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Abstract

The aim of this study was to evaluate the local immune status of human ovarian cancers 

by the comprehensive analysis of tumor-infiltrating immune cells and 

immunosuppressive factors, and to elucidate the local immunity in clinical course. The 

numbers of CD1 +, CD4+, CD8+, CD57+, forkhead box P3+ and programmed cell 

death-1+ cells were counted, and the intensity of immunosuppressive factors, such as 

programmed cell death-1 ligand (PD-L)1 , PD-L2, cyclooxygenase (COX)-1, COX-2

and 1, were evaluated in 70 ovarian cancer specimens

stained by immunohistochemistry. Then hierarchical clustering of these parameters

showed the four clusters into ovarian cancer cases. Cluster 1, which had significantly 

better prognosis than the others, was characterized by high infiltration of CD4+ and

CD8+ cells. In conclusion the comprehensive analysis of local immune status led to 

subdivide ovarian cancers into groups with better or worse prognoses and may guide

precise understanding of the local immunity. 
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1. Introduction

Ovarian cancer is the most lethal gynecologic cancer in the world with 

>200,000 patients diagnosed every year and over a half of them dying annually. These 

deaths are partly due to the fact that more than half of the patients with ovarian cancer 

are diagnosed at advanced tumor stages (stage III or IV). Although platinum or 

taxane-based chemotherapies are effective in the treatment of the majority of ovarian 

cancer cases, most of the patients suffer from recurrence and eventually develop 

chemo-resistance. Considering the high mortality rate of ovarian cancer due to the 

absence of curative treatment in the advanced stage or at recurrence, new therapeutic 

modalities other than chemotherapy and surgery are urgently needed [1; 2; 3].

Tumor immune therapy has long been considered as an alternative modality in 

the treatment of solid tumors including ovarian cancer. Nevertheless, there have been 

few reports on clinically successful immune therapies. The failure in immune therapies 

in such clinical trials is partly ascribed to the phenomenon designate

that the dynamic interaction between 

tumor cells and immune cells in the local microenvironment plays a pivotal role in 

cancer development and progression [4]. In the case of advanced cancers, tumor cells 

establish an immunosuppressive environment regionally and make it difficult to induce 

immune activation to eliminate cancer cells. In this situation, adoptive immunotherapy, 

such as a tumor vaccine, is not sufficient to eradicate tumors [5; 6].

The differences in the phenotypes or populations of tumor-infiltrating immune 

cells, such as CD4+ (helper) T cells, CD8+ (cytotoxic) T cells, CD57+ (NK) cells and 

CD11c+ (dendritic) cells, have been shown to be associated with different clinical 

outcomes of solid tumors including colorectal cancer [7], breast cancer [8], gastric 

cancer [9; 10], lung cancer [11; 12], hepatic cancer [13; 14], melanoma [15], kidney 



cancer [16] and uterine cervical cancer [17]. In ovarian cancer, several recent studies 

have shown an association between tumor-infiltrating immune cells and clinical 

outcomes [18; 19]. We also reported that CD8+ T cell infiltration [20] and NK cell 

infiltration [21] are associated with a favorable prognosis in the ovarian cancer patient. 

On the other hand, regulatory T cells, most specific marker of which is FOXP3, in the 

tumor site play a suppressive role in the local tumor immunity, leading to tumor 

progression [22; 23].

With respect to the tumor, there are also a wide variety of mechanisms that 

enable tumor cells to evade an immune attack. These mechanisms include a loss of 

MHC [24], the upregulation of immunosuppressive factors, such as transforming 

( ) [25], IL-10, indoleamine 2,3-dioxygenase (IDO) [26] and 

cyclooxygenases (COX-1 and COX-2) [27] or upregulating negative regulatory signals,

such as programmed cell death-1 (PD-1) ligands (PD-L1, PD-L2) and cytotoxic T 

lymphocyte antigen-4 (CTLA-4) [28; 29; 30; 31]. We reported that PD-L1 expression in 

ovarian cancer is inversely correlated with tumor-infiltrating CD8+ T cells and is 

associated with a poor prognosis of the patient [20]. The expression of the immune 

suppressive factors COX and UL-16 binding protein 2 is also inversely associated with

CD8+ T cell infiltration and the prognosis of the patient with ovarian cancer [21; 32].

