{n}$ such that $\mathfrak{M}_{2, \mathbb{F}}=(1+N) \cdot \mathfrak{M}_{1, \mathbb{F}}$. Let $A=\left(A_{i}\right)_{1 \leq i \leq n}$ be an element of $G L_{2}(\mathbb{F}((u)))^{n}$ such that $\mathfrak{M}_{1, \mathbb{F}} \sim A$. If $\phi\left(N_{i}\right) A_{i} N_{i+1} \in M_{2}(\mathbb{F}[[u]])$ for all i, then there is a morphism $\mathbb{P}^{1} \rightarrow \mathscr{G}_{\mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathrm{v}}}$ sending 0 to x_{1} and 1 to x_{2}.
Proof. This is [Gee, Lemma 2.4].
Lemma 2.2. Suppose $n \geq 2$. Let $\mathfrak{M}_{\mathbb{F}}$ be the object of $(\operatorname{Mod} / \mathfrak{S})_{\mathbb{F}}$ corresponding to a point $x \in \mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}(\mathbb{F})$. Fix a basis of $\mathfrak{M}_{\mathbb{F}}$ over $k[[u]] \otimes_{\mathbb{F}_{p}} \mathbb{F}$. Consider $U^{(i)}=$ $\left(U_{j}^{(i)}\right)_{1 \leq j \leq n} \in G L_{2}(\mathbb{F}((u)))^{n}$ such that $U_{i}^{(i)}=\left(\begin{array}{cc}u & 0 \\ 0 & u^{-1}\end{array}\right)$ and $U_{j}^{(i)}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ for all $j \neq i$. If $U^{(i)} \cdot \mathfrak{M}_{\mathbb{F}}$ is ϕ-stable, it corresponds to a point $x^{\prime} \in \mathscr{G}_{\mathscr{R}_{\mathbb{F}_{\mathbb{F}}, 0}}^{\mathbf{v}}(\mathbb{F})$, and there is a morphism $\mathbb{P}^{1} \rightarrow \mathscr{G}_{\mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}}$ sending 0 to x and 1 to x^{\prime}. If $\left(U^{(i)}\right)^{-1} \cdot \mathfrak{M}_{\mathbb{F}}$ is ϕ-stable, it corresponds to a point $x^{\prime \prime} \in \mathscr{G}_{\mathscr{R}_{V_{\mathbb{F}}, 0}}^{\mathbf{v}}(\mathbb{F})$, and there is a morphism $\mathbb{P}^{1} \rightarrow \mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathrm{v}}$ sending 0 to x and 1 to $x^{\prime \prime}$.
Proof. This is [Ima, Lemma 2.3].
To prove the main theorem, it suffices to show the following theorem. The strategy of the proof is the same as in [Ima], and we focus on the changed points in the case $p=2$.
Theorem 2.3. Let \mathbb{F}^{\prime} be a finite extension of \mathbb{F}. Suppose $x_{1}, x_{2} \in \mathscr{G}_{\mathscr{R}_{\mathbb{F}_{\mathbb{F}}, 0}^{\mathbf{v}}\left(\mathbb{F}^{\prime}\right)}^{\left(\mathfrak{M}^{\prime}\right)}$ correspond to objects $\mathfrak{M}_{1, \mathbb{F}^{\prime}}, \mathfrak{M}_{2, \mathbb{F}^{\prime}}$ of $(\operatorname{Mod} / \mathfrak{S})_{\mathbb{F}^{\prime}}$ respectively. If $\mathfrak{M}_{1, \mathbb{F}^{\prime}}$ and $\mathfrak{M}_{2, \mathbb{F}^{\prime}}$ are both non-ordinary, then x_{1} and x_{2} lie on the same connected component of $\mathscr{G} \mathscr{R}_{V_{\mathrm{F}}, 0}^{\mathrm{v}}$.
Proof. When $n=1$, this was proved in [Kis], and we did not use the condition $p>2$ in the proof. If $e<p-1$, then $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathrm{V}}\left(\mathbb{F}^{\prime}\right)$ is one point by [Ray, Theorem 3.3.3]. So we may assume $n \geq 2$ and $e \geq p-1$. Furthermore, replacing $V_{\mathbb{F}}$ by $V_{\mathbb{F}} \otimes_{\mathbb{F}} \mathbb{F}^{\prime}$, we may assume $\mathbb{F}=\mathbb{F}^{\prime}$.

