ON THE CONNECTED COMPONENTS OF MODULI SPACES OF KISIN MODULES

NAOKI IMAI

ABSTRACT. We give a proof of a conjecture on the connected components of moduli spaces of Kisin module, which is valid also in the case p = 2.

INTRODUCTION

Let K be a p-adic field, and let $V_{\mathbb{F}}$ be a two-dimensional continuous representation of the absolute Galois group G_K over a finite field \mathbb{F} of characteristic p. Take a ϕ -module $M_{\mathbb{F}}$ corresponding to the Galois representation $V_{\mathbb{F}}(-1)$. As in [Kis, Corollary 2.1.13], we can construct a moduli space $\mathscr{GR}_{V_{\mathbb{F}},0}$ of Kisin modules in $M_{\mathbb{F}}$, that is a projective scheme over \mathbb{F} . Let $\mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}$ be a closed subscheme of $\mathscr{GR}_{V_{\mathbb{F}},0}$ determined by the condition that p-adic Hodge type is $\mathbf{v} = 1$.

In the case p > 2, a Kisin module in $M_{\mathbb{F}}$ corresponds a finite flat models of $V_{\mathbb{F}}$, and $\mathscr{GR}_{V_{\mathbb{F}},0}$ is called a moduli space of finite flat models of $V_{\mathbb{F}}$. In this case, Kisin conjectured that the non-ordinary locus of $\mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}$ is connected. (In fact, this is a special case of [Kis, Conjecture 2.4.16].) This conjecture was proved by Kisin in [Kis] if K is totally ramified over \mathbb{Q}_p , by Gee in [Gee] if $V_{\mathbb{F}}$ is the trivial representation, and by the author in [Ima] for general K and $V_{\mathbb{F}}$. In the proof in [Ima], we need the condition p > 2. In this paper, we prove the conjecture for all p. The main theorem is the following.

Theorem. The non-ordinary locus of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{R}},0}$ is geometrically connected.

The outline of the proof is the same as the proof in [Ima], but we need some more sophisticated arguments to treat the case p = 2.

Acknowledgment. The author would like to thank Mark Kisin for suggesting him to consider the problem of the connectedness in the case p = 2. He is grateful to a referee for a careful reading of this paper and suggestions for improvements.

Notation. Throughout this paper, we use the following notation. Let p be a prime number, and k be a finite extension of \mathbb{F}_p of cardinality $q = p^n$. The Witt ring of k is denoted by W(k), and let $K_0 = W(k)[1/p]$. Let K be a totally ramified extension of K_0 of degree e, and \mathcal{O}_K be the ring of integers of K. The absolute Galois group of K is denoted by G_K . Let \mathbb{F} be a finite field of characteristic p. The formal power series ring of u over \mathbb{F} is denoted by $\mathbb{F}[[u]]$, and its quotient field is denoted by $\mathbb{F}((u))$. Let v_u be the valuation of $\mathbb{F}((u))$ normalized by $v_u(u) = 1$. For a field F, the algebraic closure of F is denoted by \overline{F} and the separable closure of F is denoted by \overline{F} .

NAOKI IMAI

1. Preliminaries

First of all, we recall some notation from [Kis], and the interested reader should consult [Kis] for more detailed definitions.

We put $\mathfrak{S} = W(k)[[u]]$. Let $\mathcal{O}_{\mathcal{E}}$ be the *p*-adic completion of $\mathfrak{S}[1/u]$. There is an action of ϕ on $\mathcal{O}_{\mathcal{E}}$ determined by Frobenius on W(k) and $u \mapsto u^p$. We take and fix a uniformizer π of \mathcal{O}_K . We choose elements $\pi_m \in \overline{K}$ such that $\pi_0 = \pi$ and $\pi_{m+1}^p = \pi_m$ for $m \ge 0$, and put $K_{\infty} = \bigcup_{m \ge 0} K(\pi_m)$. Let $\Phi M_{\mathcal{O}_{\mathcal{E}},\mathbb{F}}$ be the category of finite $\mathcal{O}_{\mathcal{E}} \otimes_{\mathbb{Z}_p} \mathbb{F}$ -modules M equipped with ϕ -semi-linear map $M \to M$ such that the induced $\mathcal{O}_{\mathcal{E}} \otimes_{\mathbb{Z}_p} \mathbb{F}$ -linear map $\phi^*(M) \to M$ is an isomorphism. Let $\operatorname{Rep}_{\mathbb{F}}(G_{K_{\infty}})$ be the category of finite-dimensional continuous representations of $G_{K_{\infty}}$ over \mathbb{F} . Then the functor