Thus, there are a variety of reports that suggest that a certain immunosuppressive factor 

influences the local tumor immunity. However, there are few comprehensive analyses

that integrate various immune factors and evaluate the immune status as a whole.

Therefore, in this study, we attempted to explore the status of local immunity in 

ovarian cancers by integrating various immune parameters presented by the 

immunohistochemical analysis of clinical specimens. For this purpose, we employed 

bioinformatics analyses, such as hierarchical clustering, that allows the comprehensive 



assessment of multiple factors and enables us to determine the relationships among 

them.



2. Materials and Methods

2.1. Patients and Samples

 Formalin-fixed, paraffin-embedded specimens were obtained from 70 patients who 

underwent primary surgery for epithelial ovarian cancer at the Kyoto University 

Hospital. After surgery, all patients received platinum- and paclitaxel-based 

chemotherapy. The average age of the patients was 55 years old (range, 26- 78; standard 

deviation [SD], 11). At the end of the study, 29 (41%) patients had died from their 

disease, and 41 (59%) patients were alive. The mean follow-up period was 5 years 

(range, 0- 11; SD, 3.0). All 70 tissue specimens were collected under the approval of the 

Ethics Committee of the Kyoto University Hospital.

2.2 Immunohistochemistry

The primary antibodies and antigen retrieval methods are listed in Supplementary 

Table 1. Briefly, formalin-fixed, paraffin- -thick 

sections. The tissue sections were deparaffinized in xylene and dehydrated. For antigen 

CD4 staining, the samples were boiled in Tris-EDTA buffer 

(pH 9.0) in a pressure cooker. For FOXP3 and PD-1 staining, the samples were boiled 

in citrate buffer (pH 6.0) in a pressure cooker. To block endogenous peroxidase activity, 

all of the sections were treated with 100% methanol containing H2O2. Nonspecific 

binding of IgG was blocked using normal rabbit serum (Nichirei, Tokyo, Japan). The 

sections were incubated with a mouse anti- antibody (Ab) (clone 

TB21), anti-CD4 monoclonal Ab (clone 1F6), anti-FOXP3 monoclonal Ab (clone 

236A/E7) and PD-1 monoclonal Ab (clone NAT) overnight at 4 C. Then the sections

were incubated with biotinylated rabbit anti-mouse secondary Abs (Nichirei), followed 



by an incubation with a streptavidin-peroxidase complex solution. Signals were 

generated by incubation with 3, 3-diaminobenzidine. Finally, the sections were 

counterstained with hematoxylin and observed under a microscope. 

2.3. Evaluation of the specimens

Immune cells in the intraepithelial space were counted using a microscopic field 

at ×200 magnification (0.0625 mm2). Five areas with the most abundant infiltration of 

immune cells were selected, and an average count was calculated. The result was 

interpreted as negative when fewer than five cells per 0.0625 mm2 were observed and as 

was evaluated according to the intensity of the staining and scored as follows: 0, 

negative; 1, very weak expression; 2, moderate expression; and 3, strongest expression. 

Cases with scores of 0 or 1 were defined as the low-expression group, and cases with 

scores of 2 or 3 were defined as the high-expression group. Two independent 

gynecological pathologists examined the immunohistochemical slides without any prior 

information regarding the clinical history of the patients.

2.4. Hierarchical clustering and statistics

Hierarchical clustering analysis of our immunohistochemical data was performed 

using the software Cluster 3.0 that was originally designed for manipulating cDNA 

microarray data [33]. Following the instructions of the software, the eleven parameters 

(six tumor-infiltrating immune cells and five immune suppressive factors) were 

normalized, and a complete-linkage hierarchical clustering was conducted. The 

dendrogram and heat map were graphically viewed using Java TreeView [33]. Cluster 

and Treeview software are freely available programs that can be accessed at 



http://jtreeview.sourceforge.net/.

