Towards Minimal S_{4} Lepton Flavor Model

Hajime Ishimori, Tatsuo Kobayashi,
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

We study lepton flavor models with the S_{4} flavor symmetry. We construct simple models with smaller numbers of flavon fields and free parameters, such that we have predictions among lepton masses and mixing angles. The model with a S_{4} triplet flavon is not realistic, but we can construct realistic models with two triplet flavons, or one triplet and one doublet flavons.

1 Introduction

In particle physics, it is one of most important issues to understand the origin of the hierarchy among quark/lepton masses and their mixing angles. Indeed, there are many free parameters in the standard model including its extension with neutrino mass terms, and most of them are originated from the flavor sector, i.e. Yukawa couplings of quarks and leptons. Recent experiments of the neutrino oscillation can determine neutrino mass squared differences and mixing angles increasing their preciseness $[1,2,3,4,5]$. This indicates large mixing angles, which are completely different from the quark mixing ones. In particular, the tri-bimaximal mixing is one of interesting Anätze in the lepton sector $[6,7,8,9]$.

Non-Abelian flavor symmetries, in particular non-Abelian discrete symmetries, could explain such large mixing angles [10]. For example, by use of the A_{4} flavor symmetry, the tri-bimaximal mixing of leptons has been derived [11, 12, 13, 14, 15]. Furthermore, phenomenologically interesting aspects of A_{4} flavor models have been studied [16]-[75]. Another interesting flavor symmetry is the S_{4} symmetry [76, 77, 78, 79]. One can realize the exact tri-bimaximal neutrino mixing in S_{4} flavor models [$\left.80,81,82,83,84,85,86\right]$. The S_{4} flavor symmetry can lead other interesting aspects such as realistic quark mass matrices, a grand unified theory, etc [87]-[97].

The tri-bimaximal mixing is quite interesting Ansatz at a certain level. For θ_{13}, we have its upper bound. It is a current experimental target to measure a finite value of θ_{13}, and a finite value of θ_{13} would be measured in near future. ${ }^{1}$ (See also for a global fit analysis of neutrino oscillation data [5], which suggests non-vanishing value for the mixing angle θ_{13}.) It would be straightforward to obtain non-zero θ_{13} by adding correction terms in the models leading to the tri-bimaximal mixing. In this case, we may have no clear prediction on θ_{13} in some models, although we could keep our predictability on other models. At any rate, models would become complicated.

Indeed, most of models include several flavon fields, whose vacuum expectation values (VEVs) break flavor symmetries. In addition, there are many free parameters to derive lepton masses and mixing angles. Thus it is important to study whether models with the minimal or smaller number of flavon fields can lead to realistic results and whether there are models with higher predictability, that is, that the number of free parameters is smaller than the number of observables such as masses and mixing angles. Our purpose here is to study simple models with a small number of flavon fields and a small number of free parameters, such that our models have predictions on masses and mixing angles, e.g. their relations.

In this paper, we consider S_{4} as the flavor symmetry and study simple supersymmetric model constructions with the smaller numbers of flavons and free parameters. When the three families correspond to a S_{4} triplet, we have smaller number of free parameters. On the other hand, when the three families correspond to a singlet and a doublet, couplings including the S_{4} singlet lepton and S_{4} doublet are independent of each other. Then, we would have more free parameters. Thus, here we concentrate on the models, in which the three families of both the left and right-handed leptons correspond to S_{4} triplets. Obviously the simplest model is the model with only one triplet flavon. However, we show that such models do not lead to realistic results. Hence, we add a S_{4} doublet or triplet as the next

[^0]simple models. These models have seven free parameters in the lepton mass matrices. Thus, they have predictions among masses and mixing angles. Furthermore, since the neutrino mass spectrum is determined, the sum of neutrino masses and effective mass of double beta decay are also predicted. These predictions would be useful to search a hint of non-Abelian flavor symmetry S_{4}.

This paper is organized as follows. In section 2, we study the simple model with one S_{4} triplet flavon. Such a model is not realistic. In section 3 we study the model with one triplet and one doublet flavon fields, that is, model III. In section 4 we study the model with two triplet flavon fields, that is, model IV. The models III and IV are realistic and have predictions among lepton masses and mixing angles. In section 5 , we give a comment on the model with the $\Delta(54)$ flavor symmetry, which is quite similar to the model IV. Section 6 is devoted to the summary.

2 Model with a triplet flavon

The simplest model is the model with a triplet flavon. In this section, we study such two models and show we can not obtain realistic results.

2.1 Model I

	$\left(\ell_{e}, \ell_{\mu}, \ell_{\tau}\right)$	$\left(e^{c}, \mu^{c}, \tau^{c}\right)$	$H_{u, d}$	$\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$
S_{4}	3	3	1	3

Table 1: Matter content and charge assignment of model I.
We first consider the simplest model among all other S_{4} models, i.e. model I. Each of left-handed lepton doublets and right-handed charged leptons are assigned to S_{4} triplet 3 and additional flavon fields $\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$ are also assigned to the same triplet. The up and down sectors of electroweak Higgs fields are S_{4} trivial singlets. These S_{4} representations are shown in Table 1. In this model, the superpotential of charged leptons is written by

$$
\begin{align*}
w_{e}= & y_{1}^{e}\left(e^{c} \ell_{e}+\mu^{c} \ell_{\mu}+\tau^{c} \ell_{\tau}\right) H_{d} \\
& +y_{2}^{e}\left(\left(\mu^{c} \ell_{\tau}+\tau^{c} \ell_{\mu}\right) \chi_{1}+\left(e^{c} \ell_{\tau}+\tau^{c} \ell_{e}\right) \chi_{2}+\left(e^{c} \ell_{\mu}+\mu^{c} \ell_{e}\right) \chi_{3}\right) H_{d} / \Lambda . \tag{1}
\end{align*}
$$

For the neutrino sector, we have

$$
\begin{align*}
w_{\nu}= & y_{1}^{\nu}\left(\ell_{e} \ell_{e}+\ell_{\mu} \ell_{\mu}+\ell_{\tau} \ell_{\tau}\right) H_{u} H_{u} / \Lambda \\
& +y_{2}^{\nu}\left(\left(\ell_{\mu} \ell_{\tau}+\ell_{\tau} \ell_{\mu}\right) \chi_{1}+\left(\ell_{e} \ell_{\tau}+\ell_{\tau} \ell_{e}\right) \chi_{2}+\left(\ell_{e} \ell_{\mu}+\ell_{\mu} \ell_{e}\right) \chi_{3}\right) H_{u} H_{u} / \Lambda^{2} . \tag{2}
\end{align*}
$$

The VEVs of scalar fields are given by

$$
\begin{equation*}
\left\langle H_{u, d}\right\rangle=v_{u, d}, \quad\left\langle\chi_{n}\right\rangle=\alpha_{n} \Lambda . \tag{3}
\end{equation*}
$$

We reparametrize the VEVs of χ_{i} for $i=1,2,3$ as

$$
\begin{equation*}
\left\langle\left(\chi_{1}, \chi_{2}, \chi_{3}\right)\right\rangle=\alpha_{1} \Lambda\left(1, r, r^{\prime}\right) \tag{4}
\end{equation*}
$$

Then mass matrices become

$$
\begin{align*}
& M_{e}=y_{1}^{e} v_{d}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{e} \alpha_{1} v_{d}\left(\begin{array}{ccc}
0 & r^{\prime} & r \\
r^{\prime} & 0 & 1 \\
r & 1 & 0
\end{array}\right), \\
& M_{\nu}=y_{1}^{\nu} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{\nu} \alpha_{1} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
0 & r^{\prime} & r \\
r^{\prime} & 0 & 1 \\
r & 1 & 0
\end{array}\right) . \tag{5}
\end{align*}
$$

The off-diagonal elements of the neutrino mass matrix are the same as the ones of charged leptons. Indeed, we can rewrite the mass matrix of neutrinos as

$$
M_{\nu}=\left(y_{1}^{\nu}-\frac{y_{1}^{e} y_{2}^{\nu}}{y_{2}^{e}}\right) \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \tag{6}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{y_{2}^{\nu} v_{u}^{2}}{y_{2}^{e} v_{d} \Lambda} M_{e}
$$

Then, one can not realize large mixing angles. With a non-vanishing CP-phase, the mixing matrix does not need to be trivial, but we cannot obtain large mixing angles indicated by experiments of neutrino oscillation. We could introduce a Z_{N} symmetry such that it allows either y_{2}^{e} or y_{2}^{ν}. In this case, one could not realize realistic mass eigenvalues.