$$T: \Phi \mathcal{M}_{\mathcal{O}_{\mathcal{E}},\mathbb{F}} \to \operatorname{Rep}_{\mathbb{F}}(G_{K_{\infty}}); \ M \mapsto \left(k((u))^{\operatorname{sep}} \otimes_{k((u))} M\right)^{\phi=}$$

gives an equivalence of abelian categories as in [Kis, (1.1.12)]. Here ϕ acts on $k((u))^{\text{sep}}$ by the *p*-th power map.

Let $V_{\mathbb{F}}$ be a continuous two-dimensional representation of G_K over \mathbb{F} . We take the ϕ -module $M_{\mathbb{F}} \in \Phi M_{\mathcal{O}_{\mathcal{E}},\mathbb{F}}$ such that $T(M_{\mathbb{F}})$ is isomorphic to $V_{\mathbb{F}}(-1)|_{G_{K_{\infty}}}$. Here (-1) denotes the inverse of the Tate twist.

From now on, we assume $\mathbb{F}_{q^2} \subset \mathbb{F}$ and fix an embedding $k \hookrightarrow \mathbb{F}$. This assumption does not matter, because we may extend \mathbb{F} to prove the main theorem. We consider the isomorphism

$$\mathcal{O}_{\mathcal{E}} \otimes_{\mathbb{Z}_p} \mathbb{F} \cong k((u)) \otimes_{\mathbb{F}_p} \mathbb{F} \xrightarrow{\sim} \prod_{\sigma \in \operatorname{Gal}(k/\mathbb{F}_p)} \mathbb{F}((u)) \; ; \; \left(\sum a_i u^i\right) \otimes b \mapsto \left(\sum \sigma(a_i) b u^i\right)_{\sigma}$$

and let $\epsilon_{\sigma} \in k((u)) \otimes_{\mathbb{F}_p} \mathbb{F}$ be the primitive idempotent corresponding to σ . Take $\sigma_1, \dots, \sigma_n \in \operatorname{Gal}(k/\mathbb{F}_p)$ such that $\sigma_{i+1} = \sigma_i \circ \phi^{-1}$. Here we regard ϕ as the *p*-th power Frobenius, and use the convention that $\sigma_{n+i} = \sigma_i$. In the following, we often use such conventions. Then we have $\phi(\epsilon_{\sigma_i}) = \epsilon_{\sigma_{i+1}}$, and $\phi: M_{\mathbb{F}} \to M_{\mathbb{F}}$ determines $\phi: \epsilon_{\sigma_i} M_{\mathbb{F}} \to \epsilon_{\sigma_{i+1}} M_{\mathbb{F}}$.

For $(A_i)_{1 \le i \le n} \in GL_2(\mathbb{F}((u)))^n$, we write $M_{\mathbb{F}} \sim (A_1, A_2, \dots, A_n) = (A_i)_i$

if there is a basis $\{e_1^i, e_2^i\}$ of $\epsilon_{\sigma_i} M_{\mathbb{F}}$ over $\mathbb{F}((u))$ such that $\phi\begin{pmatrix} e_1^i \\ e_2^i \end{pmatrix} = A_i \begin{pmatrix} e_1^{i+1} \\ e_2^{i+1} \end{pmatrix}$. We use the same notation for any sublattice $\mathfrak{M}_{\mathbb{F}} \subset M_{\mathbb{F}}$ similarly. Here and in the following, we consider only sublattices that are $\mathfrak{S} \otimes_{\mathbb{Z}_n} \mathbb{F}$ -modules.