2.5. Statistical analysis

each

cluster and various clinic-

was employed to analyze the associations among 11 immunological factors. Univariate 

analysis for overall survival was performed and evaluated with the log rank test, and 

Kaplan Meier curves were generated. A multivariate Cox proportional-hazard model 

was used to evaluate the independency of Cluster 1 as a prognostic factor. Two-sided P 

values of <0.05 were considered to be significant.



3. Results

3.1. Expression of immune-suppressive factors in ovarian cancer specimens and 

patient prognosis

Immunohistochemical expression of 1, PD-L1, PD-L2, COX-1 and COX-2 

were evaluated in 70 ovarian cancer tissues (Figure 1). High expression (score 2 or 3) of 

1 was observed in 22 cases (31.4%) and low expression (scored 0 or 1) was 

observed in 48 cases (68.6%). There was no correlation between the expression of these 

factors and clinicopathological characteristics such as age, histological type, FIGO stage, 

TNM classification, and residual tumor state (Supplementary Table 2) [20; 32].

The log rank test showed that the 5-year survival rate of patients with high 

expression of 1, COX-1 or COX-2 was not significantly different from the 

patients with low expression (Supplementary Figure 1). Only the high expression of 

PD-L1 was an independent worse prognostic factor, whereas PD-L2 expression was not 

related to patient prognosis [20]. 

3.2. Tumor-infiltrating immune cell count and prognosis

The number of tumor-infiltrating CD1 + (dendritic cells), CD4+ (helper T cells), 

CD8+ (killer T cells), CD57+ (NK cells), FOXP3+ (regulatory T cells) and PD-1+ 

immune cells was evaluated using the same 70 ovarian cancer specimens (Figure 1). 

The average numbers of these cells were shown in Supplementary Table 3, respectively. 

There was positive correlation between tumor-infiltrating FOXP3+ cells and several 

clinicopathological factors such as age, histology, tumor status and residual tumor, 

while there was no correlation between the number of CD4+, CD8+, CD57+ or PD-1+ 

cells and clinicopathological characteristics (Supplementary Table 4 and 5). 



A significant correlation was found between parameters below; CD4+ cell 

infiltration vs. CD8+ cell infiltration, COX-1 and COX-2 expression, CD4+ cell vs. 

PD-1+ cell infiltration, CD8+ cell vs. PD-1+ cell infiltration, CD57+ cell vs. PD-1+ cell 

infiltration), FOXP3 cell infiltration vs. PD-L2 expression and FOXP3 vs. CD4+ cell

infiltration (Supplementary Table 6), although a negative correlation between COX-1 vs. 

COX-2 expression, CD8+ cell infiltration vs. PD-L1 expression, CD8+ cell infiltration 

vs. COX-1 expression and CD8+ cell infiltration vs. COX-2 expression [20; 32].

The log rank test showed that the overall survival rate of patients with high levels 

of CD1 +, CD4+, CD57+, FOXP3+ or PD-1+ immune cells was not significantly

different from patients with low infiltration (Supplementary Figure 1), whereas a high 

infiltration of CD8+ cells was the only beneficial prognostic factor (p<0.001) [20].

Combination of any two factors such as CD8+ and PD-L1 low did not serve as a 

superior prognostic factor compared with single factor. Besides we found a higher ratio 

of CD8/FOXP3 in Cluster 1 than that in Cluster 2-4, although there was no statistic 

significance (mean ± SD, Cluster 1, 3.4±2.4 vs. Cluster 2-4, 1.9±1.9 ). 

3.3 The correlation among eleven immunological factors 

The correlation among eleven immunological factors (the expression of PD-L1, 

PD-L2, COX-1, COX-2 and 1 and the number of tumor-infiltrating immune cells 

expressing CD1 +, CD4+, CD8+, CD57+, FOXP3+ and PD-1+) was examined 

(Supplementary Table 6). The expression of PD-L1 or COX expression was negatively 

correlated with the number of CD8+ cells in the tumor site, respectively [20; 32]. In this 

study, we found that the number of CD4+ cells was positively correlated with the 

number of CD8+ cells (correlation coefficient (R=0.240; p=0.045) and FOXP3+ cells 

(R=0.410; p<0.001). In addition, the number of PD-1+ cells showed a positive 



correlation with the number of CD4+ cells (R=0.302; p=0.011), CD8+ cells (R=0.366; 

p=0.002) and CD57+ cells (R=0.365; p=0.002). The number of FOXP3+ cells was 

negatively correlated with PD-L2 expression (R=-0.262; p=0.028).