2.2 Model II

	$\left(\ell_{e}, \ell_{\mu}, \ell_{\tau}\right)$	$\left(e^{c}, \mu^{c}, \tau^{c}\right)$	$H_{u, d}$	χ_{1}	$\left(\chi_{2}, \chi_{3}, \chi_{4}\right)$
S_{4}	3	3^{\prime}	1	1^{\prime}	3

Table 2: Matter content and charge assignment of model II.
Here, we discuss another model with a S_{4} triplet flavon as model II. As indicated by the model I, if the off-diagonal elements of charged leptons and neutrinos are the same, realistic lepton mixing cannot be obtained. Another candidate for the simplest model is given by changing the S_{4} charge assignment. Lepton doublets are assigned to 3 while right handedcharged leptons are assigned to 3^{\prime} of S_{4}. In addition, we consider S_{4} singlet flavon χ_{1} with the charge 1^{\prime} and triplet flavon $\left(\chi_{2}, \chi_{3}, \chi_{4}\right)$ with 3^{\prime}. These S_{4} representations are shown in Table 2. Then the flavor symmetric superpotential becomes

$$
\begin{align*}
w_{e}= & y_{1}^{e}\left(e^{c} \ell_{e}+\mu^{c} \ell_{\mu}+\tau^{c} \ell_{\tau}\right) \chi_{1} H_{d} \\
& +y_{2}^{e}\left(\left(\tau^{c} \ell_{\mu}-\mu^{c} \ell_{\tau}\right) \chi_{2}+\left(e^{c} \ell_{\tau}-\tau^{c} \ell_{e}\right) \chi_{3}+\left(\mu^{c} \ell_{e}-e^{c} \ell_{\mu}\right) \chi_{4}\right) H_{d} / \Lambda, \tag{7}
\end{align*}
$$

for charged leptons and

$$
\begin{align*}
w_{\nu}= & y_{1}^{\nu}\left(\ell_{e} \ell_{e}+\ell_{\mu} \ell_{\mu}+\ell_{\tau} \ell_{\tau}\right) H_{u} H_{u} / \Lambda \\
& +y_{2}^{\nu}\left(\left(\ell_{\mu} \ell_{\tau}+\ell_{\tau} \ell_{\mu}\right) \chi_{2}+\left(\ell_{e} \ell_{\tau}+\ell_{\tau} \ell_{e}\right) \chi_{3}+\left(\ell_{e} \ell_{\mu}+\ell_{\mu} \ell_{e}\right) \chi_{4}\right) H_{u} H_{u} / \Lambda^{2} \tag{8}
\end{align*}
$$

for neutrinos. Vacuum expectation values are given by

$$
\begin{equation*}
\left\langle H_{u, d}\right\rangle=v_{u, d}, \quad\left\langle\chi_{1}\right\rangle=\alpha_{1} \Lambda, \quad\left\langle\left(\chi_{2}, \chi_{3}, \chi_{4}\right)\right\rangle=\alpha_{2} \Lambda\left(1, r, r^{\prime}\right) . \tag{9}
\end{equation*}
$$

Then, mass matrices are obtained

$$
\begin{align*}
& M_{e}=y_{1}^{e} \alpha_{1} v_{d}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{e} \alpha_{2} v_{d}\left(\begin{array}{ccc}
0 & -r^{\prime} & r \\
r^{\prime} & 0 & -1 \\
-r & 1 & 0
\end{array}\right), \\
& M_{\nu}=y_{1}^{\nu} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{\nu} \alpha_{2} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
0 & r^{\prime} & r \\
r^{\prime} & 0 & 1 \\
r & 1 & 0
\end{array}\right) . \tag{10}
\end{align*}
$$

Let us consider the limit $m_{e}=0$. Then, the determinant of the charged lepton mass matrix can be vanishing when $y_{1}^{e} \alpha_{1} / y_{2}^{e} \alpha_{2}=0, \pm \sqrt{-1-r^{2}-r^{\prime 2}}$. For the first case, we have $m_{\mu}=m_{\tau}$ and for the other cases, $2 m_{\mu}=m_{\tau}$. Then this model cannot lead the realistic mass spectrum of charged leptons.

3 Model III

In the previous section, it was shown that the models with a S_{4} triplet flavon does not lead to realistic results. Thus, the next step is to add another flavon with non-trivial S_{4} representations. In this section we add a S_{4} doublet flavon, and in the next section we add a S_{4} triplet flavon.

3.1 Mass matrices

	$\left(\ell_{e}, \ell_{\mu}, \ell_{\tau}\right)$	$\left(e^{c}, \mu^{c}, \tau^{c}\right)$	$H_{u, d}$	χ_{0}	χ_{1}	$\left(\chi_{2}, \chi_{3}\right)$	$\left(\chi_{4}, \chi_{5}, \chi_{6}\right)$
S_{4}	3	3^{\prime}	1	1	1	2	3^{\prime}
Z_{3}	1	1	0	0	1	1	1

Table 3: Matter content and charge assignment of model III.
In this model, we add one S_{4} doublet. Then, we can fit experimental values. The charge assignments for leptons and flavons are summarized in Table 3. The field χ_{0} is added to realize a proper pattern of the vacuum alignment as will be discussed. To make stronger prediction, we assume there is no mixing from the neutrino sector which is realized in the charge assignment with the Z_{3} symmetry. The superpotential of charged leptons is

$$
\begin{align*}
w_{e}= & y_{1}^{e}\left(e^{c} \ell_{e}+\mu^{c} \ell_{\mu}+\tau^{c} \ell_{\tau}\right) \chi_{1} H_{d} / \Lambda \\
& +y_{2}^{e}\left(\frac{1}{\sqrt{2}}\left(\mu^{c} \ell_{\mu}-\tau^{c} \ell_{\tau}\right) \chi_{3}+\frac{1}{\sqrt{6}}\left(2 e^{c} \ell_{e}-\mu^{c} \ell_{\mu}-\tau^{c} \ell_{\tau}\right) \chi_{2}\right) H_{d} / \Lambda \tag{11}\\
& +y_{3}^{e}\left(\left(\tau^{c} \ell_{\mu}+\mu^{c} \ell_{\tau}\right) \chi_{3}+\left(e^{c} \ell_{\tau}+\tau^{c} \ell_{e}\right) \chi_{4}+\left(\mu^{c} \ell_{e}+e^{c} \ell_{\mu}\right) \chi_{5}\right) H_{d} / \Lambda .
\end{align*}
$$

Similarly, the superpotential of neutrinos is obtained

$$
\begin{align*}
w_{\nu}= & y_{1}^{\nu}\left(\ell_{e} \ell_{e}+\ell_{\mu} \ell_{\mu}+\ell_{\tau} \ell_{\tau}\right) \chi_{1} H_{u} H_{u} / \Lambda^{2} \\
& +y_{2}^{\nu}\left(\frac{1}{\sqrt{2}}\left(\ell_{\mu} \ell_{\mu}-\ell_{\tau} \ell_{\tau}\right) \chi_{2}+\frac{1}{\sqrt{6}}\left(-2 \ell_{e} \ell_{e}+\ell_{\mu} \ell_{\mu}+\ell_{\tau} \ell_{\tau}\right) \chi_{3}\right) H_{u} H_{u} / \Lambda . \tag{12}
\end{align*}
$$