Finally, for any sublattice $\mathfrak{M}_{\mathbb{F}} \subset M_{\mathbb{F}}$ with a chosen basis $\{e_1^i, e_2^i\}_{1 \leq i \leq n}$ and $B = (B_i)_{1 \leq i \leq n} \in GL_2(\mathbb{F}((u)))^n$, the module generated by the entries of $\left\langle B_i\begin{pmatrix} e_1^i\\ e_2^i \end{pmatrix} \right\rangle$ with the basis given by these entries is denoted by $B \cdot \mathfrak{M}_{\mathbb{F}}$. Note that $B \cdot \mathfrak{M}_{\mathbb{F}}$ depends on the choice of the basis of $\mathfrak{M}_{\mathbb{F}}$.

For each \mathbb{Q}_p -algebra embedding $\psi: K \to \overline{K}_0$, we put $v_{\psi} = 1$ and set $\mathbf{v} = (v_{\psi})_{\psi}$. Then $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}$ is the moduli space of Kisin modules with *p*-adic Hodge type \mathbf{v} . The rational points of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}$ are described as in the following.

Proposition 1.1. If \mathbb{F}' is a finite extension of \mathbb{F} , the elements of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}(\mathbb{F}')$ naturally correspond to free $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}'$ -submodules $\mathfrak{M}_{\mathbb{F}'} \subset M_{\mathbb{F}} \otimes_{\mathbb{F}} \mathbb{F}'$ of rank 2 that satisfy the following:

(1) $\mathfrak{M}_{\mathbb{F}'}$ is ϕ -stable.

(2) For some (so any) choice of $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}'$ -basis for $\mathfrak{M}_{\mathbb{F}'}$, and for each $\sigma \in \operatorname{Gal}(k/\mathbb{F}_p)$, the map

$$\phi:\epsilon_{\sigma}\mathfrak{M}_{\mathbb{F}'}\to\epsilon_{\sigma\circ\phi^{-1}}\mathfrak{M}_{\mathbb{F}'}$$

has determinant αu^e for some $\alpha \in \mathbb{F}'[[u]]^{\times}$.

Proof. This is [Gee, Lemma 2.2].

2. Main theorem

To prove the main theorem, in fact we prove that the non-ordinary component of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}$ is rationally connected. We use the following two Lemmas to join two points by \mathbb{P}^1 .

Lemma 2.1. Suppose $x_1, x_2 \in \mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}(\mathbb{F})$ correspond to objects $\mathfrak{M}_{1,\mathbb{F}}, \mathfrak{M}_{2,\mathbb{F}}$ of $(\operatorname{Mod}/\mathfrak{S})_{\mathbb{F}}$ respectively. We fix bases of $\mathfrak{M}_{1,\mathbb{F}}, \mathfrak{M}_{2,\mathbb{F}}$ over $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}$. We assume that there is a nilpotent element $N = (N_i)_{1 \leq i \leq n}$ of $M_2(\mathbb{F}((u)))^n$ such that $\mathfrak{M}_{2,\mathbb{F}} = (1+N) \cdot \mathfrak{M}_{1,\mathbb{F}}$. Let $A = (A_i)_{1 \leq i \leq n}$ be an element of $GL_2(\mathbb{F}((u)))^n$ such that $\mathfrak{M}_{1,\mathbb{F}} \sim A$. If $\phi(N_i)A_iN_{i+1} \in M_2(\mathbb{F}[[u]])$ for all i, then there is a morphism $\mathbb{P}^1 \to \mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}$ sending 0 to x_1 and 1 to x_2 .

Proof. This is [Gee, Lemma 2.4].