3.4. Evaluation of the local immune status by hierarchical clustering of immune 

factors in ovarian cancer

Hierarchical clustering analysis of the expression levels of five immune 

suppressive factors and the cell counts of the six tumor-infiltrating immune cells were 

used to divide the 70 ovarian cancers into 2 major clusters and subdivided one of the 

major clusters into three clusters, which were designated as Cluster 1 and Clusters 2, 3 

and 4, respectively (Figure 2). When Cluster 1 was compared to the other clusters 

(Clusters 2-4), it was characterized as having significantly higher immune cell 

infiltration, such as CD4+ cells (p=0.004), CD8+ cells (p<0.0001) and PD-1+ cells 

(p=0.0037), and as having lower expression of immunosuppressive factors such as 

1, PD-L1, PD-L2, COX-1 and COX-2 (Figures 3A-3C, 3F and 4). 

The characteristics of the other three clusters were relatively common in terms of 

low immune cell infiltration and partially high expression of immune suppressive 

factors with the following patterns: Cluster 2, high COX-1 expression (p<0.0001) and 

high CD57+ cell (NK cell) infiltration (p=0.0042); Cluster 3, high PD-L2 (p=0.0002), 

low FOXP3+ cells (p=0.0288) and low PD-1+ cell infiltration (p=0.011); and Cluster 4, 

low CD4+, low CD8+, low CD1 +, low CD57+, low PD-1, high PD-L1, high 1, 

and high COX-2 (Figures 3 and 4).

3.5. Univariate analysis and correlation between four clusters and 

clinicopathological factors



The Kaplan Meier curve and log rank test showed that the overall survival rate of 

patients in Cluster 1 was significantly better than those in the other clusters (5-year 

survival rate in Cluster 1 vs. Clusters 2-4, 84.6% vs. 55.2%; p=0.041) (Figure 5 and 

Table 1). The progression-free survival rate of patients in Cluster 1 was not significantly, 

but was relatively, better than other clusters (5-year survival rate of Cluster 1 vs. 

Clusters 2-4, 78.6% vs. 44.4%; p=0.061). 

There was no statistical correlation between the four clusters and the 

clinicopathological factors such as primary tumor status, lymph node metastasis, distant 

metastasis, residual tumor status, the age of the patient, histology, and adjuvant 

chemotherapy (Table 2). 

3.6. Multivariate analysis

Multivariate analysis showed that Cluster 1 was an independent favorable 

prognostic factor for overall survival (RR, 4.93) (Table 1). Other factors contributing to 

overall poor survival were tumor status (RR, 5.36), lymph node metastasis (RR, 2.78), 

and residual tumor status (RR, 5.86) (Table 1).



4. Discussion

Recent studies have shown that local tumor immunity is closely associated with 

clinical course of cancer patient, and several immunological factors, including CD8 T 

cell count shown in our previous study, serve as prognostic indicator. However, these 

analyses were mainly done using single factor or combination of several factors, and 

there are few papers which tried to clarify the immunological background by analyzing 

multiple immune factors simultaneously. The application of hierarchical clustering 

allowed us to manage the complex data sets of immunohistochemical staining with 

multiple antibodies [34; 35] and to identify new groups of patients with similar local 

immunological patterns that may be caused by similar consequences. Ovarian cancers

were divided into two groups, Cluster 1 and Clusters 2-4, by hierarchical clustering 

analysis according to the local immunological state. The patients in Cluster 1 had a 

significantly better prognosis than those in other clusters (p=0.041, Figure 5B). In this 

group, immune cells, including CD4+ cells, CD8+ cells and PD-1+ cells, were highly 

infiltrated into tumor sites compared to the other clusters (p=0.004, p<0.001 and 

p=0.0037, respectively), while the expression of 1, PD-L1, PD-L2, COX-1 and 

COX-2 were significantly low. In this group, PD-1+ cells may represent T cells in the 

late active phase [36], though its significance is to be clarified. Thus, Cluster 1 was 

characterized by high immune cell infiltration and low expression of all 

immunosuppressive factors studied (Figures 3 and 4), suggesting that host-tumor 

immunity in the tumor microenvironment is still maintained in this group, which may 

lead to the significantly better prognosis. Besides a ratio of CD8/FOXP3ratio in Cluster 

