
ON THE CONNECTED COMPONENTS OF MODULI SPACES

OF KISIN MODULES

NAOKI IMAI

Abstract. We give a proof of a conjecture on the connected components of
moduli spaces of Kisin module, which is valid also in the case p = 2.

Introduction

LetK be a p-adic field, and let VF be a two-dimensional continuous representation
of the absolute Galois group GK over a finite field F of characteristic p. Take
a ϕ-module MF corresponding to the Galois representation VF(−1). As in [Kis,
Corollary 2.1.13], we can construct a moduli space G RVF,0 of Kisin modules in MF,
that is a projective scheme over F. Let G Rv

VF,0
be a closed subscheme of G RVF,0

determined by the condition that p-adic Hodge type is v = 1.
In the case p > 2, a Kisin module in MF corresponds a finite flat models of

VF, and G RVF,0 is called a moduli space of finite flat models of VF. In this case,
Kisin conjectured that the non-ordinary locus of G Rv

VF,0
is connected. (In fact,

this is a special case of [Kis, Conjecture 2.4.16]. ) This conjecture was proved by
Kisin in [Kis] if K is totally ramified over Qp, by Gee in [Gee] if VF is the trivial
representation, and by the author in [Ima] for general K and VF. In the proof in
[Ima], we need the condition p > 2. In this paper, we prove the conjecture for all
p. The main theorem is the following.

Theorem. The non-ordinary locus of G Rv
VF,0

is geometrically connected.

The outline of the proof is the same as the proof in [Ima], but we need some
more sophisticated arguments to treat the case p = 2.

Acknowledgment. The author would like to thank Mark Kisin for suggesting him
to consider the problem of the connectedness in the case p = 2. He is grateful to a
referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let p be a prime
number, and k be a finite extension of Fp of cardinality q = pn. The Witt ring
of k is denoted by W (k), and let K0 = W (k)[1/p]. Let K be a totally ramified
extension of K0 of degree e, and OK be the ring of integers of K. The absolute
Galois group of K is denoted by GK . Let F be a finite field of characteristic p. The
formal power series ring of u over F is denoted by F[[u]], and its quotient field is
denoted by F((u)). Let vu be the valuation of F((u)) normalized by vu(u) = 1. For
a field F , the algebraic closure of F is denoted by F and the separable closure of
F is denoted by F sep.
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1. Preliminaries

First of all, we recall some notation from [Kis], and the interested reader should
consult [Kis] for more detailed definitions.

We put S =W (k)[[u]]. Let OE be the p-adic completion of S[1/u]. There is an
action of ϕ on OE determined by Frobenius on W (k) and u 7→ up. We take and
fix a uniformizer π of OK . We choose elements πm ∈ K such that π0 = π and
πpm+1 = πm for m ≥ 0, and put K∞ =

∪
m≥0K(πm). Let ΦMOE ,F be the category

of finite OE ⊗Zp F-modules M equipped with ϕ-semi-linear map M →M such that
the induced OE ⊗Zp F-linear map ϕ∗(M) →M is an isomorphism. Let RepF(GK∞)
be the category of finite-dimensional continuous representations of GK∞ over F.
Then the functor

T : ΦMOE ,F → RepF(GK∞); M 7→
(
k((u))sep ⊗k((u)) M

)ϕ=1

gives an equivalence of abelian categories as in [Kis, (1.1.12)]. Here ϕ acts on
k((u))sep by the p-th power map.

Let VF be a continuous two-dimensional representation of GK over F. We take
the ϕ-module MF ∈ ΦMOE ,F such that T (MF) is isomorphic to VF(−1)|GK∞

. Here
(−1) denotes the inverse of the Tate twist.

From now on, we assume Fq2 ⊂ F and fix an embedding k ↪→ F. This assumption
does not matter, because we may extend F to prove the main theorem. We consider
the isomorphism

OE ⊗Zp F ∼= k((u))⊗Fp F ∼→
∏

σ∈Gal(k/Fp)

F((u)) ;
(∑

aiu
i
)
⊗ b 7→

(∑
σ(ai)bu

i
)
σ

and let ϵσ ∈ k((u)) ⊗Fp F be the primitive idempotent corresponding to σ. Take

σ1, · · · , σn ∈ Gal(k/Fp) such that σi+1 = σi ◦ ϕ−1. Here we regard ϕ as the p-th
power Frobenius, and use the convention that σn+i = σi. In the following, we often
use such conventions. Then we have ϕ(ϵσi) = ϵσi+1 , and ϕ : MF → MF determines
ϕ : ϵσiMF → ϵσi+1MF.