Lemma 2.2. Suppose $n \geq 2$. Let $\mathfrak{M}_{\mathbb{F}}$ be the object of $(\operatorname{Mod}/\mathfrak{S})_{\mathbb{F}}$ corresponding to a point $x \in \mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}(\mathbb{F})$. Fix a basis of $\mathfrak{M}_{\mathbb{F}}$ over $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}$. Consider $U^{(i)} = (U_j^{(i)})_{1 \leq j \leq n} \in GL_2(\mathbb{F}((u)))^n$ such that $U_i^{(i)} = \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$ and $U_j^{(i)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for all $j \neq i$. If $U^{(i)} \cdot \mathfrak{M}_{\mathbb{F}}$ is ϕ -stable, it corresponds to a point $x' \in \mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}(\mathbb{F})$, and there is a morphism $\mathbb{P}^1 \to \mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}$ sending 0 to x and 1 to x'. If $(U^{(i)})^{-1} \cdot \mathfrak{M}_{\mathbb{F}}$ is ϕ -stable, it corresponds to a point $x'' \in \mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}(\mathbb{F})$, and there is a morphism $\mathbb{P}^1 \to \mathscr{GR}_{V_{\mathbb{F}},0}^{\mathbf{v}}$ sending 0 to x and 1 to x''.

Proof. This is [Ima, Lemma 2.3].

To prove the main theorem, it suffices to show the following theorem. The strategy of the proof is the same as in [Ima], and we focus on the changed points in the case p = 2.

Theorem 2.3. Let \mathbb{F}' be a finite extension of \mathbb{F} . Suppose $x_1, x_2 \in \mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}(\mathbb{F}')$ correspond to objects $\mathfrak{M}_{1,\mathbb{F}'}, \mathfrak{M}_{2,\mathbb{F}'}$ of $(\operatorname{Mod}/\mathfrak{S})_{\mathbb{F}'}$ respectively. If $\mathfrak{M}_{1,\mathbb{F}'}$ and $\mathfrak{M}_{2,\mathbb{F}'}$ are both non-ordinary, then x_1 and x_2 lie on the same connected component of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}$.

Proof. When n = 1, this was proved in [Kis], and we did not use the condition p > 2 in the proof. If $e , then <math>\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}(\mathbb{F}')$ is one point by [Ray, Theorem 3.3.3]. So we may assume $n \ge 2$ and $e \ge p - 1$. Furthermore, replacing $V_{\mathbb{F}}$ by $V_{\mathbb{F}} \otimes_{\mathbb{F}} \mathbb{F}'$, we may assume $\mathbb{F} = \mathbb{F}'$.

In the case where $V_{\mathbb{F}}$ is reducible, the proof of [Ima, Theorem 2.4] goes on, even if p = 2. So, by a base change, we may assume that $V_{\mathbb{F}}$ is absolutely irreducible. As in the proof of [Ima, Theorem 2.4], we can prove that, after extending the field \mathbb{F} , there exists a basis such that

$$M_{\mathbb{F}} \sim \left(\alpha_1 \begin{pmatrix} 0 & u^{s_1} \\ u^{t_1} & 0 \end{pmatrix}, \alpha_2 \begin{pmatrix} u^{s_2} & 0 \\ 0 & u^{t_2} \end{pmatrix}, \dots, \alpha_n \begin{pmatrix} u^{s_n} & 0 \\ 0 & u^{t_n} \end{pmatrix} \right)$$

NAOKI IMAI

where $\alpha_i \in \mathbb{F}$, $0 \leq s_i, t_i \leq e, s_i + t_i = e$ and $|s_i - t_i| \leq p + 1$ for all *i*. Note that we have proved that we may assume $|s_i - t_i| \leq p + 1$ for all *i* in the last paragraph of [Ima, p. 1197]