1 was higher than that in Cluster 2-4, although there was no statistic significance, which 

is a similar tendency to the previously published report [19].



Clusters 2-4 were characterized by a low level of immune cell infiltration and

high expression of immunosuppressive factors and had significantly worse prognoses 

than Cluster 1. Cluster 2 was characterized by a significantly high expression of COX-1, 

whereas Cluster 3 and 4 had significantly high expressions of COX-2 (p=0.0053 and 

p=0.0048, respectively). The immunoregulatory function of COX-2-induced 

prostaglandin E2 (PGE2) is known to be important in inducing immune tolerance in the 

tumor microenvironment [37]. Secreted from tumor cells, PGE2 alters the Th1/Th2 

balance, suppresses lymphocyte proliferation, and regulates the function of antigen 

presenting cells [37; 38]. There is a report that expression of COX-2 is an independent 

prognostic factor in human ovarian carcinoma [39]. Hence, high expression of COX-2 

in Cluster 3 and Cluster 4 may contribute to poorer prognosis associated with low CD8+ 

cell infiltration (Figures 3-5 and Supplementary Table 6). Similarly, COX-1 expression 

was inversely correlated with CD8+ cell infiltration in Cluster 2, which may partly 

explain the poor prognosis of Cluster 2. 

Cluster 3 was characterized by high PD-L2 expression and low PD-1+ cell 

infiltration and had a worse prognosis. We previously reported that the patient with high 

expression of PD-L2 had a tendency for poor prognosis, although the difference was not 

statistically significant. In this respect, high expression of PD-L2 may partly explain the 

poor prognosis of this group, possibly by negatively influencing the infiltration of CD8+, 

CD4+ and PD-1+ cells. Cluster 4 was characterized by high expression of PD-L1, 

1 and COX2 and low CD8+ cell infiltration. Previous studies on PD-L1 

expression in malignant tumors, such as in kidney, bladder, breast, gastric, pancreatic 

and ovarian cancer, have shown that PD-L1 has a negative impact on the survival of the 

patient [29]. In addition, PD-L1 expression was inversely correlated with intraepithelial 

infiltrating CD8+ T cells, suggesting that PD-L1 inhibits the intratumoral infiltration of 



CD8+ T cells. signaling has been implicated in tumor progression, metastasis and 

immunosuppression in the advanced tumor phase [25]. These results suggest that PD-1 

ligand and/or COX expression are associated with an unfavorable clinical outcome of 

the patient by influencing the local immune environment. 

Recently, three phases of cancer immunoediting, namely, eliminatio

[4; 6; 40], have been proposed. In the 

phase, innate and adaptive immune cells recognize and eliminate tumor cells by

immunosurveillance, protecting the host against cancer. In t

phase, ongoing tumor growth and immune surveillance enter into a dynamic balance 

with one another, yielding in a protracted period. In the last phase, the tumor 

avoids immune-mediated destruction and develops into a clinically apparent neoplasm

[4]. This hypothesis is mainly applied to the process of cancer development in which 

immunosurveillance is gradually impaired. However, in clinical situations, cancer 

patients sometimes experience an asymptomatic period coexisting with known cancer 

lesions, or even a spontaneous regression, without any medical interventions, suggesting 

that the balance between tumor growth and host immunity significantly influences the 

clinical course of cancer patients. Nevertheless, there have been few studies that

intended to comprehensively analyze the local immune status of each case, which would 

thereby establish the means to predict the clinical outcome. In this study, Cluster 1 may 

represent a phenotype of the phase, where immune cells infiltrate into the 

tumor site to eliminate the tumor. Clusters 2, 3 and 4 may be in in which 

the local immune environment has already fallen into an immunosuppressive status. For 

an effective immune therapy, an understanding of the immune status in each case is 

particularly important. This study provides a model to analyze the complicated immune 

reaction in a local tumor site. 



