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ABSTRACT 

 

Shear-banding phenomenon in the entangled polymer systems was investigated in a planar 

Couette cell with the diffusive Rolie-Poly (ROuse LInear Entangled POLYmers) model, a 

single-mode constitutive model derived from a tube-based molecular theory. The steady state 

shear stress σs was constant in the shear gradient direction while the local shear rate changed 

abruptly, i.e., split into the bands. We focused on the molecular conformation (also calculated 

from the Rolie-Poly model) around the band boundary. A band was found also for the 

conformation but its boundary was much broader than that for the shear rate. Correspondingly, 

the first normal stress difference (N1) gradually changed in this diffuse boundary of the 

conformational bands. (This change of N1 was compensated by a change of the local pressure.) 

For both shear rate and conformation, the boundary widths were quite insensitive to the 

macroscopic shear rate but changed with various parameters such as the diffusion constant and 

the relaxation times (the reptation time and the Rouse time). The broadness of the 

conformational banding, associated by the gradual change of N1, was attributed to competition 

between the molecular diffusion (in the shear gradient direction) and the conformational 

relaxation under a constraint of constant σs. 

 

Keywords: shear banding, Rolie-Poly model, velocity band, molecular orientational band, 

molecular diffusion and relaxation 
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INTRODUCTION 

 Under simple shear flow, band structures of local flow rate are often observed in 

several complex fluids such as wormlike micelles (Lerouge et al. 2004; Miller and Rothstein 

2007; Salmon et al. 2003), polymer solutions and blends (Fielding and Olmsted 2003a, b; 

Furukawa and Onuki 2005; Jupp and Yuan 2004; Takenaka et al. 2006). In these fluids, the 

concentration and molecular orientation serve as “coupled order parameters”. Focusing on 

these parameters, various attempts have been made to understand the shear banding 

phenomenon. For example, the stability analysis (Furukawa and Onuki 2005) suggested that 

homogeneous polymer solutions (not far from the phase separation point at equilibrium) can 

separate into phases having different concentrations and flow rates thereby forming the band 

structure. For wormlike micellar systems, the shear banding can be similarly related to the 

flow-induced phase separation, or, to the flow-induced nematic-isotropic (NI) transition 

(Berret et al. 1994; Cappelaere et al. 1997; Fischer and Callaghan 2001; Liberatore et al. 2006; 

Schmitt et al. 1995). (Note however that the shear banding may occur even in the absence of 

the flow-induced phase separation/ordering, as argued for entangled polymer solutions 

(Tapadia and Wang 2004, 2003).) 

 From a phenomenological point of view, dynamics of complex fluids is described by a 

constitutive relationship(s) between the strain rate tensor and the stress tensor. Thus, apart from 

the molecular view, we may understand some aspect of the shear banding through analysis of 

this relationship, for example, through the linear stability analysis (Yerushalmi et al. 1970). In 

this analysis, a non-monotonic constitutive relationship giving a negative slope in the steady 

stress vs shear rate plot is believed to be the origin of the shear banding because the negative 

slope leads to a mechanical instability thereby forcing the fluid to split into stable bands (Lu et 

al. 2000; Yerushalmi et al. 1970). For the wormlike micelles, this scenario has been supported 

by the analysis of the diffusive Johnson-Segalman (JS) fluid model (Fielding 2005; Fielding 

and Olmsted 2006; Olmsted et al. 2000; Radulescu and Olmsted 2000; Radulescu et al. 1999) 

and several other models	
 (Yesilata et al. 2006; Zhou et al. 2008) as well as by experiments (Hu 

and Lips 2005; Radulescu et al. 2003). 

 The instability due to the non-monotonic constitutive relationship is qualitatively 

similar to the thermodynamic instability of the van der Waals gas to which the Maxwell 

construction applies. Correspondingly, the shear rates of the low and high (slow and fast) 

bands, low!!  and high!! , are determined by a simple lever rule, as proved through a theoretical 

analysis (Cates et al. 1993) and simulations (van den Noort and Briels 2007; Zhou et al. 2008). 
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The lever rule is cast in a simple form, a low low high highw w! ! != +! ! ! , where loww  and highw  are the 

fractions of low and high shear bands, respectively, and a!!  is the applied (macroscopic) shear 

rate. The fractions loww  and highw  are determined by the constitutive relationship in a way 

that the shear stresses in the low and high bands flowing at low!!  and high!!  match each other. 

This matching stress is uniquely determined by the constitutive relationship and independent of 

the applied shear rate. Very recently, Sato et al. defined phenomenological “order parameters” 

as linear combination of the shear stress and normal stress difference and formulated a theory 

of shear banding on the basis of the JS fluid model (Sato et al. 2010). Their theory is analogous 

to the well established Ginzburg-Landau (GL) type free energy theory (Onuki 2002) and 

naturally explains the necessity of the non-monotonic constitutive relationship for the shear 

banding (instability of homogeneous flow) as well as the lever rule. Experimental data seem to 

be in harmony with these theories (Manneville et al. 2004; Radulescu et al. 2003; Salmon et al. 