VEVs are denoted by

$$
\begin{equation*}
\left\langle H_{u, d}\right\rangle=v_{u, d}, \quad\left\langle\chi_{n}\right\rangle=\alpha_{n} \Lambda . \tag{13}
\end{equation*}
$$

The vacuum alignment is assumed to be

$$
\begin{equation*}
\left\langle\left(\chi_{2}, \chi_{3}\right)\right\rangle=\alpha_{2} \Lambda(1, r), \quad\left\langle\left(\chi_{4}, \chi_{5}, \chi_{6}\right)\right\rangle=\alpha_{4} \Lambda\left(1, r^{\prime}, r^{\prime}\right) . \tag{14}
\end{equation*}
$$

Then, mass matrices are written

$$
\begin{align*}
& M_{e}=y_{1}^{e} \alpha_{1} v_{d}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{e} \alpha_{2} v_{d}\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & 0 \\
0 & \frac{r}{\sqrt{2}}-\frac{1}{\sqrt{6}} & 0 \\
0 & 0 & -\frac{r}{\sqrt{2}}-\frac{1}{\sqrt{6}}
\end{array}\right)+y_{3}^{e} \alpha_{4} v_{d}\left(\begin{array}{ccc}
0 & r^{\prime} & r^{\prime} \\
r^{\prime} & 0 & 1 \\
r^{\prime} & 1 & 0
\end{array}\right), \\
& M_{\nu}=y_{1}^{\nu} \alpha_{1} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{\nu} \alpha_{2} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
-\frac{2 r}{\sqrt{6}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}}+\frac{r}{\sqrt{6}} & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}}+\frac{r}{\sqrt{6}}
\end{array}\right) . \tag{15}
\end{align*}
$$

Suppose that the charged lepton mass matrix is diagonalized by U_{e}. The neutrino mass matrix in the basis of the diagonal charged lepton mass matrix is written

$$
\begin{align*}
U_{e}^{T} M_{\nu} U_{e}= & \frac{y_{3}^{\nu}}{y_{3}^{e}} \frac{v_{u}^{2}}{v_{d} \Lambda} U_{e}^{T} U_{e}\left(\begin{array}{ccc}
m_{e} & 0 & 0 \\
0 & m_{\mu} & 0 \\
0 & 0 & m_{\tau}
\end{array}\right)+\left(y_{1}^{\nu}-\frac{y_{3}^{\nu} y_{1}^{e}}{y_{3}^{e}}\right) \frac{v_{u}^{2}}{\Lambda} U_{e}^{T}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) U_{e} \\
& +\left(y_{2}^{\nu}-\frac{y_{2}^{e} y_{3}^{\nu}}{y_{3}^{e}}\right) \alpha_{1} \frac{v_{u}^{2}}{\Lambda} U_{e}^{T}\left(\begin{array}{ccc}
-\frac{2 r}{\sqrt{6}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}}+\frac{r}{\sqrt{6}} & 0 \\
0 & 0 & -\frac{1}{\sqrt{2}}+\frac{r}{\sqrt{6}}
\end{array}\right) U_{e} . \tag{16}
\end{align*}
$$

In this case, by introducing the S_{4} doublet flavon, we have more free parameters in M_{e} compared with the mass matrices in the previous section. Then we can obtain realistic values of charged lepton masses and two large mixing angles.

There are five parameters for the charged lepton mass matrix so that they can be fixed by giving two mixing angles of leptons and charged lepton masses. The other mixing angle is determined. After fixing the parameters, the neutrino mass matrix has two degrees of freedom which can be determined by mass squared differences of neutrinos. For instance, when we give $\sin ^{2} \theta_{12}^{\mathrm{MNS}}=1 / 3, \sin ^{2} \theta_{23}^{\mathrm{MNS}}=1 / 2$, we obtain $\theta_{13}^{\mathrm{MNS}}$ and the mass spectrum of neutrinos. Such angles as well as charged lepton mass ratios are realized when $r^{\prime}=0.567$, $y_{1}^{e} / y_{3}^{e} \alpha_{3}=0.857, y_{2}^{e} / y_{3}^{e} \alpha_{3}=-0.225$, and $r=-2.83$, then we obtain

$$
M_{e} \approx y_{3} \alpha_{4} v_{d}\left(\begin{array}{ccc}
0.338 & 0.567 & 0.567 \tag{17}\\
0.567 & 0.957 & 1 \\
0.567 & 1 & 1.27
\end{array}\right), \quad U_{e}^{T} \approx\left(\begin{array}{ccc}
0.813 & -0.575 & 0.0895 \\
-0.460 & -0.541 & 0.704 \\
-0.357 & -0.614 & -0.704
\end{array}\right) .
$$

The predicted value for $\sin \theta_{13}^{\mathrm{MNS}}$ is $\sin \theta_{13}^{\mathrm{MNS}} \approx 0.0895$. For neutrino masses, we have

$$
\begin{align*}
& m_{\nu_{1}}=y_{2}^{\nu} \alpha_{1} \frac{v_{u}^{2}}{\Lambda}\left(\frac{y_{1}^{\nu} \alpha_{1}}{y_{2}^{\nu} \alpha_{2}}-\frac{2 r}{\sqrt{6}}\right), \quad m_{\nu_{2}}=y_{2}^{\nu} \alpha_{1} \frac{v_{u}^{2}}{\Lambda}\left(\frac{y_{1}^{\nu} \alpha_{1}}{y_{2}^{\nu} \alpha_{2}}+\frac{1}{\sqrt{2}}+\frac{r}{\sqrt{6}}\right), \\
& m_{\nu_{3}}=y_{2}^{\nu} \alpha_{1} \frac{v_{u}^{2}}{\Lambda}\left(\frac{y_{1}^{\nu} \alpha_{1}}{y_{2}^{\nu} \alpha_{2}}-\frac{1}{\sqrt{2}}+\frac{r}{\sqrt{6}}\right) . \tag{18}
\end{align*}
$$

Figure 1: Predicted values of mixing angles (left) and neutrino masses (right). For the left figure, blue dots (lower dots) denote $\sin ^{2} \theta_{13}-\sin ^{2} \theta_{12}$ plane and red dots (upper dots) denote $\sin ^{2} \theta_{13}-\sin ^{2} \theta_{23}$ plane.

Mass squared differences of atmospheric and solar are obtained by assuming normal hierarchy. Writing $\operatorname{Arg}\left(\frac{y_{1}^{\nu} \alpha_{1}}{y_{2}^{\prime} \alpha_{2}}\right)=a$, we have

$$
\begin{equation*}
\frac{y_{1}^{\nu} \alpha_{1}}{y_{2}^{\nu} \alpha_{2}} \approx \frac{1.93 e^{2 i a}}{1+e^{2 i a}}, \quad\left|y_{2}^{\nu}\right| \alpha_{1} \frac{v_{u}^{2}}{\Lambda} \approx 0.0201[\mathrm{eV}] . \tag{19}
\end{equation*}
$$

¿From them, the lowest value of the sum of neutrino mass becomes $\sum m_{\nu_{i}} \approx 0.113 \mathrm{eV}$ and of the effective mass of double beta decay is $\left|m_{e e}\right| \approx 8.05 \mathrm{meV}$.