In the case where $V_{\mathbb{F}}$ is reducible, the proof of [Ima, Theorem 2.4] goes on, even if $p=2$. So, by a base change, we may assume that $V_{\mathbb{F}}$ is absolutely irreducible. As in the proof of [Ima, Theorem 2.4], we can prove that, after extending the field \mathbb{F}, there exists a basis such that

$$
M_{\mathbb{F}} \sim\left(\alpha_{1}\left(\begin{array}{cc}
0 & u^{s_{1}} \\
u^{t_{1}} & 0
\end{array}\right), \alpha_{2}\left(\begin{array}{cc}
u^{s_{2}} & 0 \\
0 & u^{t_{2}}
\end{array}\right), \ldots, \alpha_{n}\left(\begin{array}{cc}
u^{s_{n}} & 0 \\
0 & u^{t_{n}}
\end{array}\right)\right)
$$

where $\alpha_{i} \in \mathbb{F}, 0 \leq s_{i}, t_{i} \leq e, s_{i}+t_{i}=e$ and $\left|s_{i}-t_{i}\right| \leq p+1$ for all i. Note that we have proved that we may assume $\left|s_{i}-t_{i}\right| \leq p+1$ for all i in the last paragraph of [Ima, p. 1197]

Let $\mathfrak{M}_{\mathbb{F}, 0}$ be the $k[[u]] \otimes_{\mathbb{F}_{p}} \mathbb{F}$-module generated by the basis giving the above matrix expression. Then $\mathfrak{M}_{\mathbb{F}, 0}$ satisfies the condition in Proposition 1.1. We take the point x_{0} of $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathrm{V}}(\mathbb{F})$ corresponding to $\mathfrak{M}_{\mathbb{F}, 0}$. We are going to prove that x_{0} and x_{1} lie on the same connected component. We can prove that x_{0} and x_{2} lie on the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take $B=\left(B_{i}\right)_{1 \leq i \leq n} \in G L_{2}(\mathbb{F}((u)))^{n}$ such that $\mathfrak{M}_{1, \mathbb{F}}=B \cdot \mathfrak{M}_{0, \mathbb{F}}$ and $B_{i}=\left(\begin{array}{cc}u^{-a_{i}} & v_{i} \\ 0 & u^{a_{i}}\end{array}\right)$ for $a_{i} \in \mathbb{Z}$ and $v_{i} \in \mathbb{F}((u))$. Then we put $r_{i}=v_{u}\left(v_{i}\right)$. Now we have

$$
\begin{aligned}
& \phi\left(B_{1}\right)\left(\begin{array}{cc}
0 & u^{s_{1}} \\
u^{t_{1}} & 0
\end{array}\right) B_{2}^{-1}=\left(\begin{array}{cc}
\phi\left(v_{1}\right) u^{t_{1}+a_{2}} & u^{s_{1}-p a_{1}-a_{2}}-\phi\left(v_{1}\right) v_{2} u^{t_{1}} \\
u^{t_{1}+p a_{1}+a_{2}} & -v_{2} u^{t_{1}+p a_{1}}
\end{array}\right), \\
& \phi\left(B_{i}\right)\left(\begin{array}{cc}
u^{s_{i}} & 0 \\
0 & u^{t_{i}}
\end{array}\right) B_{i+1}^{-1}=\left(\begin{array}{cc}
u^{s_{i}-p a_{i}+a_{i+1}} & \phi\left(v_{i}\right) u^{t_{i}-a_{i+1}-v_{i+1} u^{s_{i}-p a_{i}}} \\
0 & u^{t_{i}+p a_{i}-a_{i+1}}
\end{array}\right)
\end{aligned}
$$

for $2 \leq i \leq n$. On the right-hand sides, every component of the matrices is integral because $\mathfrak{M}_{1, \mathbb{F}}$ is ϕ-stable.