2003). 

 Thus, for the wormlike micelles and polymer solutions/blends, the shear banding 

mechanisms appear to be understood to a considerable depth. However, several uncertain 

points remain. For example, it is not clear if the shear bands are separated by a sharp boundary 

(similar to the interface between different phases at equilibrium) and how the molecules orient 

themselves around the boundary. In fact, for the wormlike micelles, experiments showed that 

the bands of the shear rate and molecular orientation do not necessarily coincide with each 

other (Hu and Lips 2005; Lerouge et al. 2004) and the orientation gradually varies in a region 

much wider than the boundary between the shear rate bands (Lerouge et al. 2004). The other 

uncertain point is found for the normal stress differences, N. The steady state shear stress σs (= 

matching stress explained above) is the same in the high and low bands but N may vary 

according to the gradual change of the orientation. The change of N is compensated by a 

change of the local pressure (Archer et al. 1995; Olmsted 2008). This fact in turn indicates that 

the rheological understanding of the shear banding is to be made for both σs and N. 

 Now, we turn our attention to entangled flexible polymers, the material focused in this 

study. The shear banding not associated with the flow-induced phase separation (flow-induced 

concentration gradient) has been reported for entangled polymers (Boukany and Wang 2009b; 

Ravindranath et al. 2008; Tapadia and Wang 2006). The non-monotonic constitutive 

relationship resulting in the flow instability could be the origin of the shear banding for 

entangled polymers, as similar to the situation for the wormlike micelles. In fact, rheological 

properties have been extensively studied within the context of the tube model (Doi and 
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Edwards 1989; McLeish 2002), and the constitutive instability due to disentanglement has 

been reported (Cates et al. 1993; Doi and Edwards 1989; McLeish and Ball 1986). However, 

Wang (Wang 2008) proposed the other possible molecular scenario that attributes the shear 

banding to inhomogeneous structural failure (yielding or rupture) of entanglement network. In 

this scenario, the entangled polymer is considered to behave as a viscoelastic solid before they 

relax, and the shear banding and the flow instability are mainly related to the intrinsic 

inhomogeneity of entanglement networks. 

 Thus, further work is desired for the shear banding in entangled polymers, and we 

made a numerical study of the conformational heterogeneity under the shear banding. A 

molecular model was needed for this purpose. The Rolie-Poly (Rouse Linear Entangled 

POLYmers) model (Likhtman and Graham 2003), a single-mode version of a full theory based 

on the tube picture (Graham et al. 2003), is simple/easy to analyze but incorporates all dynamic 

modes considered in the full theory, reptation, chain stretch, contour length fluctuation, and 

thermal/convective constraint releases. Thus, we utilized the so-called diffusive Rolie-Poly 

model incorporating a stress diffusion term (Adams et al. 2008; Adams and Olmsted 2009) to 

analyze the velocity field/chain conformation in a planar Couette flow. Our focus was placed 

on a relationship between the conformational heterogeneity (or conformational banding) and 

the shear rate banding, a subject never investigated so far to our best knowledge. The analysis 

revealed that the Rolie-Poly model exhibits the shear banding because of its constitutive 

instability and a boundary between the conformational bands is much broader than that 

between the shear rate bands. This paper presents details of this finding and discusses a 

mechanism that determines the boundary widths of the two types of bands. 

 This paper is organized as follows. At first, the governing equations and the quantities 

to be examined are summarized. Then, we examine the shear-banding structures and analyze 

the molecular stretch and orientation, placing our focus on a difference of the boundary widths 

for the orientational and shear rate bands. Furthermore, we examine effects of the applied shear 

rate, diffusion constant, and relaxation time on the boundary widths to discuss the difference of 

the broadness of those bands. We also analyze changes of the first normal stress difference 

across the streamlines. In addition, we compare the shear banding features due to the 

constitutive instability (our results) and the structural yielding to make some comments for 

possible banding mechanisms. Finally, we summarize the results of this paper and refer to 

future work. 
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THEORETICAL 

Basic equations 

 In this work, we utilize the Rolie-Poly model to examine the rheological properties and 

chain conformation under steady shear banding. We consider two-dimensional planar flow in 

(x,y) coordinates with x and y being the velocity and velocity gradient directions, respectively. 

This treatment is sufficient to capture the essence of the properties/conformation under shear 

banding. We assume that the polymeric fluid is incompressible and isothermal. Then, in the 

steady state, the following equations are satisfied. 