In numerical calculation, we input $\theta_{12}^{\mathrm{MNS}}$ and $\theta_{23}^{\mathrm{MNS}}$ within 1σ range of [5] for the case of normal mass hierarchy:

$$
\begin{align*}
& \Delta m_{31}^{2}=(2.36-2.54) \times 10^{-3} \mathrm{eV}^{2}, \quad \Delta m_{21}^{2}=(7.41-7.79) \times 10^{-5} \mathrm{eV}^{2}, \\
& \sin ^{2} \theta_{12}=0.297-0.329, \quad \sin ^{2} \theta_{23}=0.45-0.57 \tag{20}
\end{align*}
$$

With these values for $\theta_{12}^{\mathrm{MNS}}$ and $\theta_{23}^{\mathrm{MNS}}$, we obtain $\theta_{13}^{\mathrm{MNS}}, \sum m_{\nu_{i}}$, and $\left|m_{e e}\right|$ for each value, as indicated by Fig. 1. Important predictions of this model are the correlation of $\sin ^{2} \theta_{13}{ }^{-}$ $\sin ^{2} \theta_{23}$ with narrow band and allowed region of $\sum m_{\nu_{i}}-\left|m_{e e}\right|$ plane. Considering improvement of experiments in future, prediction would be stronger, depending on the parameter region of input values. Precise measurement of mixing angles can test the model in near future. For neutrino masses, they can be also improved by the precise values of input mixing angles.

3.2 Potential analysis

The superpotential including only the flavon fields is obtained as

$$
\begin{align*}
w_{s}= & \kappa \chi_{0}^{2}+\lambda_{1} \chi_{1}^{3}+\lambda_{2} \chi_{1}\left(\chi_{2}^{2}+\chi_{3}^{2}\right)+\lambda_{3} \chi_{1}\left(\chi_{4}^{2}+\chi_{5}^{2}+\chi_{6}^{2}\right) \\
& +\lambda_{4}\left(3 \chi_{2}^{2} \chi_{3}-\chi_{3}^{3}\right)+\lambda_{5}\left(\frac{1}{\sqrt{2}} \chi_{2}\left(\chi_{5}^{2}-\chi_{6}^{2}\right)+\frac{1}{\sqrt{6}} \chi_{3}\left(-2 \chi_{4}^{2}+\chi_{5}^{2}+\chi_{6}^{2}\right)\right) \tag{21}\\
& +\eta_{1} \chi_{0}^{4}+6 \eta_{2} \chi_{0} \chi_{4} \chi_{5} \chi_{6} .
\end{align*}
$$

The conditions of potential minimum read

$$
\begin{align*}
2 \kappa \chi_{0}+4 \eta_{1} \chi_{0}^{3}+6 \eta_{2} \chi_{4} \chi_{5} \chi_{6} & =0, \\
3 \lambda_{1} \chi_{1}^{2}+\lambda_{2}\left(\chi_{2}^{2}+\chi_{3}^{2}\right)+\lambda_{3}\left(\chi_{4}^{2}+\chi_{5}^{2}+\chi_{6}^{2}\right) & =0, \\
2 \kappa_{2} \chi_{2}+\lambda_{12}\left(\chi_{3}^{3}-3 \chi_{3} \chi_{4}^{2}\right)+6 \lambda_{14} \chi_{5} \chi_{6} \chi_{7} & =0, \\
2 \lambda_{2} \chi_{1} \chi_{2}+6 \lambda_{4} \chi_{2} \chi_{3}+\frac{1}{\sqrt{2}} \lambda_{5}\left(\chi_{5}^{2}-\chi_{6}^{2}\right) & =0, \\
2 \lambda_{2} \chi_{1} \chi_{3}+3 \lambda_{4}\left(\chi_{2}^{2}-\chi_{3}^{2}\right)+\frac{1}{\sqrt{6}} \lambda_{5}\left(-2 \chi_{4}^{2}+\chi_{5}^{2}+\chi_{6}^{2}\right) & =0, \tag{22}\\
2 \lambda_{3} \chi_{1} \chi_{4}-\frac{4}{\sqrt{6}} \lambda_{5} \chi_{3} \chi_{4}+6 \eta_{2} \chi_{0} \chi_{5} \chi_{6} & =0, \\
2 \lambda_{3} \chi_{1} \chi_{5}+2 \lambda_{5} \chi_{2} \chi_{5}+\frac{2}{\sqrt{6}} \lambda_{5} \chi_{3} \chi_{5}+6 \eta_{2} \chi_{0} \chi_{4} \chi_{6} & =0, \\
2 \lambda_{3} \chi_{1} \chi_{6}-2 \lambda_{5} \chi_{2} \chi_{6}+\frac{2}{\sqrt{6}} \lambda_{5} \chi_{3} \chi_{6}+6 \eta_{2} \chi_{0} \chi_{4} \chi_{5} & =0,
\end{align*}
$$

Since there are more than six parameters, it is easy to obtain independent values for all VEVs. Note that the alignment with strict relation $\chi_{5}=\chi_{6}$ leads $\lambda_{5}=0$ from the last three equations. Taking this, it automatically makes $\chi_{4}=\chi_{5}=\chi_{6}$ if they have non-vanishing VEVs. Then the vacuum alignment of the model must be interpreted as $\chi_{5} \approx \chi_{6}$. Choosing some parameter region of the above superpotential, this relation holds so that the same result can be obtained.

4 Model IV

4.1 Mass matrices

	$\left(\ell_{e}, \ell_{\mu}, \ell_{\tau}\right)$	$\left(e^{c}, \mu^{c}, \tau^{c}\right)$	$H_{u, d}$	χ_{1}	χ_{2}	$\left(\chi_{3}, \chi_{4}, \chi_{5}\right)$	$\left(\chi_{6}, \chi_{7}, \chi_{8}\right)$
S_{4}	3	3	1	1	1	3	3
Z_{3}	1	0	0	2	1	2	1

Table 4: Matter content and charge assignment of model IV.
Here, we study the model with two S_{4} triplet flavons, that is, model IV. In this model, each of charged lepton sector and neutrino sector couples to (different) S_{4} triplet flavon. The pattern of mass matrices is the same between the charged leptons and neutrinos. Then the maximal number of parameters is equal to four in each sector. Considering a proper pattern of the vacuum alignment, the model has some prediction. The S_{4} representations and Z_{3} charges are shown in Table 4. Now let us study the prediction of this model. The superpotential of charged leptons is written by

$$
\begin{align*}
w_{e}= & y_{1}^{e}\left(e^{c} \ell_{e}+\mu^{c} \ell_{\mu}+\tau^{c} \ell_{\tau}\right) \chi_{1} H_{d} / \Lambda \tag{23}\\
& +y_{2}^{e}\left(\left(\tau^{c} \ell_{\mu}+\mu^{c} \ell_{\tau}\right) \chi_{3}+\left(e^{c} \ell_{\tau}+\tau^{c} \ell_{e}\right) \chi_{4}+\left(\mu^{c} \ell_{e}+e^{c} \ell_{\mu}\right) \chi_{5}\right) H_{d} / \Lambda .
\end{align*}
$$

The superpotential including neutrinos is written

$$
\begin{align*}
w_{\nu}= & y_{1}^{\nu}\left(\ell_{e} \ell_{e}+\ell_{\mu} \ell_{\mu}+\ell_{\tau} \ell_{\tau}\right) \chi_{2} H_{u} H_{u} / \Lambda^{2} \\
& +y_{2}^{\nu}\left(\left(\ell_{\mu} \ell_{\tau}+\ell_{\tau} \ell_{\mu}\right) \chi_{6}+\left(\ell_{e} \ell_{\tau}+\ell_{\tau} \ell_{e}\right) \chi_{7}+\left(\ell_{e} \ell_{\mu}+\ell_{\mu} \ell_{e}\right) \chi_{8}\right) H_{u} H_{u} / \Lambda^{2} . \tag{24}
\end{align*}
$$