For (Ai)1≤i≤n ∈ GL2

(
F((u))

)n
, we write

MF ∼ (A1, A2, . . . , An) = (Ai)i

if there is a basis {ei1, ei2} of ϵσiMF over F((u)) such that ϕ

(
ei1
ei2

)
= Ai

(
ei+1
1

ei+1
2

)
.

We use the same notation for any sublattice MF ⊂ MF similarly. Here and in the
following, we consider only sublattices that are S⊗Zp F-modules.

Finally, for any sublattice MF ⊂ MF with a chosen basis {ei1, ei2}1≤i≤n and

B = (Bi)1≤i≤n ∈ GL2

(
F((u))

)n
, the module generated by the entries of

⟨
Bi

(
ei1
ei2

)⟩
with the basis given by these entries is denoted by B ·MF. Note that B ·MF depends
on the choice of the basis of MF.

For each Qp-algebra embedding ψ : K → K0, we put vψ = 1 and set v = (vψ)ψ.
Then G Rv

VF,0
is the moduli space of Kisin modules with p-adic Hodge type v. The

rational points of G Rv
VF,0

are described as in the following.

Proposition 1.1. If F′ is a finite extension of F, the elements of G Rv
VF,0

(F′)
naturally correspond to free k[[u]]⊗Fp F′-submodules MF′ ⊂MF⊗F F′ of rank 2 that
satisfy the following:

(1) MF′ is ϕ-stable.
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(2) For some (so any) choice of k[[u]] ⊗Fp F′-basis for MF′ , and for each σ ∈
Gal(k/Fp), the map

ϕ : ϵσMF′ → ϵσ◦ϕ−1MF′

has determinant αue for some α ∈ F′[[u]]×.

Proof. This is [Gee, Lemma 2.2]. �

2. Main theorem

To prove the main theorem, in fact we prove that the non-ordinary component
of G Rv

VF,0
is rationally connected. We use the following two Lemmas to join two

points by P1.

Lemma 2.1. Suppose x1, x2 ∈ G Rv
VF,0

(F) correspond to objects M1,F,M2,F of
(Mod/S)F respectively. We fix bases of M1,F,M2,F over k[[u]] ⊗Fp F. We as-

sume that there is a nilpotent element N = (Ni)1≤i≤n of M2

(
F((u))

)n
such that

M2,F = (1 + N) · M1,F. Let A = (Ai)1≤i≤n be an element of GL2

(
F((u))

)n
such

that M1,F ∼ A. If ϕ(Ni)AiNi+1 ∈ M2

(
F[[u]]

)
for all i, then there is a morphism

P1 → G Rv
VF,0

sending 0 to x1 and 1 to x2.

Proof. This is [Gee, Lemma 2.4]. �
Lemma 2.2. Suppose n ≥ 2. Let MF be the object of (Mod/S)F corresponding
to a point x ∈ G Rv

VF,0
(F). Fix a basis of MF over k[[u]] ⊗Fp F. Consider U (i) =

(U
(i)
j )1≤j≤n ∈ GL2

(
F((u))

)n
such that U

(i)
i =

(
u 0
0 u−1

)
and U

(i)
j =

(
1 0
0 1

)
for

all j ̸= i. If U (i) · MF is ϕ-stable, it corresponds to a point x′ ∈ G Rv
VF,0

(F), and
there is a morphism P1 → G Rv

VF,0
sending 0 to x and 1 to x′. If (U (i))−1 · MF

is ϕ-stable, it corresponds to a point x′′ ∈ G Rv
VF,0

(F), and there is a morphism

P1 → G Rv
VF,0

sending 0 to x and 1 to x′′.

Proof. This is [Ima, Lemma 2.3]. �
To prove the main theorem, it suffices to show the following theorem. The

strategy of the proof is the same as in [Ima], and we focus on the changed points
in the case p = 2.