0!" =u ,           ( 1 ) 

0tp!" +"# =ó ,           ( 2 ) 

Here, u is the velocity field, p is the pressure field, and tó  is the stress tensor. The stress 

tensor in the steady state, tó , is determined from the two-dimensional Rolie-Poly model as 

pst óóó += ,            ( 3 ) 
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Here, the subscripts s and p, respectively, stand for solvent-like and polymeric components. 

(Definition of these components is explained later in more detail.) p!  and s!  represent the 

viscosities of these components, while d!  and R!  respectively indicate the reptation and 

Rouse times of the polymeric component. CCR!  is a parameter representing the magnitude of 

convective constraint release (CCR), !  is a parameter specifying the exponent for the 

relaxation due to the CCR, and D is the diffusion constant. It is convenient to introduce the 

diffusion length li as di Dl !/= . The remaining part of the paper mostly utilizes li rather D. 

Here, we should emphasize that the dynamic equation for the concentration field is not 

involved in our analysis because the main focus of this study is placed on the banded structures 

due to the constitutive instability, not due to the flow-induced phase separation. As judged 

from experimental results (Boukany et al. 2008), the concentration fluctuation may play just a 
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minor role for some cases of highly concentrated systems (but of course not for all cases).  

 The quantity C appearing in Eqs. (5) and (6), that determines the stress of the 

polymeric component, is the polymer conformation tensor. Its αβ component in the Cartesian 

coordinate, with x and y being chosen as the velocity and velocity gradient directions, is 

defined by 

1st
2Cαβ α βυ υ≡ ,  (for two-dimensional problem).     (7) 

Here, υ  is the tangential vector of the chain (υ  = ∂R/∂s with R = position of the chain segment 

having the curvilinear coordinate s), the angular brackets denote an ensemble average, and the 

subscript “1st” stands for the amplitude of the slowest relaxation mode obtained as the lowest 

Fourier component of 2 ( ) ( )s sα βυ υ  with respect to the Rouse eigenfunctions (Likhtman 

and Graham 2003). Note that Cαβ  given by Eq. (7) is independent of s and that the 

orientational anisotropy and stretch ratio of the polymer chain are specified by Cxy and 

/ 2tr =C { }1/ 2( ) / 2xx yyC C+ , respectively. (Note also that Cαβ  is twice of the components of 

the usually adopted conformation tensor, 
1st

υυ .) 

 The steady state profiles are obtained by solving Eqs. (1)-(6) numerically with a 

pseudo-dynamics method. In this method, we regard the fields u, C, and/or p as dynamic 

variables and solve the time (t)-dependent diffusive Rolie-Poly equation. 
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At each time, the velocity and pressure fields, u and p, are calculated to satisfy Eqs. (1)-(6). 

The steady state profiles are obtained in the limit of t→∞. The pseudo-dynamic method 

successfully gave stable and physically reasonable steady state profiles. (For some cases, the 

method gave just a globally meta-stable profile if two or more locally stable profiles exist. 

However, this did not give a serious problem for the results presented in this paper.) 

 Here, the solvent-like, Newtonian component considered in Eq. (4) is rigorously 

defined. This component is not exclusively defined as a real, low molecular weight solvent.  

Instead, the viscous response of this component includes a contribution from polymer chains 

not explicitly treated in the Rolie-Poly model: This single-mode model focuses on the slowest 

relaxation/motional mode and does not explicitly incorporate contributions from faster modes.  
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The viscous response of the solvent-like component expresses the response of the real solvent 

(if any) as well as the response from such fast modes that should have relaxed in the time scale 

treated by the single-mode model. Consequently, the polymeric component considered in Eqs. 

(3)-(6) is defined for the slowest mode of the polymer chain. For convenience of representing a 

relative contribution of the solvent-like component to the viscosity of the system, we introduce 

a new parameter, 

ps

s
s !!

!
"

+
= .            ( 9 ) 

This parameter serves as a parameter representing the entanglement density. (For linear 

polymers, φs decreases with increasing density and then saturates in the highly entangled 

regime.) 

 

Calculation method 

 For numerically solving Eqs. (1)-(6), we assumed the system to be translationally 

symmetric in the velocity (x) direction and introduced a one-dimensional mesh in the velocity 

gradient (y) direction. All fields are expressed as functions of y, such as u(y), p(y), and C(y). In 

the pseudo-dynamic calculation explained earlier, the fields were treated to be also dependent 

on time t. The system in the y direction, with the size Ly = 1, was discretized into Nelem (= 

800-8000) mesh elements, where the Nelem value was chosen in accordance to the D (or li) 

value so that the diffusion behavior was accurately/properly described. 

 At the walls forcing the system to flow, a non-slip boundary condition was applied.  