First, we consider the case $t_{1}+p a_{1}+a_{2}>e$. In this case,

$$
\left(p r_{1}+t_{1}+a_{2}\right)+\left(r_{2}+t_{1}+p a_{1}\right)=e, s_{1}-p a_{1}-a_{2}=p r_{1}+r_{2}+t_{1}<0
$$

by the ϕ-stability and the determinant conditions of $\mathfrak{M}_{1, \mathbb{F}}$. We have $a_{1}>r_{1}$, because $t_{1}+p a_{1}+a_{2}>e \geq p r_{1}+t_{1}+a_{2}$. Similarly, we have $a_{2}>r_{2}$, because $t_{1}+p a_{1}+a_{2}>e \geq r_{2}+t_{1}+p a_{1}$.

We consider the following operations:

$$
a_{i} \rightsquigarrow a_{i}-1, v_{i} \rightsquigarrow u v_{i}, \text { if it preserves the } \phi \text {-stability of } B \cdot \mathfrak{M}_{0, \mathbb{F}} .
$$

These operations replace x_{1} by a point that lies on the same connected component as x_{1} by Lemma 2.2. We prove that we can continue these operations until we get to the situation where $t_{1}+p a_{1}+a_{2} \leq e$. In other words, we reduce the problem to the case $t_{1}+p a_{1}+a_{2} \leq e$. If we can continue the operations endlessly, we get to the situation where $t_{1}+p a_{1}+a_{2} \leq e$, because the conditions $s_{i}-p a_{i}+a_{i+1} \geq 0$ for $2 \leq i \leq n$ exclude that both a_{1} and a_{2} remain bounded below. Suppose we cannot continue the operations. This is equivalent to the following condition:

$$
\begin{aligned}
s_{n}-p a_{n}+a_{1} & =0 \text { or } r_{2}+t_{1}+p a_{1} \leq p-1 \\
p r_{1}+t_{1}+a_{2} & =0 \text { or } t_{2}+p a_{2}-a_{3} \leq p-1, \\
s_{i-1}-p a_{i-1}+a_{i} & =0 \text { or } t_{i}+p a_{i}-a_{i+1} \leq p-1 \text { for each } 3 \leq i \leq n .
\end{aligned}
$$

If $e \geq p$, there are only the following two cases, because $\left(p r_{1}+t_{1}+a_{2}\right)+\left(r_{2}+t_{1}+\right.$ $\left.p a_{1}\right)=e$ and $\left(s_{i}-p a_{i}+a_{i+1}\right)+\left(t_{i}+p a_{i}-a_{i+1}\right)=e$ for $2 \leq i \leq n$.

Case 1: $p r_{1}+t_{1}+a_{2}=0, s_{i}-p a_{i}+a_{i+1}=0$ for $2 \leq i \leq n$.
Case 2: $r_{2}+t_{1}+p a_{1} \leq p-1, t_{i}+p a_{i}-a_{i+1} \leq p-1$ for $2 \leq i \leq n$.
If $e=p-1$, clearly it is in Case 2.
In the Case 1, we have a contradiction as in the proof of [Ima, Theorem 2.4]. So we may assume that it is in the Case 2.

Then we can show that

$$
r_{i}<a_{i}, p r_{i}+t_{i}-a_{i+1}=r_{i+1}+s_{i}-p a_{i}<0 \text { for } 2 \leq i \leq n
$$

as in the proof of [Ima, Theorem 2.4]. Combining these equations with $s_{1}-p a_{1}-$ $a_{2}=p r_{1}+r_{2}+t_{1}$, we get