Theorem 2.3. Let F′ be a finite extension of F. Suppose x1, x2 ∈ G Rv
VF,0

(F′)
correspond to objects M1,F′ ,M2,F′ of (Mod/S)F′ respectively. If M1,F′ and M2,F′

are both non-ordinary, then x1 and x2 lie on the same connected component of
G Rv

VF,0
.

Proof. When n = 1, this was proved in [Kis], and we did not use the condition
p > 2 in the proof. If e < p − 1, then G Rv

VF,0
(F′) is one point by [Ray, Theorem

3.3.3]. So we may assume n ≥ 2 and e ≥ p − 1. Furthermore, replacing VF by
VF ⊗F F′, we may assume F = F′.

In the case where VF is reducible, the proof of [Ima, Theorem 2.4] goes on, even
if p = 2. So, by a base change, we may assume that VF is absolutely irreducible.
As in the proof of [Ima, Theorem 2.4], we can prove that, after extending the field
F, there exists a basis such that

MF ∼

(
α1

(
0 us1

ut1 0

)
, α2

(
us2 0
0 ut2

)
, . . . , αn

(
usn 0
0 utn

))
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where αi ∈ F, 0 ≤ si, ti ≤ e, si + ti = e and |si − ti| ≤ p+ 1 for all i. Note that we
have proved that we may assume |si − ti| ≤ p+ 1 for all i in the last paragraph of
[Ima, p. 1197]

Let MF,0 be the k[[u]] ⊗Fp F-module generated by the basis giving the above
matrix expression. Then MF,0 satisfies the condition in Proposition 1.1. We take
the point x0 of G Rv

VF,0
(F) corresponding to MF,0. We are going to prove that x0

and x1 lie on the same connected component. We can prove that x0 and x2 lie on
the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take

B = (Bi)1≤i≤n ∈ GL2

(
F((u))

)n
such that M1,F = B ·M0,F and Bi =

(
u−ai vi
0 uai

)
for ai ∈ Z and vi ∈ F((u)). Then we put ri = vu(vi). Now we have

ϕ(B1)

(
0 us1

ut1 0

)
B−1

2 =

(
ϕ(v1)u

t1+a2 us1−pa1−a2 − ϕ(v1)v2u
t1

ut1+pa1+a2 −v2ut1+pa1

)
,

ϕ(Bi)

(
usi 0
0 uti

)
B−1
i+1 =

(
usi−pai+ai+1 ϕ(vi)u

ti−ai+1 − vi+1u
si−pai

0 uti+pai−ai+1

)
for 2 ≤ i ≤ n. On the right-hand sides, every component of the matrices is integral
because M1,F is ϕ-stable.

First, we consider the case t1 + pa1 + a2 > e. In this case,

(pr1 + t1 + a2) + (r2 + t1 + pa1) = e, s1 − pa1 − a2 = pr1 + r2 + t1 < 0

by the ϕ-stability and the determinant conditions of M1,F. We have a1 > r1,
because t1 + pa1 + a2 > e ≥ pr1 + t1 + a2. Similarly, we have a2 > r2, because
t1 + pa1 + a2 > e ≥ r2 + t1 + pa1.

We consider the following operations:

ai  ai − 1, vi  uvi, if it preserves the ϕ-stability of B ·M0,F.

These operations replace x1 by a point that lies on the same connected component
as x1 by Lemma 2.2. We prove that we can continue these operations until we get
to the situation where t1 + pa1 + a2 ≤ e. In other words, we reduce the problem to
the case t1 + pa1 + a2 ≤ e. If we can continue the operations endlessly, we get to
the situation where t1+pa1+a2 ≤ e, because the conditions si−pai+ai+1 ≥ 0 for
2 ≤ i ≤ n exclude that both a1 and a2 remain bounded below. Suppose we cannot
continue the operations. This is equivalent to the following condition:

sn − pan + a1 = 0 or r2 + t1 + pa1 ≤ p− 1,

pr1 + t1 + a2 = 0 or t2 + pa2 − a3 ≤ p− 1,

si−1 − pai−1 + ai = 0 or ti + pai − ai+1 ≤ p− 1 for each 3 ≤ i ≤ n.

If e ≥ p, there are only the following two cases, because (pr1 + t1 + a2) + (r2 + t1 +
pa1) = e and (si − pai + ai+1) + (ti + pai − ai+1) = e for 2 ≤ i ≤ n.