Let $\mathfrak{M}_{\mathbb{F},0}$ be the $k[[u]] \otimes_{\mathbb{F}_p} \mathbb{F}$ -module generated by the basis giving the above matrix expression. Then $\mathfrak{M}_{\mathbb{F},0}$ satisfies the condition in Proposition 1.1. We take the point x_0 of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}(\mathbb{F})$ corresponding to $\mathfrak{M}_{\mathbb{F},0}$. We are going to prove that x_0 and x_1 lie on the same connected component. We can prove that x_0 and x_2 lie on the same connected component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take $B = (B_i)_{1 \le i \le n} \in GL_2(\mathbb{F}((u)))^n$ such that $\mathfrak{M}_{1,\mathbb{F}} = B \cdot \mathfrak{M}_{0,\mathbb{F}}$ and $B_i = \begin{pmatrix} u^{-a_i} & v_i \\ 0 & u^{a_i} \end{pmatrix}$ for $a_i \in \mathbb{Z}$ and $v_i \in \mathbb{F}((u))$. Then we put $r_i = v_u(v_i)$. Now we have

$$\phi(B_1) \begin{pmatrix} 0 & u^{s_1} \\ u^{t_1} & 0 \end{pmatrix} B_2^{-1} = \begin{pmatrix} \phi(v_1)u^{t_1+a_2} & u^{s_1-pa_1-a_2} - \phi(v_1)v_2u^{t_1} \\ u^{t_1+pa_1+a_2} & -v_2u^{t_1+pa_1} \end{pmatrix},$$

$$\phi(B_i) \begin{pmatrix} u^{s_i} & 0 \\ 0 & u^{t_i} \end{pmatrix} B_{i+1}^{-1} = \begin{pmatrix} u^{s_i-pa_i+a_{i+1}} & \phi(v_i)u^{t_i-a_{i+1}} - v_{i+1}u^{s_i-pa_i} \\ 0 & u^{t_i+pa_i-a_{i+1}} \end{pmatrix}$$

for $2 \leq i \leq n$. On the right-hand sides, every component of the matrices is integral because $\mathfrak{M}_{1,\mathbb{F}}$ is ϕ -stable.

First, we consider the case $t_1 + pa_1 + a_2 > e$. In this case,

$$(pr_1 + t_1 + a_2) + (r_2 + t_1 + pa_1) = e, \ s_1 - pa_1 - a_2 = pr_1 + r_2 + t_1 < 0$$

by the ϕ -stability and the determinant conditions of $\mathfrak{M}_{1,\mathbb{F}}$. We have $a_1 > r_1$, because $t_1 + pa_1 + a_2 > e \ge pr_1 + t_1 + a_2$. Similarly, we have $a_2 > r_2$, because $t_1 + pa_1 + a_2 > e \ge r_2 + t_1 + pa_1$.

We consider the following operations:

$$a_i \rightsquigarrow a_i - 1, v_i \rightsquigarrow uv_i$$
, if it preserves the ϕ -stability of $B \cdot \mathfrak{M}_{0,\mathbb{F}}$

These operations replace x_1 by a point that lies on the same connected component as x_1 by Lemma 2.2. We prove that we can continue these operations until we get to the situation where $t_1 + pa_1 + a_2 \leq e$. In other words, we reduce the problem to the case $t_1 + pa_1 + a_2 \leq e$. If we can continue the operations endlessly, we get to the situation where $t_1 + pa_1 + a_2 \leq e$, because the conditions $s_i - pa_i + a_{i+1} \geq 0$ for $2 \leq i \leq n$ exclude that both a_1 and a_2 remain bounded below. Suppose we cannot continue the operations. This is equivalent to the following condition:

$$s_n - pa_n + a_1 = 0 \text{ or } r_2 + t_1 + pa_1 \le p - 1,$$

$$pr_1 + t_1 + a_2 = 0 \text{ or } t_2 + pa_2 - a_3 \le p - 1,$$

$$s_{i-1} - pa_{i-1} + a_i = 0 \text{ or } t_i + pa_i - a_{i+1} \le p - 1 \text{ for each } 3 \le i \le n$$

If $e \ge p$, there are only the following two cases, because $(pr_1 + t_1 + a_2) + (r_2 + t_1 + pa_1) = e$ and $(s_i - pa_i + a_{i+1}) + (t_i + pa_i - a_{i+1}) = e$ for $2 \le i \le n$.