The vacuum alignment is assumed to be

$$
\begin{equation*}
\left\langle\left(\chi_{3}, \chi_{4}, \chi_{5}\right)\right\rangle=\alpha_{3} \Lambda(1,1, r), \quad\left\langle\left(\chi_{6}, \chi_{7}, \chi_{8}\right)\right\rangle=\alpha_{7} \Lambda\left(1, r^{\prime}, r^{\prime \prime}\right) . \tag{25}
\end{equation*}
$$

Then the mass matrices are given

$$
\begin{align*}
& M_{e}=y_{1}^{e} v_{d}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{e} \alpha_{3} v_{d}\left(\begin{array}{ccc}
0 & r & 1 \\
r & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \tag{26}\\
& M_{\nu}=y_{1}^{\nu} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+y_{2}^{\nu} \alpha_{7} \frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
0 & r^{\prime \prime} & r^{\prime} \\
r^{\prime \prime} & 0 & 1 \\
r^{\prime} & 1 & 0
\end{array}\right) .
\end{align*}
$$

For the charged leptons, there remains the $e-\mu$ symmetry so that

$$
U_{12}=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \tag{27}\\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right), \quad U_{12}^{\dagger} M_{e} U_{12}=y_{2}^{e} \alpha_{3} v_{d}\left(\begin{array}{ccc}
a-r & 0 & 0 \\
0 & a+r & \sqrt{2} \\
0 & \sqrt{2} & a
\end{array}\right)
$$

where $a=y_{1}^{e} \alpha_{1} / y_{2}^{e} \alpha_{2}$. Then the mass matrix M_{e} can be diagonalized by

$$
\begin{align*}
& U_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & -\sin \theta_{23} \\
0 & \sin \theta_{23} & \cos \theta_{23}
\end{array}\right), \quad \tan \theta_{23}=\frac{-r+\sqrt{8+r^{2}}}{2 \sqrt{2}} \\
& U_{23}^{e \dagger} U_{12}^{e \dagger} M_{e} U_{12}^{e} U_{23}^{e}=y_{2}^{e} \alpha_{2} v_{d}\left(\begin{array}{ccc}
a-r & 0 & 0 \\
0 & \frac{1}{2}\left(2 a+r+\sqrt{8+r^{2}}\right) & 0 \\
0 & 0 & \frac{1}{2}\left(2 a+r-\sqrt{8+r^{2}}\right)
\end{array}\right) . \tag{28}
\end{align*}
$$

We use the notation of $U_{12}^{e \dagger} U_{23}^{e \dagger} M_{e} U_{23}^{e} U_{12}^{e}=\operatorname{diag}\left(m_{1}^{e}, m_{2}^{e}, m_{3}^{e}\right)$. The mass matrix M_{e} has three parameters and they can be fixed by masses of charged leptons.

The parameters of the neutrino mass matrix are independent of the ones of charged leptons so that four parameters remain. Using them, we need to fit two mass scales of neutrino oscillations and three mixing angles. Similar to the previous section, giving two mixing angles of the MNS matrix, the other angle and neutrino mass spectrum can be predicted. To fit the parameters, we write

$$
M_{\nu}=U_{\nu}\left(\begin{array}{ccc}
m_{1}^{\nu} & 0 & 0 \tag{29}\\
0 & m_{2}^{\nu} & 0 \\
0 & 0 & m_{3}^{\nu}
\end{array}\right) U_{\nu}^{\dagger}
$$

As an example, assuming $m_{1}^{e}=m_{e}, m_{2}^{e}=m_{\mu}, m_{3}^{e}=m_{\tau}$, we have

$$
\begin{equation*}
a \approx-1 \pm \frac{9 m_{\mu}}{4 m_{\tau}}, \quad r \approx 1 \mp \frac{9 m_{\mu}}{4 m_{\tau}} \tag{30}
\end{equation*}
$$

For neutrino masses, we assume $m_{1}^{\nu}=m_{\nu_{1}}, m_{2}^{\nu}=m_{\nu_{2}}, m_{3}^{\nu}=m_{\nu_{3}}$, then we have

$$
\begin{equation*}
U_{\nu}=U_{12}^{e} U_{23}^{e} U_{\mathrm{MNS}} . \tag{31}
\end{equation*}
$$

Inserting this matrix to Eq. (29), assuming $\sin ^{2} \theta_{12}^{\mathrm{MNS}}=1 / 3, \sin ^{2} \theta_{23}^{\mathrm{MNS}}=1 / 2$, we obtain $\sin \theta_{13}^{\text {MNS }}=0.1487,0.1130$. For neutrino masses, there appears the following condition

$$
\begin{equation*}
\frac{m_{\nu_{3}}}{m_{\nu_{1}}} \approx 0.951\left(0.0518+\frac{m_{\nu_{2}}}{m_{\nu_{1}}}\right), \tag{32}
\end{equation*}
$$

for $\sin \theta_{13}^{\mathrm{MNS}}=0.1487$ and

$$
\begin{equation*}
\frac{m_{\nu_{3}}}{m_{\nu_{1}}} \approx 0.973\left(0.0281+\frac{m_{\nu_{2}}}{m_{\nu_{1}}}\right), \tag{33}
\end{equation*}
$$

for $\sin \theta_{13}^{\mathrm{MNS}}=0.1130$. To be consistent with experiments, only inverted hierarchy is allowed. When Majorana phase is vanishing, the mass spectrum for $\sin \theta_{13}=0.1487$ is obtained

$$
\begin{equation*}
m_{\nu_{1}} \approx 0.01374[\mathrm{eV}], \quad m_{\nu_{2}} \approx-0.01378[\mathrm{eV}], \quad m_{\nu_{3}} \approx-0.01242[\mathrm{eV}] \tag{34}
\end{equation*}
$$

The sum of neutrino masses is 0.341 eV and the effective mass of double beta decay is 35.8 meV . Parameters are chosen as $r^{\prime} \approx-0.9418, r^{\prime \prime} \approx-0.8767, y_{1}^{\nu} / y_{2}^{\nu} \alpha_{7} \approx-0.4364$. For $\sin \theta_{13}=$ 0.1130 , we have

$$
\begin{equation*}
m_{\nu_{1}} \approx 0.02429[\mathrm{eV}], \quad m_{\nu_{2}} \approx-0.02433[\mathrm{eV}], \quad m_{\nu_{3}} \approx-0.02300[\mathrm{eV}] \tag{35}
\end{equation*}
$$

The sum is 0.460 eV and the mass of double beta decay is 49.3 meV . Parameters are set as $r^{\prime} \approx-0.9741, r^{\prime \prime} \approx-0.9311, y_{1}^{\nu} / y_{2}^{\nu} \alpha_{7} \approx-0.4653$.

Similar to the previous section, we input $\theta_{12}^{\mathrm{MNS}}$ and $\theta_{23}^{\mathrm{MNS}}$ within 1σ range of [5]. In the above case, we can only have inverted hierarchy for neutrino masses, but in general case, normal hierarchy is also allowed. For inverted mass hierarchy, different parameter space is favoured:

$$
\begin{align*}
& \Delta m_{31}^{2}=-(2.25-2.44) \times 10^{-3} \mathrm{eV}^{2}, \quad \Delta m_{21}^{2}=(7.41-7.79) \times 10^{-5} \mathrm{eV}^{2}, \\
& \sin ^{2} \theta_{12}=0.297-0.329, \quad \sin ^{2} \theta_{23}=0.46-0.58 \tag{36}
\end{align*}
$$

Giving $\theta_{12}^{\mathrm{MNS}}$ and $\theta_{23}^{\mathrm{MNS}}$, we can get $\theta_{13}^{\mathrm{MNS}}, \sum m_{\nu_{i}}$, and $\left|m_{e e}\right|$ for each value, shown in Fig. 2. For the case of inverted mass hierarchy, the allowed region is narrow and our prediction is strong. Lower bounds of $\sum m_{\nu_{i}}$ and $\left|m_{e e}\right|$ would be reached by next generation experiments. This model can be also tested by precise measurement of mixing angles. For neutrino masses, $\sum m_{\nu_{i}}$ and $\left|m_{e e}\right|$ are expected with larger values compared to model III. With next-generation experiments of double beta decay and neutrino oscillation, we can have a hint of this model.