Case 1 : pr1 + t1 + a2 = 0, si − pai + ai+1 = 0 for 2 ≤ i ≤ n.

Case 2 : r2 + t1 + pa1 ≤ p− 1, ti + pai − ai+1 ≤ p− 1 for 2 ≤ i ≤ n.

If e = p− 1, clearly it is in Case 2.
In the Case 1, we have a contradiction as in the proof of [Ima, Theorem 2.4]. So

we may assume that it is in the Case 2.
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Then we can show that

ri < ai, pri + ti − ai+1 = ri+1 + si − pai < 0 for 2 ≤ i ≤ n

as in the proof of [Ima, Theorem 2.4]. Combining these equations with s1 − pa1 −
a2 = pr1 + r2 + t1, we get

− (pn + 1)r1 = (pn + 1)a1 + (sn − tn) + p(sn−1 − tn−1)+

· · ·+ pn−3(s3 − t3) + pn−2(s2 − t2)− pn−1(s1 − t1),

− (pn + 1)r2 = (pn + 1)a2 − (s1 − t1)− p(sn − tn)−
· · · − pn−3(s4 − t4)− pn−2(s3 − t3)− pn−1(s2 − t2),

− (pn + 1)r3 = (pn + 1)a3 + (s2 − t2)− p(s1 − t1)−
· · · − pn−3(s5 − t5)− pn−2(s4 − t4)− pn−1(s3 − t3),

...

− (pn + 1)rn = (pn + 1)an + (sn−1 − tn−1) + p(sn−2 − tn−2)+

· · ·+ pn−3(s2 − t2)− pn−2(s1 − t1)− pn−1(sn − tn).

As |si − ti| ≤ p+ 1 and

(p+ 1) + p(p+ 1) + · · ·+ pn−1(p+ 1) =

(
pn − 1

p− 1

)
(p+ 1) < 3(pn + 1),

we get −ai − 2 ≤ ri ≤ −ai + 2. If e = p, as |si − ti| ≤ p and

p+ p2 + · · ·+ pn =

(
pn − 1

p− 1

)
p < 2(pn + 1),

we get −ai − 1 ≤ ri ≤ −ai + 1. If e = p− 1, as |si − ti| ≤ p− 1 and

(p− 1) + p(p− 1) + · · ·+ pn−1(p− 1) =

(
pn − 1

p− 1

)
(p− 1) < (pn + 1),

we get −ai = ri.
As r2 + t1 + pa1 ≤ p− 1, we have

pa1 ≤ t1 + pa1 ≤ p− 1− r2 ≤ a2 + p+ 1.

For 2 ≤ i ≤ n, as ti + pai − ai+1 ≤ p− 1, we have

pai ≤ ti + pai ≤ ai+1 + p− 1.

Take an index i0 such that ai0 is the greatest. If 2 ≤ i0 ≤ n, we get ai0 ≤ 1 by
pai0 ≤ ai0+1 + p − 1 ≤ ai0 + p − 1. If i0 = 1 and a1 ≥ 3, we get a2 ≥ 3, by
pa1 ≤ a2 + p+ 1, and this contradicts the case where 2 ≤ i0 ≤ n. So, if i0 = 1, we
have a1 ≤ 2. Combining −ai− 2 ≤ ri and ri < ai, we get ai ≥ 0. Hence 0 ≤ a1 ≤ 2
and 0 ≤ ai ≤ 1 for 2 ≤ i ≤ n.

First, we assume a2 = 0. Now we have −2 ≤ r2 ≤ −1. Comparing t1+pa1+a2 >
e with r2 + t1 + pa1 ≤ p− 1, we get e ≤ p− 2− r2. If r2 = −2, we get e ≤ p. Then
we have −a2 − 1 ≤ r2, and this is a contradiction. If r2 = −1, we get e ≤ p − 1.
Then we have −a2 = r2, and this is a contradiction.

Next, we assume a2 = 1. As 0 ≤ ti + pai − ai+1 ≤ p− 1 for 2 ≤ i ≤ n, we have
ai = 1 for all i and ti = 0 for 2 ≤ i ≤ n. As r2 + pa1 + t1 ≤ p− 1, we have r2 ≤ −1.
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As pr2+ t2−a3 = r3+s2−pa2, we have r3 = pr2+p− e−1 ≤ −e−1. If e ≥ p+1,
then −a3 − 2 ≤ r3 and r3 ≤ −e − 1 ≤ −4. This is a contradiction. If e = p, then
−a3 − 1 ≤ r3 and r3 ≤ −e − 1 ≤ −3. This is a contradiction. If e = p − 1, then
−a3 = r3 and r3 ≤ −e− 1 ≤ −2. This is a contradiction.