Case 1 :
$$pr_1 + t_1 + a_2 = 0$$
, $s_i - pa_i + a_{i+1} = 0$ for $2 \le i \le n$.
Case 2 : $r_2 + t_1 + pa_1 \le p - 1$, $t_i + pa_i - a_{i+1} \le p - 1$ for $2 \le i \le n$.

If e = p - 1, clearly it is in Case 2.

In the Case 1, we have a contradiction as in the proof of [Ima, Theorem 2.4]. So we may assume that it is in the Case 2.

4

Then we can show that

 $r_i < a_i, \ pr_i + t_i - a_{i+1} = r_{i+1} + s_i - pa_i < 0 \text{ for } 2 \le i \le n$

as in the proof of [Ima, Theorem 2.4]. Combining these equations with $s_1 - pa_1 - a_2 = pr_1 + r_2 + t_1$, we get

$$-(p^{n}+1)r_{1} = (p^{n}+1)a_{1} + (s_{n}-t_{n}) + p(s_{n-1}-t_{n-1}) + \cdots + p^{n-3}(s_{3}-t_{3}) + p^{n-2}(s_{2}-t_{2}) - p^{n-1}(s_{1}-t_{1}),$$

$$-(p^{n}+1)r_{2} = (p^{n}+1)a_{2} - (s_{1}-t_{1}) - p(s_{n}-t_{n}) - \dots - p^{n-3}(s_{4}-t_{4}) - p^{n-2}(s_{3}-t_{3}) - p^{n-1}(s_{2}-t_{2}),$$

$$-(p^{n}+1)r_{3} = (p^{n}+1)a_{3} + (s_{2}-t_{2}) - p(s_{1}-t_{1}) - \dots - p^{n-3}(s_{5}-t_{5}) - p^{n-2}(s_{4}-t_{4}) - p^{n-1}(s_{3}-t_{3}),$$

$$-(p^{n}+1)r_{n} = (p^{n}+1)a_{n} + (s_{n-1}-t_{n-1}) + p(s_{n-2}-t_{n-2}) + \cdots + p^{n-3}(s_{2}-t_{2}) - p^{n-2}(s_{1}-t_{1}) - p^{n-1}(s_{n}-t_{n}).$$

As $|s_i - t_i| \le p + 1$ and

÷

$$(p+1) + p(p+1) + \dots + p^{n-1}(p+1) = \left(\frac{p^n - 1}{p-1}\right)(p+1) < 3(p^n + 1),$$

we get $-a_i - 2 \le r_i \le -a_i + 2$. If e = p, as $|s_i - t_i| \le p$ and

$$p + p^{2} + \dots + p^{n} = \left(\frac{p^{n} - 1}{p - 1}\right)p < 2(p^{n} + 1),$$

we get $-a_i - 1 \le r_i \le -a_i + 1$. If e = p - 1, as $|s_i - t_i| \le p - 1$ and

$$(p-1) + p(p-1) + \dots + p^{n-1}(p-1) = \left(\frac{p^n - 1}{p-1}\right)(p-1) < (p^n + 1),$$

we get $-a_i = r_i$.