This study may also provide a future direction for order-made immunotherapy in

each ovarian cancer patient. Currently, therapeutic modalities to target specific

immunosuppressive factors are being developed. Blocking antibodies against PD-1

(MDX-1106) have been developed and are in Phase I clinical trials for advanced 

refractory malignancies [41]. Phase II and III clinical trials using selective COX2 

inhibitors, celecoxib and rofecoxib, in combination with a chemotherapeutic have 

shown a clinical benefit [42]. Clinical trials focusing on the inhibition of the 

signaling pathway by a monoclonal antibody or a small molecule inhibitor of the TGF

receptor I kinase are being performed. To select the most efficient single or combined 

immune targeting therapies, precise assessments with multiple immune parameters in 

each case is essential. 

In conclusion, hierarchical clustering of tumor-infiltrating immune cells and 

immunosuppressive factors was used to identify a subgroup of ovarian cancer patients 

with a better prognosis. This study also suggested that immunosuppressive factors might 

influence the pattern of tumor-infiltrating immune cells. The approach to 

comprehensively analyze multiple immune factors shown here may lead to a precise 

understanding of the local immune status and provide a tool for the application of 

immune therapies to treat ovarian cancer patients. 
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Table 1

Univariate and multivariate analysis demonstrating the independent risk factors,

including Cluster 1, on overall survival of patients with ovarian cancer (n = 70).

(*) The numbers in parenthesis represent the 95% confidence interval (C.I.)

Overall survival
n Univariate

hazard ratio*
p Multivariate

hazard ratio*
p

Cluster 0.041 0.035
  Cluster 1 38 1 1
  Clusters 2-4 32 3.98 (1.04- 5.90 ) 4.93 (1.11- 21.76)
Tumor status <0.001 0.013
  pT1 + pT2 31 1 1
  pT3 39 7.90 (2.73-22.83) 5.36 (1.42- 20.20)
LN metastasis 0.003 0.041

  pN0 56 1 1
  pN1 14 3.24 (1.50- 7.00) 2.78 (1.04- 7.38)

Distant metastasis 0.047 0.122
  pM0 57 1 1
  pM1 13 2.28 (1.01- 5.16) 2.44 (0.79- 7.58)

Residual tumor <0.001 0.001
  Optimal 49 1 1
  Suboptimal 21 4.54 (2.17- 9.50) 5.86 (1.98- 17.34)
Histology 0.477 0.103
  Serous type 33 1.33 (0.59- 3.02) 3.27 (1.20- 8.93)
  Non-serous type 37 1 1
Chemotherapy 0.122 0.936
  Paclitaxel 31 1 1
  No paclitaxel 39 1.79 (0.86- 3.77) 1.03 (0.48- 2.23)
Age 0.486 0.562
  < 55 32 1 1
  ≥55 38 1. 31(0.62- 2.77) 1.268 (0.57- 2.83)



Table 2

Correlations between the four clusters and clinicopathological characteristics in 

ovarian cancer (n = 70)

n Cluster 1 Cluster 2 Cluster 3 Cluster 4 p
Age 0.922

<55 32 6 8 10 10
55 38 8 5 11 12

Stage 0.972
I 27 6 3 9 9
II 4 1 0 1 2
III 26 5 5 8 8
IV 13 2 5 3 3

Histology 0.672
Serous 33 7 9 8 9
Clear cell 22 5 2 9 6
Endometrioid 11 1 1 4 5
Mucinous 2 0 0 0 2
Others 2 1 1 0 0

Tumor status 0.889
pT1+pT2 31 6 4 10 11
pT3 39 8 9 11 11

LN metastasis 0.566
Positive 14 2 5 4 3
Negative 56 12 8 17 19

Distant metastasis 0.499
Positive 13 2 5 3 3
Negative 57 12 8 18 19

Residual tumor 0.773
  Optimal 49 10 7 16 16
  Suboptimal 21 4 6 5 6
Chemotherapy 0.965
  No paclitaxel 39 9 7 12 11
  Paclitaxel 31 5 6 9 11















Figure legends

Figure 1

Immunohistochemical staining of human ovarian cancer tissue.