4.2 Potential analysis

The superpotential including only the flavon fields is written as

$$
\begin{align*}
w_{s}= & \kappa_{1} \chi_{1} \chi_{2}+\kappa_{2}\left(\chi_{3} \chi_{6}+\chi_{4} \chi_{7}+\chi_{5} \chi_{8}\right)+\lambda_{1} \chi_{1}^{3}+\lambda_{2} \chi_{2}^{3}+6 \lambda_{3} \chi_{3} \chi_{4} \chi_{5}+6 \lambda_{4} \chi_{6} \chi_{7} \chi_{8} \\
& +\lambda_{5} \chi_{1}\left(\chi_{3}^{2}+\chi_{4}^{2}+\chi_{5}^{2}\right)+\lambda_{6} \chi_{2}\left(\chi_{6}^{2}+\chi_{7}^{2}+\chi_{8}^{2}\right)+\eta_{1}\left(\chi_{3}^{2}+\chi_{4}^{2}+\chi_{5}^{2}\right)\left(\chi_{6}^{2}+\chi_{7}^{2}+\chi_{8}^{2}\right) \\
& +\eta_{1}^{\prime}\left(\frac{1}{2}\left(\chi_{4}^{2}-\chi_{5}^{2}\right)\left(\chi_{7}^{2}-\chi_{8}^{2}\right)+\frac{1}{6}\left(-2 \chi_{3}^{2}+\chi_{4}^{2}+\chi_{5}^{2}\right)\left(-2 \chi_{6}^{2}+\chi_{7}^{2}+\chi_{8}^{2}\right)\right) \tag{37}\\
& +4 \eta_{1}^{\prime \prime}\left(\chi_{4} \chi_{5} \chi_{7} \chi_{8}+\chi_{3} \chi_{5} \chi_{6} \chi_{8}+\chi_{3} \chi_{4} \chi_{6} \chi_{7}\right)+\cdots,
\end{align*}
$$

Figure 2: Predicted values of mixing angles (left) and neutrino masses (right). For both figures, blue (dark gray) dots indicate normal mass hierarchy of neutrinos and red (light gray) dots indicate inverted mass hierarchy.
where we omit other fourth couplings which have negative mass dimension. Assuming $\eta_{1}^{\prime \prime}$ is larger than other negative dimensional operators, the condition of potential minimum becomes

$$
\begin{array}{r}
\kappa_{1} \chi_{2}+3 \eta_{1} \chi_{1}^{2}+\eta_{5}\left(\chi_{3}^{2}+\chi_{4}^{2}+\chi_{5}^{2}\right)=0, \\
\kappa_{1} \chi_{1}+3 \eta_{2} \chi_{2}^{2}+\eta_{6}\left(\chi_{6}^{2}+\chi_{7}^{2}+\chi_{8}^{2}\right)=0, \\
\kappa_{2} \chi_{6}+6 \eta_{3} \chi_{4} \chi_{5}+2 \eta_{5} \chi_{1} \chi_{3}+4 \eta_{1}^{\prime \prime}\left(\chi_{5} \chi_{6} \chi_{8}+\chi_{4} \chi_{6} \chi_{7}\right)=0, \\
\kappa_{2} \chi_{7}+6 \eta_{3} \chi_{3} \chi_{5}+2 \eta_{5} \chi_{1} \chi_{4}+4 \eta_{1}^{\prime \prime}\left(\chi_{5} \chi_{7} \chi_{8}+\chi_{3} \chi_{6} \chi_{7}\right)=0, \\
\kappa_{2} \chi_{8}+6 \eta_{3} \chi_{3} \chi_{4}+2 \eta_{5} \chi_{1} \chi_{5}+4 \eta_{1}^{\prime \prime}\left(\chi_{4} \chi_{7} \chi_{8}+\chi_{3} \chi_{6} \chi_{8}\right)=0, \tag{38}\\
\kappa_{2} \chi_{3}+6 \eta_{4} \chi_{7} \chi_{8}+2 \eta_{6} \chi_{2} \chi_{6}+4 \eta_{1}^{\prime \prime}\left(\chi_{3} \chi_{5} \chi_{8}+\chi_{3} \chi_{4} \chi_{7}\right)=0, \\
\kappa_{2} \chi_{4}+6 \eta_{4} \chi_{6} \chi_{8}+2 \eta_{6} \chi_{2} \chi_{7}+4 \eta_{1}^{\prime \prime}\left(\chi_{4} \chi_{5} \chi_{8}+\chi_{3} \chi_{4} \chi_{6}\right)=0, \\
\kappa_{2} \chi_{5}+6 \eta_{4} \chi_{6} \chi_{7}+2 \eta_{6} \chi_{2} \chi_{8}+4 \eta_{1}^{\prime \prime}\left(\chi_{4} \chi_{5} \chi_{7}+\chi_{3} \chi_{5} \chi_{6}\right)=0 .
\end{array}
$$

There are many parameters enough to take independent values for each VEV. To realize the alignment $\chi_{3}=\chi_{4}$ with $\chi_{6} \neq \chi_{7}$, we need a condition $\kappa_{2}+4 \eta_{1}^{\prime \prime} \chi_{5} \chi_{8}=0$.

$5 \Delta(54)$ model and its stringy origin

Here, we give comments on $\Delta(54)$ models. The $\Delta(54)$ symmetry has a structure similar to S_{4}. Indeed, several interesting flavor models have been constructed [100, 101, 102, 103]. Furthermore, the $\Delta(54)$ flavor symmetry as well as D_{4} and $\Delta(27)$ can be realized within the framework of heterotic string models on orbifolds [104, 105, 106] and magnetized/intersecting D-brane models [107, 108]. ${ }^{2}$ In particular, only triplets as well as a trivial singlet appear as fundamental modes in heterotic orbifold models [105]. From this viewpoint, the model in section 4 is quite interesting.

[^1]We assign $\Delta(54)$ representations and Z_{3} charges to the leptons and flavons as shown in Table 5 . Those are the same as the model in section 4 except replacing S_{4} by $\Delta(54)$. The Z_{3} charge assignment is also the same. This Z_{3} symmetry plays a role such that different triplet flavon VEVs appear in the mass matrices of the charged leptons and neutrinos. Other symmetries would play the same role in string models.

	$\left(\ell_{e}, \ell_{\mu}, \ell_{\tau}\right)$	$\left(e^{c}, \mu^{c}, \tau^{c}\right)$	$H_{u, d}$	χ_{1}	χ_{2}	$\left(\chi_{3}, \chi_{4}, \chi_{5}\right)$	$\left(\chi_{6}, \chi_{7}, \chi_{8}\right)$
$\Delta(54)$	3	3	1	1	1	3	3
Z_{3}	1	0	0	2	1	2	1

Table 5: Matter content and charge assignment of the $\Delta(54)$ model.
The tensor products of $\Delta(54)$ triplets are the same as those of S_{4}. Then, we realize the same superpotential (23) and (24). Thus, we can obtain the same results as one in section 4 when the same vacuum alignment is realized.

The $\Delta(54)$ triplet corresponds to localized fields on three fixed points of the Z_{3} orbifold in heterotic models. Thus, the three families of left and right-handed leptons as well as triplet flavons, $\left(\chi_{3}, \chi_{4}, \chi_{5}\right)$ and $\left(\chi_{6}, \chi_{7}, \chi_{8}\right)$, would correspond to the modes localized on the three Z_{3} fixed points. Since the $\Delta(54)$ trivial singlet corresponds to a bulk mode on the orbifold, the electroweak Higgs fields and singlet flavons, χ_{1} and χ_{2}, are originated from the bulk modes. Furthermore, VEVs of scalar fields on a fixed point correspond to blow-up of the orbifold singularity. That is, our model suggests that a certain type of blow-up from the orbifold limit to Calibi-Yau manifold would be interesting to derive realistic lepton mass matrices, such that the flavon VEVs corresponding to (25) are realized. Thus, our model would be useful for model building from string models, too.