As $r_2 + t_1 + pa_1 \le p - 1$, we have

$$pa_1 \le t_1 + pa_1 \le p - 1 - r_2 \le a_2 + p + 1.$$

For $2 \leq i \leq n$, as $t_i + pa_i - a_{i+1} \leq p - 1$, we have

$$pa_i \le t_i + pa_i \le a_{i+1} + p - 1.$$

Take an index i_0 such that a_{i_0} is the greatest. If $2 \le i_0 \le n$, we get $a_{i_0} \le 1$ by $pa_{i_0} \le a_{i_0+1} + p - 1 \le a_{i_0} + p - 1$. If $i_0 = 1$ and $a_1 \ge 3$, we get $a_2 \ge 3$, by $pa_1 \le a_2 + p + 1$, and this contradicts the case where $2 \le i_0 \le n$. So, if $i_0 = 1$, we have $a_1 \le 2$. Combining $-a_i - 2 \le r_i$ and $r_i < a_i$, we get $a_i \ge 0$. Hence $0 \le a_1 \le 2$ and $0 \le a_i \le 1$ for $2 \le i \le n$.

First, we assume $a_2 = 0$. Now we have $-2 \le r_2 \le -1$. Comparing $t_1 + pa_1 + a_2 > e$ with $r_2 + t_1 + pa_1 \le p - 1$, we get $e \le p - 2 - r_2$. If $r_2 = -2$, we get $e \le p$. Then we have $-a_2 - 1 \le r_2$, and this is a contradiction. If $r_2 = -1$, we get $e \le p - 1$. Then we have $-a_2 = r_2$, and this is a contradiction.

Next, we assume $a_2 = 1$. As $0 \le t_i + pa_i - a_{i+1} \le p-1$ for $2 \le i \le n$, we have $a_i = 1$ for all i and $t_i = 0$ for $2 \le i \le n$. As $r_2 + pa_1 + t_1 \le p-1$, we have $r_2 \le -1$.

NAOKI IMAI

As $pr_2 + t_2 - a_3 = r_3 + s_2 - pa_2$, we have $r_3 = pr_2 + p - e - 1 \le -e - 1$. If $e \ge p + 1$, then $-a_3 - 2 \le r_3$ and $r_3 \le -e - 1 \le -4$. This is a contradiction. If e = p, then $-a_3 - 1 \le r_3$ and $r_3 \le -e - 1 \le -3$. This is a contradiction. If e = p - 1, then $-a_3 = r_3$ and $r_3 \le -e - 1 \le -2$. This is a contradiction.

Thus we may assume $t_1 + pa_1 + a_2 \leq e$. We put $\mathfrak{M}_{3,\mathbb{F}} = \left(\begin{pmatrix} u^{-a_i} & 0 \\ 0 & u^{a_i} \end{pmatrix} \right)_i \cdot \mathfrak{M}_{0,\mathbb{F}}$, then

$$\mathfrak{M}_{3,\mathbb{F}} \sim \left(\alpha_1 \begin{pmatrix} 0 & u^{s_1 - pa_1 - a_2} \\ u^{t_1 + pa_1 + a_2} & 0 \end{pmatrix}, \alpha_2 \begin{pmatrix} u^{s_2 - pa_2 + a_3} & 0 \\ 0 & u^{t_2 + pa_2 - a_3} \end{pmatrix}, \\ \dots, \alpha_n \begin{pmatrix} u^{s_n - pa_n + a_1} & 0 \\ 0 & u^{t_n + pa_n - a_1} \end{pmatrix} \right)$$

and $\mathfrak{M}_{1,\mathbb{F}} = \left(\begin{pmatrix} 1 & v_i u^{-a_i} \\ 0 & 1 \end{pmatrix} \right)_i \cdot \mathfrak{M}_{3,\mathbb{F}}$. Note that $\mathfrak{M}_{3,\mathbb{F}}$ satisfies the conditions of Proposition 1.1, and let x_3 be the point of $\mathscr{GR}^{\mathbf{v}}_{V_{\mathbb{F}},0}$ corresponding to $\mathfrak{M}_{3,\mathbb{F}}$. If we put $N_i = \begin{pmatrix} 0 & v_i u^{-a_i} \\ 0 & 0 \end{pmatrix}$, then