(A) Representative staining patterns of ovarian cancers with low expression or with 

high expression of immunosuppressive factors, such as TGFβ1, PD-L1, PD-L2, COX-1, 

and COX-2, are shown. (B) Representative staining patterns with low or high 

infiltrating immune cells, such as CD1α+, CD4+, CD8+, CD57+, FOXP3+ or PD-1+ 

cells, in the tumor site are shown. Original magnification; (A and B) x200. White bar, 

200 μm.

Figure 2

Graphic representation of the immune status of 70 ovarian cancer tissues. 

Patterns of immune status were classified into four clusters by hierarchical clustering 

based on six phenotype of immune cells, such as CD1α+, CD4+, CD8+, CD57+, 

FOXP3+ or PD-1+ cells, in the tumor site and five immunosuppressive factors, such as 

TGFβ1, PD-L1, PD-L2, COX-1 and COX-2. Separated clusters are indicated by 

dendrograms. The color bar indicates that red is the high score (expression or 

infiltration), while green is the low score. 

Figure 3

The patterns of immune cell infiltration into tumor sites in each cluster. 

The dot plots represent the number of immune cells in the four clusters; (A) CD4; (B) 

CD8; (C) CD1α; (D) CD57; (E) FOXP3; and (F) PD-1 (*p<0.05, **p<0.01, 

***p<0.0001).



Figure 4

The patterns of immunosuppressive factor expression in each cluster. 

The dot plots represent the expression levels of immunosuppressive factors in the four 

clusters; (A) PD-L1; (B) PD-L2; (C) TGFβ1; (D) COX-1; and (E) COX-2 (*p<0.05, 

**p<0.01, ***p<0.0001).

Figure 5

Overall survival analyses of patients with ovarian cancer according to the four clusters.

(A) Kaplan–Meier curves according to Cluster 1 and the other clusters. 

(B) Kaplan–Meier curves according to Cluster 1 and the combination of other clusters. 

Supplementary Figure 1

Overall survival analyses of patients with ovarian cancer according to each 

immunological factor.

Kaplan–Meier curves according to the expression of the immunosuppressive factors (A) 

TGFβ1, (B) COX-1, and (C) COX-2 and to the number of (D) CD1α+ cells, (E) CD4+ 

cells, (F) CD57+ cells, (G) FOXP3+ cells and (H) PD-1+ cells infiltrating into tumor 

site



Supplementary Table 1

Primary antibodies used for immunohistochemistry.

*Antigen retrieval: MW, Microwave; PC, Pressure cooker; CB, Citrate Buffer (pH 6.0); 

EDTA, Tris-EDTA buffer (pH 9.0).

Antigens Clone Host Supplier Antigen
retrieval* Reference

Immunosuppressive factor
PD-L1 27A2 mouse MBL MW (CB) 30
PD-L2 Poly goat R&D systems MW (EDTA) 30
COX-1 160110 mouse Cayman Chemical MW (CB) 44
COX-2 160112 mouse Cayman Chemical MW (CB) 44

TB21 mouse Abcam PC (EDTA)
Immune cell

HI149 mouse Becton Dickinson MW (CB) 44
CD4 1F6 mouse Nichirei PC (EDTA)
CD8 C8/144B mouse Nichirei MW (CB) 30
CD57 HNK-1 mouse Becton Dickinson None 31
PD-1 NAT mouse Abcam PC (CB)
FOXP3 236A/E7 mouse eBioscience PC (CB)



Supplementary Table 2

Correlations between the expression of TGF 1 and clinicopathological characteristics 

in ovarian cancer (n = 70)   

n 1 p
Low High

Age
<55 32 19 13 0.207

55 38 29 9
Stage 0.883

I 27 21 6
II 4 2 2
III 26 19 7
IV 13 8 5

Histology 0.571
Serous 33 23 10
Clear cell 22 17 5
Endometrioid 11 6 5
Mucinous 2 1 1