6 Conclusion

We have studied S_{4} models with smaller numbers of flavon fields and free parameters. When we introduce one S_{4} triplet flavon, a realistic model cannot be constructed. To be consistent with experiments, we need two triplet S_{4} flavons, or one triplet and one doublet at least. By building models with two triplets, or one triplet and one doublet, we have stronger predictions among lepton masses and mixing angles.

Realistic and predictive models are model III and model IV. Both models have seven parameters among six lepton mass eigenvalues and three mixing angles. We have assumed there is a vanishing CP-phase in the lepton sector to make stronger prediction. However, it is easy to extend the models with non-vanishing CP-violation.

We can construct the model with the $\Delta(54)$ flavor symmetry, which is quite similar to model IV. Such a model is quite interesting from the viewpoint of stringy realization. We would study elsewhere on this aspect.

Note to be added

After this paper was completed, Ref. [98] appeared showing the range of the mixing angle θ_{13} in the latest T2K experiment. Our prediction of θ_{13} is compatible with their result.

Acknowledgement

H.I. is supported by Grand-in-Aid for Scientific Research, No. 23.696 from the Japan Society of Promotion of Science. T. K. is supported in part by the Grant-in-Aid for Scientific Research No. 20540266 and the Grant-in-Aid for the Global COE Program " The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture,Sports, Science and Technology of Japan.