$$
\begin{aligned}
&-\left(p^{n}+1\right) r_{1}=\left(p^{n}+1\right) a_{1}+\left(s_{n}-t_{n}\right)+p\left(s_{n-1}-t_{n-1}\right)+ \\
& \cdots+p^{n-3}\left(s_{3}-t_{3}\right)+p^{n-2}\left(s_{2}-t_{2}\right)-p^{n-1}\left(s_{1}-t_{1}\right) \\
&-\left(p^{n}+1\right) r_{2}=\left(p^{n}+1\right) a_{2}-\left(s_{1}-t_{1}\right)-p\left(s_{n}-t_{n}\right)- \\
& \cdots \cdots p^{n-3}\left(s_{4}-t_{4}\right)-p^{n-2}\left(s_{3}-t_{3}\right)-p^{n-1}\left(s_{2}-t_{2}\right) \\
&-\left(p^{n}+1\right) r_{3}=\left(p^{n}+1\right) a_{3}+\left(s_{2}-t_{2}\right)-p\left(s_{1}-t_{1}\right)- \\
& \cdots-p^{n-3}\left(s_{5}-t_{5}\right)-p^{n-2}\left(s_{4}-t_{4}\right)-p^{n-1}\left(s_{3}-t_{3}\right), \\
& \begin{array}{r}
\vdots
\end{array} \\
&-\left(p^{n}+1\right) r_{n}=\left(p^{n}+1\right) a_{n}+\left(s_{n-1}-t_{n-1}\right)+p\left(s_{n-2}-t_{n-2}\right)+ \\
& \cdots+p^{n-3}\left(s_{2}-t_{2}\right)-p^{n-2}\left(s_{1}-t_{1}\right)-p^{n-1}\left(s_{n}-t_{n}\right)
\end{aligned}
$$

As $\left|s_{i}-t_{i}\right| \leq p+1$ and

$$
(p+1)+p(p+1)+\cdots+p^{n-1}(p+1)=\left(\frac{p^{n}-1}{p-1}\right)(p+1)<3\left(p^{n}+1\right)
$$

we get $-a_{i}-2 \leq r_{i} \leq-a_{i}+2$. If $e=p$, as $\left|s_{i}-t_{i}\right| \leq p$ and

$$
p+p^{2}+\cdots+p^{n}=\left(\frac{p^{n}-1}{p-1}\right) p<2\left(p^{n}+1\right)
$$

we get $-a_{i}-1 \leq r_{i} \leq-a_{i}+1$. If $e=p-1$, as $\left|s_{i}-t_{i}\right| \leq p-1$ and

$$
(p-1)+p(p-1)+\cdots+p^{n-1}(p-1)=\left(\frac{p^{n}-1}{p-1}\right)(p-1)<\left(p^{n}+1\right)
$$

we get $-a_{i}=r_{i}$.
As $r_{2}+t_{1}+p a_{1} \leq p-1$, we have

$$
p a_{1} \leq t_{1}+p a_{1} \leq p-1-r_{2} \leq a_{2}+p+1
$$

For $2 \leq i \leq n$, as $t_{i}+p a_{i}-a_{i+1} \leq p-1$, we have

$$
p a_{i} \leq t_{i}+p a_{i} \leq a_{i+1}+p-1
$$

Take an index i_{0} such that $a_{i_{0}}$ is the greatest. If $2 \leq i_{0} \leq n$, we get $a_{i_{0}} \leq 1$ by $p a_{i_{0}} \leq a_{i_{0}+1}+p-1 \leq a_{i_{0}}+p-1$. If $i_{0}=1$ and $a_{1} \geq 3$, we get $a_{2} \geq 3$, by $p a_{1} \leq a_{2}+p+1$, and this contradicts the case where $2 \leq i_{0} \leq n$. So, if $i_{0}=1$, we have $a_{1} \leq 2$. Combining $-a_{i}-2 \leq r_{i}$ and $r_{i}<a_{i}$, we get $a_{i} \geq 0$. Hence $0 \leq a_{1} \leq 2$ and $0 \leq a_{i} \leq 1$ for $2 \leq i \leq n$.