Others 2 1 1
Tumor status 0.849

pT1+pT2 31 22 9
pT3 39 26 13

LN metastasis 0.741
Positive 14 9 5
Negative 56 39 17

Distant metastasis 0.593
Positive 13 8 5
Negative 57 40 17

Residual tumor 0.773
  Optimal 49 35 14
  Suboptimal 21 13 8
Chemotherapy 0.732
  No paclitaxel 39 27 12
  Paclitaxel 31 21 10



Supplementary Table 3 

The average numbers of tumor- cells, CD4+cells, CD8+cells, 

CD57+cells, FOXP3+cells or PD-1+ immune cells was counted using the same 70 

ovarian cancer specimens.

Average number Standard Deviation range

CD1a 1.4 6.7 0-18.4

CD4 5.8 6.7 0-44.8

CD8 6.6 8.3 0-56.8

CD57 1.6 1.0 0-5.0

FOXP3 3.3 4.3 0-19

PD-1 1.2 2.5 0-12.6



Supplementary Table 4 

Correlations between tumor-infiltrating CD1 + cells or CD57+ cells and clinicopathological characteristics in 

ovarian cancer (n = 70)

n CD1 + cells p CD4+ cells p CD57+ cells p
Low High Low High Low High

Age 0.072 0.533 0.448
<55 32 22 10 17 15 20 12

55 38 18 20 23 15 27 11
Stage 0.640 0.447 0.438

I 27 15 12 19 8 21 6
II 4 2 2 2 2 1 3
III 26 13 13 14 12 16 10
IV 13 10 3 5 8 9 4

Histology 0.700 0.057 0.973
Serous 33 20 13 13 20 20 13
Clear cell 22 13 9 18 4 15 7
Endometrioid 11 4 7 7 4 8 3
Mucinous 2 0 2 2 0 2 0
Others 2 1 1 0 2 2 0

Tumor status 0.917 0.176 0.725
pT1+pT2 31 17 14 21 10 22 9
pT3 39 23 16 19 20 25 14

LN metastasis 0.131 0.365 0.065
Positive 14 5 9 6 8 6 8
Negative 56 35 21 34 22 41 15

Distant metastasis 0.198 0.231 0.881
Positive 13 10 3 5 8 9 4

Negative 57 30 27 35 22 38 19
Residual tumor 0.792 0.065 0.824
  Optimal 49 27 22 32 17 33 16
  Suboptimal 21 13 8 8 13 14 7
Chemotherapy 0.066 0.071 0.388
  No paclitaxel 39 18 21 26 13 24 15
  Paclitaxel 31 22 9 14 17 23 8



Supplementary Table 5 
Correlations between tumor-infiltrating FOXP3+ cells or PD-1+ cells and 

clinicopathological characteristics in ovarian cancer (n = 70)

n FOXP3+ cells p PD-1+ cells p

Low High Low High

Age 28 42 0.040 48 22 0.976
<55 32 17 15 22 10

55 38 11 27 26 12

Stage 0.055 0.305

I 27 16 11 22 5

II 4 3 1 2 2

III 26 6 20 16 10

IV 13 3 10 8 5

Histology 0.0043 0.999
Serous 33 6 27 24 9

Clear cell 22 16 6 16 6

Endometrioid 11 5 6 8 3

Mucinous 2 1 1 2 0

Others 7 2 0 2 0

Tumor status 0.0027 0.155

pT1+pT2 31 19 12 24 7

pT3 39 9 30 24 15

LN metastasis 0.502 0.949

Positive 14 4 10 10 4

Negative 56 24 32 38 18

Distant metastasis 0.286 0.784

Positive 13 3 10 8 5

Negative 57 25 32 40 17

Residual tumor 0.0069 0.955

  Optimal 49 25 24 33 16

  Suboptimal 21 3 18 15 6

Chemotherapy 0.238 0.515

  No paclitaxel 39 18 21 28 11

  Paclitaxel 31 10 21 20 11