Thus we may assume t1+pa1+a2 ≤ e. We put M3,F =

((
u−ai 0
0 uai

))
i

·M0,F,

then

M3,F ∼

(
α1

(
0 us1−pa1−a2

ut1+pa1+a2 0

)
, α2

(
us2−pa2+a3 0

0 ut2+pa2−a3

)
,

. . . , αn

(
usn−pan+a1 0

0 utn+pan−a1

))

and M1,F =

((
1 viu

−ai

0 1

))
i

· M3,F. Note that M3,F satisfies the conditions of

Proposition 1.1, and let x3 be the point of G Rv
VF,0

corresponding to M3,F. If we

put Ni =

(
0 viu

−ai

0 0

)
, then

ϕ(N1)

(
0 us1−pa1−a2

ut1+pa1+a2 0

)
N2 =

(
0 ϕ(v1)v2u

t1

0 0

)
,

ϕ(Ni)

(
usi−pai+ai+1 0

0 uti+pai−ai+1

)
Ni+1 = 0

for 2 ≤ i ≤ n. Here we have vu
(
ϕ(v1)v2u

t1
)
≥ 0, because s1 − pa1 − a2 ≥ 0

and vu
(
us1−pa1−a2 − ϕ(v1)v2u

t1
)
≥ 0. Hence x1 and x3 lie on the same connected

component by Lemma 2.1.
We are going to compare M0,F and M3,F. First, we treat the case e ≥ p. We

consider the operations that decrease |ai| by 1 for an index i keeping the condition
of ϕ-stability. By Lemma 2.2, these operations do not affect which of the connected
components x3 lies on. We prove that we can continue the operations until we have
ai = 0 for all i, that is, x0 and x3 lie on the same connected component. Suppose
that we cannot continue the operations and there is some nonzero ai. The condition
of ϕ-stability is equivalent to

C1 : 0 ≤ s1 − pa1 − a2 ≤ e, C2 : 0 ≤ s2 − pa2 + a3 ≤ e,

. . . , Cn : 0 ≤ sn − pan + a1 ≤ e.

Note that if ai ̸= 0 or ai+1 ̸= 0, we can decrease |ai| or |ai+1| keeping Ci, because
e ≥ p.

We put

ci = ♯
{
i ≤ j ≤ i+ 1

∣∣ we can decrease |aj | keeping Ci
}
,

and claim that ♯{j | aj ̸= 0} =
∑n
i=1 ci. First, if ai ̸= 0, we have ci−1 ≥ 1 and ci ≥ 1

from the above remark. So we have ♯{j | aj ̸= 0} ≤
∑n
i=1 ci. Second, we count

ai ̸= 0 in not both of Ci−1 and Ci, because we cannot continue the operations. So
we have ♯{j | aj ̸= 0} ≥

∑n
i=1 ci. Hence we have equality. From this equality, we

have ai ̸= 0 and ci = 1 for all i. For 2 ≤ i ≤ n, we have aiai+1 > 0 because ci = 1.
So we have a1a2 > 0, but this contradicts c1 = 1.
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In the case e = p−1. We have |pa1+a2| ≤ p−1 by C1, and |pai−ai+1| ≤ p−1 by
Ci for 2 ≤ i ≤ n. Summing up these inequalities after multiplying some p-powers
so that we can eliminate aj for j ̸= i, we get |(pn + 1)ai| ≤ pn − 1. So we have
ai = 0 for all i.

Hence x0 and x3 lie on the same connected component. This completes the
proof. �

References

[Gee] T. Gee, A modularity lifting theorem for weight two Hilbert modular forms, Math. Res.
Lett. 13 (2006), no. 5, 805–811.

[Ima] N. Imai, On the connected components of moduli spaces of finite flat models, Amer. J.
Math. 132 (2010), no. 5, 1189–1204.

[Kis] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170

(2009), no. 3, 1085–1180.
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