First, we assume $a_{2}=0$. Now we have $-2 \leq r_{2} \leq-1$. Comparing $t_{1}+p a_{1}+a_{2}>$ e with $r_{2}+t_{1}+p a_{1} \leq p-1$, we get $e \leq p-2-r_{2}$. If $r_{2}=-2$, we get $e \leq p$. Then we have $-a_{2}-1 \leq r_{2}$, and this is a contradiction. If $r_{2}=-1$, we get $e \leq p-1$. Then we have $-a_{2}=r_{2}$, and this is a contradiction.

Next, we assume $a_{2}=1$. As $0 \leq t_{i}+p a_{i}-a_{i+1} \leq p-1$ for $2 \leq i \leq n$, we have $a_{i}=1$ for all i and $t_{i}=0$ for $2 \leq i \leq n$. As $r_{2}+p a_{1}+t_{1} \leq p-1$, we have $r_{2} \leq-1$.

As $p r_{2}+t_{2}-a_{3}=r_{3}+s_{2}-p a_{2}$, we have $r_{3}=p r_{2}+p-e-1 \leq-e-1$. If $e \geq p+1$, then $-a_{3}-2 \leq r_{3}$ and $r_{3} \leq-e-1 \leq-4$. This is a contradiction. If $e=p$, then $-a_{3}-1 \leq r_{3}$ and $r_{3} \leq-e-1 \leq-3$. This is a contradiction. If $e=p-1$, then $-a_{3}=r_{3}$ and $r_{3} \leq-e-1 \leq-2$. This is a contradiction.

Thus we may assume $t_{1}+p a_{1}+a_{2} \leq e$. We put $\mathfrak{M}_{3, \mathbb{F}}=\left(\left(\begin{array}{cc}u^{-a_{i}} & 0 \\ 0 & u^{a_{i}}\end{array}\right)\right)_{i} \cdot \mathfrak{M}_{0, \mathbb{F}}$, then

$$
\begin{aligned}
& \mathfrak{M}_{3, \mathbb{F}} \sim\left(\alpha_{1}\left(\begin{array}{cc}
0 & u^{s_{1}-p a_{1}-a_{2}} \\
u^{t_{1}+p a_{1}+a_{2}} & 0
\end{array}\right), \alpha_{2}\left(\begin{array}{cc}
u^{s_{2}-p a_{2}+a_{3}} & 0 \\
0 & u^{t_{2}+p a_{2}-a_{3}}
\end{array}\right),\right. \\
& \ldots, \alpha_{n}\left(\begin{array}{cc}
u^{s_{n}-p a_{n}+a_{1}} & 0 \\
0 & u^{t_{n}+p a_{n}-a_{1}}
\end{array}\right)
\end{aligned}
$$

and $\mathfrak{M}_{1, \mathbb{F}}=\left(\left(\begin{array}{cc}1 & v_{i} u^{-a_{i}} \\ 0 & 1\end{array}\right)\right)_{i} \cdot \mathfrak{M}_{3, \mathbb{F}}$. Note that $\mathfrak{M}_{3, \mathbb{F}}$ satisfies the conditions of Proposition 1.1, and let x_{3} be the point of $\mathscr{G} \mathscr{R}_{V_{\mathbb{F}}, 0}^{\mathbf{v}}$ corresponding to $\mathfrak{M}_{3, \mathbb{F}}$. If we put $N_{i}=\left(\begin{array}{cc}0 & v_{i} u^{-a_{i}} \\ 0 & 0\end{array}\right)$, then

$$
\begin{gathered}
\phi\left(N_{1}\right)\left(\begin{array}{cc}
0 & u^{s_{1}-p a_{1}-a_{2}} \\
u^{t_{1}+p a_{1}+a_{2}} & 0
\end{array}\right) N_{2}=\left(\begin{array}{cc}
0 & \phi\left(v_{1}\right) v_{2} u^{t_{1}} \\
0 & 0
\end{array}\right), \\
\phi\left(N_{i}\right)\left(\begin{array}{cc}
u^{s_{i}-p a_{i}+a_{i+1}} & 0 \\
0 & u^{t_{i}+p a_{i}-a_{i+1}}
\end{array}\right) N_{i+1}=0
\end{gathered}
$$

for $2 \leq i \leq n$. Here we have $v_{u}\left(\phi\left(v_{1}\right) v_{2} u^{t_{1}}\right) \geq 0$, because $s_{1}-p a_{1}-a_{2} \geq 0$ and $v_{u}\left(u^{s_{1}-p a_{1}-a_{2}}-\phi\left(v_{1}\right) v_{2} u^{t_{1}}\right) \geq 0$. Hence x_{1} and x_{3} lie on the same connected component by Lemma 2.1.