$$\phi(N_1) \begin{pmatrix} 0 & u^{s_1 - pa_1 - a_2} \\ u^{t_1 + pa_1 + a_2} & 0 \end{pmatrix} N_2 = \begin{pmatrix} 0 & \phi(v_1)v_2u^{t_1} \\ 0 & 0 \end{pmatrix},$$
$$\phi(N_i) \begin{pmatrix} u^{s_i - pa_i + a_{i+1}} & 0 \\ 0 & u^{t_i + pa_i - a_{i+1}} \end{pmatrix} N_{i+1} = 0$$

for $2 \leq i \leq n$. Here we have $v_u(\phi(v_1)v_2u^{t_1}) \geq 0$, because $s_1 - pa_1 - a_2 \geq 0$ and $v_u(u^{s_1-pa_1-a_2} - \phi(v_1)v_2u^{t_1}) \geq 0$. Hence x_1 and x_3 lie on the same connected component by Lemma 2.1.

We are going to compare $\mathfrak{M}_{0,\mathbb{F}}$ and $\mathfrak{M}_{3,\mathbb{F}}$. First, we treat the case $e \geq p$. We consider the operations that decrease $|a_i|$ by 1 for an index *i* keeping the condition of ϕ -stability. By Lemma 2.2, these operations do not affect which of the connected components x_3 lies on. We prove that we can continue the operations until we have $a_i = 0$ for all *i*, that is, x_0 and x_3 lie on the same connected component. Suppose that we cannot continue the operations and there is some nonzero a_i . The condition of ϕ -stability is equivalent to

$$C_1: 0 \le s_1 - pa_1 - a_2 \le e, \ C_2: 0 \le s_2 - pa_2 + a_3 \le e, \\ \dots, \ C_n: 0 \le s_n - pa_n + a_1 \le e.$$

Note that if $a_i \neq 0$ or $a_{i+1} \neq 0$, we can decrease $|a_i|$ or $|a_{i+1}|$ keeping C_i , because $e \geq p$.

We put

 $c_i = \sharp \{ i \le j \le i+1 \mid \text{we can decrease } |a_j| \text{ keeping } C_i \},$

and claim that $\sharp\{j \mid a_j \neq 0\} = \sum_{i=1}^n c_i$. First, if $a_i \neq 0$, we have $c_{i-1} \ge 1$ and $c_i \ge 1$ from the above remark. So we have $\sharp\{j \mid a_j \neq 0\} \le \sum_{i=1}^n c_i$. Second, we count $a_i \neq 0$ in not both of C_{i-1} and C_i , because we cannot continue the operations. So we have $\sharp\{j \mid a_j \neq 0\} \ge \sum_{i=1}^n c_i$. Hence we have equality. From this equality, we have $a_i \neq 0$ and $c_i = 1$ for all *i*. For $2 \le i \le n$, we have $a_i a_{i+1} > 0$ because $c_i = 1$. So we have $a_1 a_2 > 0$, but this contradicts $c_1 = 1$.

6

In the case e = p-1. We have $|pa_1+a_2| \le p-1$ by C_1 , and $|pa_i-a_{i+1}| \le p-1$ by C_i for $2 \le i \le n$. Summing up these inequalities after multiplying some *p*-powers so that we can eliminate a_j for $j \ne i$, we get $|(p^n + 1)a_i| \le p^n - 1$. So we have $a_i = 0$ for all *i*.

Hence x_0 and x_3 lie on the same connected component. This completes the proof.

References

- [Gee] T. Gee, A modularity lifting theorem for weight two Hilbert modular forms, Math. Res. Lett. 13 (2006), no. 5, 805–811.
- [Ima] N. Imai, On the connected components of moduli spaces of finite flat models, Amer. J. Math. 132 (2010), no. 5, 1189–1204.
- [Kis] M. Kisin, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), no. 3, 1085–1180.
- [Ray] M. Raynaud, Schémas en groupes de type (p, \ldots, p) , Bull. Soc. Math. France **102** (1974), 241–280.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

E-mail address: naoki@kurims.kyoto-u.ac.jp