References

[1] T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 10, 113011 (2008) [arXiv:0808.2016 [hep-ph]].
[2] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, Phys. Rev. Lett. 101, 141801 (2008) [arXiv:0806.2649 [hep-ph]].
[3] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, Nucl. Phys. Proc. Suppl. 18827 (2009).
[4] M. C. Gonzalez-Garcia, M. Maltoni and J. Salvado, arXiv:1001.4524 [hep-ph].
[5] T. Schwetz, M. Tortola and J. W. F. Valle, arXiv:1103.0734 [hep-ph].
[6] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002) [arXiv:hep-ph/0202074].
[7] P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 163 (2002) [arXiv:hep-ph/0203209].
[8] P. F. Harrison and W. G. Scott, Phys. Lett. B 557 (2003) 76 [arXiv:hep-ph/0302025].
[9] P. F. Harrison and W. G. Scott, arXiv:hep-ph/0402006.
[10] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010) [arXiv:1003.3552 [hep-th]].
[11] E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) [arXiv:hep-ph/0106291].
[12] E. Ma, Mod. Phys. Lett. A 17, 2361 (2002) [arXiv:hep-ph/0211393].
[13] E. Ma, Phys. Rev. D 70, 031901 (2004) [arXiv:hep-ph/0404199].
[14] G. Altarelli and F. Feruglio, Nucl. Phys. B 720, 64 (2005) [arXiv:hep-ph/0504165].
[15] G. Altarelli and F. Feruglio, Nucl. Phys. B 741, 215 (2006) [arXiv:hep-ph/0512103].
[16] K. S. Babu, T. Enkhbat and I. Gogoladze, Phys. Lett. B 555238 (2003) [arXiv:hepph/0204246].
[17] K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003) [arXiv:hepph/0206292].
[18] K. S. Babu, T. Kobayashi and J. Kubo, Phys. Rev. D 67, 075018 (2003) [arXiv:hepph/0212350].
[19] M. Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del Moral, Phys. Rev. D 69, 093006 (2004) [arXiv:hep-ph/0312265].
[20] S. L. Chen, M. Frigerio and E. Ma, Nucl. Phys. B 724, 423 (2005) [arXiv:hepph/0504181].
[21] A. Zee, Phys. Lett. B 630, 58 (2005) [arXiv:hep-ph/0508278].
[22] E. Ma, Phys. Rev. D 73, 057304 (2006) [arXiv:hep-ph/0511133].
[23] E. Ma, Phys. Lett. B 632, 352 (2006) [arXiv:hep-ph/0508231].
[24] E. Ma, Mod. Phys. Lett. A 20, 2601 (2005) [arXiv:hep-ph/0508099].
[25] B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. K. Parida, Phys. Lett. B 638, 345 (2006) [arXiv:hep-ph/0603059].
[26] J. W. F. Valle, J. Phys. Conf. Ser. 53, 473 (2006) [arXiv:hep-ph/0608101].
[27] X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604, 039 (2006) [arXiv:hepph/0601001].
[28] E. Ma, H. Sawanaka and M. Tanimoto, Phys. Lett. B 641, 301 (2006) [arXiv:hepph/0606103].
[29] B. Adhikary and A. Ghosal, Phys. Rev. D 75, 073020 (2007) [arXiv:hep-ph/0609193].
[30] S. F. King and M. Malinsky, Phys. Lett. B 645, 351 (2007) [arXiv:hep-ph/0610250].
[31] M. Hirsch, A. S. Joshipura, S. Kaneko and J. W. F. Valle, Phys. Rev. Lett. 99, 151802 (2007) [arXiv:hep-ph/0703046].
[32] L. Lavoura and H. Kuhbock, Mod. Phys. Lett. A 22, 181 (2007) [arXiv:hepph/0610050].
[33] M. Honda and M. Tanimoto, Prog. Theor. Phys. 119, 583 (2008) [arXiv:0801.0181 [hep-ph]].
[34] F. Bazzocchi, S. Kaneko and S. Morisi, JHEP 0803, 063 (2008) [arXiv:0707.3032 [hep$\mathrm{ph}]$].
[35] F. Bazzocchi, M. Frigerio and S. Morisi, Phys. Rev. D 78, 116018 (2008) [arXiv:0809.3573 [hep-ph]].
[36] M. Hirsch, S. Morisi and J. W. F. Valle, Phys. Rev. D 79, 016001 (2009) [arXiv:0810.0121 [hep-ph]].
[37] M. Hirsch, S. Morisi and J. W. F. Valle, Phys. Lett. B 679, 454 (2009) [arXiv:0905.3056 [hep-ph]].
[38] B. Adhikary and A. Ghosal, Phys. Rev. D 78, 073007 (2008) [arXiv:0803.3582 [hep-ph]].
[39] H. Ishimori, T. Kobayashi, Y. Omura and M. Tanimoto, JHEP 0812, 082 (2008) [arXiv:0807.4625 [hep-ph]].
[40] S. Baek and M. C. Oh, arXiv:0812.2704 [hep-ph].
[41] L. Merlo, arXiv:0811.3512 [hep-ph].
[42] F. Bazzocchi, M. Frigerio and S. Morisi, Phys. Rev. D 78, 116018 (2008) [arXiv:0809.3573 [hep-ph]].
[43] E. Ma, Phys. Lett. B 671, 366 (2009) [arXiv:0808.1729 [hep-ph]].
[44] W. Grimus and H. Kuhbock, Phys. Rev. D 77, 055008 (2008) [arXiv:0710.1585 [hepph]].
[45] S. Morisi, Nuovo Cim. 123B, 886 (2008) [arXiv:0807.4013 [hep-ph]].
[46] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Nucl. Phys. B 809, 218 (2009) [arXiv:0807.3160 [hep-ph]].
[47] P. H. Frampton and S. Matsuzaki, arXiv:0806.4592 [hep-ph].
[48] T. Fukuyama, arXiv:0804.2107 [hep-ph].
[49] Y. Lin, Nucl. Phys. B 813, 91 (2009) [arXiv:0804.2867 [hep-ph]].
[50] A. Hayakawa, H. Ishimori, Y. Shimizu and M. Tanimoto, Phys. Lett. B 680, 334 (2009) [arXiv:0904.3820 [hep-ph]].
[51] G. J. Ding and J. F. Liu, arXiv:0911.4799 [hep-ph].
[52] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, arXiv:0911.3874 [hep-ph].
[53] C. Hagedorn, E. Molinaro and S. T. Petcov, arXiv:0911.3605 [hep-ph].
[54] J. Berger and Y. Grossman, arXiv:0910.4392 [hep-ph].
[55] S. Morisi and E. Peinado, arXiv:0910.4389 [hep-ph].
[56] F. Feruglio, C. Hagedorn and L. Merlo, arXiv:0910.4058 [hep-ph].
[57] P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, arXiv:0909.2553 [hep-ph].
[58] L. Merlo, Nucl. Phys. Proc. Suppl. 188, 345 (2009).
[59] A. Albaid, Phys. Rev. D 80, 093002 (2009) [arXiv:0909.1762 [hep-ph]].
[60] T. J. Burrows and S. F. King, arXiv:0909.1433 [hep-ph].
[61] E. Ma, arXiv:0908.3165 [hep-ph].
[62] A. Tamii et al., Mod. Phys. Lett. A 24, 867 (2009).
[63] C. Hagedorn, E. Molinaro and S. T. Petcov, JHEP 0909, 115 (2009) [arXiv:0908.0240 [hep-ph]].
[64] M. Hirsch, Pramana 72, 183 (2009).
[65] A. Urbano, arXiv:0905.0863 [hep-ph].
[66] G. Altarelli and D. Meloni, J. Phys. G 36, 085005 (2009) [arXiv:0905.0620 [hep-ph]].
[67] G. C. Branco, R. Gonzalez Felipe, M. N. Rebelo and H. Serodio, Phys. Rev. D 79, 093008 (2009) [arXiv:0904.3076 [hep-ph]].
[68] M. C. Chen and S. F. King, JHEP 0906, 072 (2009) [arXiv:0903.0125 [hep-ph]].
[69] L. Merlo, J. Phys. Conf. Ser. 171, 012083 (2009) [arXiv:0902.3067 [hep-ph]].
[70] P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Phys. Rev. D 79, 116010 (2009) [arXiv:0901.2236 [hep-ph]].
[71] S. Morisi, Phys. Rev. D 79, 033008 (2009) [arXiv:0901.1080 [hep-ph]].
[72] J. Barry and W. Rodejohann, arXiv:1003.2385 [hep-ph].
[73] Y. Lin, Nucl. Phys. B 824, 95 (2010) [arXiv:0905.3534 [hep-ph]].
[74] F. del Aguila, A. Carmona and J. Santiago, arXiv:1001.5151 [hep-ph].
[75] Y. Shimizu, M. Tanimoto and A. Watanabe, arXiv:1105.2929 [hep-ph].
[76] Y. Yamanaka, H. Sugawara and S. Pakvasa, Phys. Rev. D 25, 1895 (1982) [Erratumibid. D 29, 2135 (1984)].
[77] T. Brown, S. Pakvasa, H. Sugawara and Y. Yamanaka, Phys. Rev. D 30, 255 (1984).
[78] T. Brown, N. Deshpande, S. Pakvasa and H. Sugawara, Phys. Lett. B 141, 95 (1984).
[79] E. Ma, Phys. Lett. B 632, 352 (2006) [arXiv:hep-ph/0508231].
[80] C. S. Lam, Phys. Rev. D 78, 073015 (2008) [arXiv:0809.1185 [hep-ph]].
[81] F. Bazzocchi and S. Morisi, Phys. Rev. D 80, 096005 (2009) [arXiv:0811.0345 [hep-ph]].
[82] H. Ishimori, Y. Shimizu and M. Tanimoto, Prog. Theor. Phys. 121, 769 (2009) [arXiv:0812.5031 [hep-ph]].
[83] W. Grimus, L. Lavoura and P. O. Ludl, J. Phys. G 36, 115007 (2009) [arXiv:0906.2689 [hep-ph]].
[84] F. Bazzocchi, L. Merlo and S. Morisi, Nucl. Phys. B 816, 204 (2009) [arXiv:0901.2086 [hep-ph]].
[85] F. Bazzocchi, L. Merlo and S. Morisi, Phys. Rev. D 80, 053003 (2009) [arXiv:0902.2849 [hep-ph]].
[86] D. Meloni, arXiv:0911.3591 [hep-ph].
[87] H. Zhang, Phys. Lett. B 655, 132 (2007) [arXiv:hep-ph/0612214].
[88] C. Hagedorn, M. Lindner and R. N. Mohapatra, JHEP 0606, 042 (2006) [arXiv:hepph/0602244].
[89] Y. Cai and H. B. Yu, Phys. Rev. D 74, 115005 (2006) [arXiv:hep-ph/0608022].
[90] F. Caravaglios and S. Morisi, arXiv:hep-ph/0503234.
[91] F. Caravaglios and S. Morisi, Int. J. Mod. Phys. A 22, 2469 (2007) [arXiv:hepph/0611078].
[92] Y. Koide, JHEP 0708, 086 (2007) [arXiv:0705.2275 [hep-ph]].
[93] M. K. Parida, Phys. Rev. D 78, 053004 (2008) [arXiv:0804.4571 [hep-ph]].
[94] G. J. Ding, Nucl. Phys. B 827, 82 (2010) [arXiv:0909.2210 [hep-ph]].
[95] G. Altarelli, F. Feruglio and L. Merlo, JHEP 0905, 020 (2009) [arXiv:0903.1940 [hepph]].
[96] L. Merlo, arXiv:0909.2760 [hep-ph].
[97] Y. Daikoku and H. Okada, arXiv:0910.3370 [hep-ph].
[98] The T2K Collaboration, K.Abe et al., arXiv:1106.2822 .
[99] J. A. Escobar and C. Luhn, J. Math. Phys. 50, 013524 (2009) [arXiv:0809.0639 [hepth]].
[100] H. Ishimori, T. Kobayashi, H. Okada, Y. Shimizu and M. Tanimoto, JHEP 0904, 011 (2009) [arXiv:0811.4683 [hep-ph]].
[101] H. Ishimori, T. Kobayashi, H. Okada, Y. Shimizu and M. Tanimoto, JHEP 0912, 054 (2009) [arXiv:0907.2006 [hep-ph]].
[102] S. F. King and C. Luhn, JHEP 0910, 093 (2009) [arXiv:0908.1897 [hep-ph]].
[103] J. A. Escobar, arXiv:1102.1649 [hep-ph].
[104] T. Kobayashi, S. Raby and R. J. Zhang, Nucl. Phys. B 704, 3 (2005) [arXiv:hepph/0409098].
[105] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby and M. Ratz, Nucl. Phys. B 768, 135 (2007) [arXiv:hep-ph/0611020].
[106] P. Ko, T. Kobayashi, J. h. Park and S. Raby, Phys. Rev. D 76, 035005 (2007) [Erratumibid. D 76, 059901 (2007)] [arXiv:0704.2807 [hep-ph]].
[107] H. Abe, K. S. Choi, T. Kobayashi and H. Ohki, Nucl. Phys. B 820, 317 (2009) [arXiv:0904.2631 [hep-ph]].
[108] H. Abe, K. S. Choi, T. Kobayashi and H. Ohki, Phys. Rev. D 81, 126003 (2010) [arXiv:1001.1788 [hep-th]].
[109] H. Abe, K. S. Choi, T. Kobayashi, H. Ohki and M. Sakai, arXiv:1009.5284 [hep-th].

[^0]: ${ }^{1}$ After this paper was completed, Ref. [98] appeared.

[^1]: ${ }^{2}$ See also [109].