We are going to compare $\mathfrak{M}_{0, \mathbb{F}}$ and $\mathfrak{M}_{3, \mathbb{F}}$. First, we treat the case $e \geq p$. We consider the operations that decrease $\left|a_{i}\right|$ by 1 for an index i keeping the condition of ϕ-stability. By Lemma 2.2, these operations do not affect which of the connected components x_{3} lies on. We prove that we can continue the operations until we have $a_{i}=0$ for all i, that is, x_{0} and x_{3} lie on the same connected component. Suppose that we cannot continue the operations and there is some nonzero a_{i}. The condition of ϕ-stability is equivalent to

$$
\begin{aligned}
C_{1}: 0 \leq s_{1}-p a_{1}-a_{2} \leq e, C_{2}: 0 \leq s_{2}-p a_{2} & +a_{3} \leq e \\
& \ldots, C_{n}: 0 \leq s_{n}-p a_{n}+a_{1} \leq e
\end{aligned}
$$

Note that if $a_{i} \neq 0$ or $a_{i+1} \neq 0$, we can decrease $\left|a_{i}\right|$ or $\left|a_{i+1}\right|$ keeping C_{i}, because $e \geq p$.

We put

$$
c_{i}=\sharp\left\{i \leq j \leq i+1 \mid \text { we can decrease }\left|a_{j}\right| \text { keeping } C_{i}\right\},
$$

and claim that $\sharp\left\{j \mid a_{j} \neq 0\right\}=\sum_{i=1}^{n} c_{i}$. First, if $a_{i} \neq 0$, we have $c_{i-1} \geq 1$ and $c_{i} \geq 1$ from the above remark. So we have $\sharp\left\{j \mid a_{j} \neq 0\right\} \leq \sum_{i=1}^{n} c_{i}$. Second, we count $a_{i} \neq 0$ in not both of C_{i-1} and C_{i}, because we cannot continue the operations. So we have $\sharp\left\{j \mid a_{j} \neq 0\right\} \geq \sum_{i=1}^{n} c_{i}$. Hence we have equality. From this equality, we have $a_{i} \neq 0$ and $c_{i}=1$ for all i. For $2 \leq i \leq n$, we have $a_{i} a_{i+1}>0$ because $c_{i}=1$. So we have $a_{1} a_{2}>0$, but this contradicts $c_{1}=1$.

In the case $e=p-1$. We have $\left|p a_{1}+a_{2}\right| \leq p-1$ by C_{1}, and $\left|p a_{i}-a_{i+1}\right| \leq p-1$ by C_{i} for $2 \leq i \leq n$. Summing up these inequalities after multiplying some p-powers so that we can eliminate a_{j} for $j \neq i$, we get $\left|\left(p^{n}+1\right) a_{i}\right| \leq p^{n}-1$. So we have $a_{i}=0$ for all i.

Hence x_{0} and x_{3} lie on the same connected component. This completes the proof.

References

[Gee] T. Gee, A modularity lifting theorem for weight two Hilbert modular forms, Math. Res. Lett. 13 (2006), no. 5, 805-811.
[Ima] N. Imai, On the connected components of moduli spaces of finite flat models, Amer. J. Math. 132 (2010), no. 5, 1189-1204.
[Kis] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) $\mathbf{1 7 0}$ (2009), no. 3, 1085-1180.
[Ray] M. Raynaud, Schémas en groupes de type (p, \ldots, p), Bull. Soc. Math. France 102 (1974), 241-280.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

E-mail address: naoki@kurims.kyoto-u.ac.jp