Specifically, the upper wall was moving at a constant velocity wallV  while the bottom wall 

was stationary, and the fluid velocities at the walls agreed with these velocities, i.e., 

u(Ly)=[Vwall,0] and u(0)=[0,0]. We also imposed the Neumann boundary condition, 

/ 0y∂ ∂ =C  at y=0 and y=Ly (Adams and Olmsted 2009; Fielding 2005; Olmsted et al. 2000), 

to prevent the stress flux into the walls. In addition, the pressure at the bottom wall was set to 

zero, p(0)=0. 

 To obtain the steady state velocity/conformation profiles, the pseudo-dynamic 

simulation explained earlier was continued for sufficiently long time for each flow condition 

and each set of material parameters. Convergence of the simulation was monitored with the 

L2-norms of dynamic variables u, p and pó  divided by number of nodes (Nnode). Each 

simulation run was stopped when the norms became less than a certain tolerance value (10-12), 

and the fields u, p and pó  at that time were stored as the steady state fields satisfying Eqs. 



9 

(1)-(6). Further detail of the simulation/calculation is summarized in Appendix. 

 

Parameter values 

 The original tube theory (Doi and Edwards 1989) gives the decrease and increase of the 

shear stress in ranges of the shear rate 1
d!
" < !! < 1

R!
"  and 1

R! "# < ! , respectively, with the 

increase being due to the fast Rouse modes. Paying attention to this feature, we made the 

simulation mostly for a set of parameters, d! =100, R! =1 (cf. time scale is 

non-dimensionalized with R!  in this study), and also in the whole range of 15 d R! !" " 500 

for some cases to examine the rheological and conformational behavior deduced from the 

Rolie-Poly model in the negative slope ( td d! "! <0) regime at 1
d!
" <!! < 1

R!
" . This negative 

slope vanishes on an increase of the CCR intensity parameter CCR!  (Likhtman and Graham 

2003) but can be preserved for 0CCR! "  and 0s! "  (with φs being defined by Eq.(9): 

(Adams et al. 2008; Adams and Olmsted 2009). Thus, in our simulation, we utilized CCRβ =0 

and a sufficiently small sφ  value (=10-4) to reproduce the shear banding in the negative slope 

regime. Here, we should notice that the value of the CCR intensity parameter ( CCRβ =0) in our 

calculation underestimates the CCR effect. Although very small value of CCRβ  is employed 

by Likhtman and Graham (Likhtman and Graham 2003) for several high shear rate cases, it is 

not quantitatively accurate in whole shear rate regime. However, our purpose in this work is to 

investigate shear-banded structures rather qualitatively, thus we simply employ CCRβ =0. As 

we discuss later, the main results are expected not to be qualitatively affected by the parameter 

set. (That is, CCRβ =0 can be reasonably employed in the followings.) 

 Here, we compare the parameter values utilized in our simulation with the experimental 

conditions. Experiments (Boukany and Wang 2009b; Ravindranath et al. 2008) revealed the 

steady state shear banding for highly entangled polymers in ranges of applied shear rate, 

0.27 ! !!a! R ! 2.65  for Z=40, 0.51! !!a! R ! 2.21 for Z=70, and 1.7 17a R! "# #! for Z=156, and 

so on, where Z is the number of entanglements per chain. (The R!  specifying these ranges 

were evaluated from the reported Z and τd values on the basis of the simplest tube model 

relationship, τR = τd/3Z.) Thus, the flow condition in our simulation, 0.05 a R! "# #! 2, together 

with the parameters s! =10-4 and 15 d R! !" " 500 (mainly d R! ! =100), was comparable with 

the empirical shear-banding condition. 



10 

 The diffusion constant D of entangled monodisperse linear polymers is known to 

depend on Z and τd as D!Z−α !  Z/τd with α ≅ 2.4 ( d! "Zα+1: (Lodge 1999; Wang 2003). 

Besides, D depends on various parameters such as the polymer density. Thus, we varied 

di Dl !/=  (or D) as well as the d R! !  ratio to explore a wide parameter space. 

Unfortunately, the experimental data of diffusion constants for shear-banded polymer systems 

are not available, although some experimental methods can provide information for diffusion 

constants (Tao et al. 2000; Wheeler and Lodge 1989). Therefore, values of li examined in this 

study might be somehow unrealistic. However, it turned out that li affects the 

rheological/conformational behavior less significantly compared to the d R! ! ratio. Therefore, 

we mainly concentrate on the d R! !  ratio in our later discussion. 
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RESULTS AND DISCUSSION 

Constitutive relationship 

 In Fig. 1, the normalized shear stress in the steady state, σtτd/η0 with η0 being the 

zero-shear viscosity, is plotted against the applied (macroscopic) shear rate normalized by τR, 

a R! "! . This simulation result was obtained for the parameters, 100d R! ! = , s! =10-4, D=10-6, 

and Nelem=800. At low and high a!! , the stress increases with increasing a!!  (plots shown with 

the circles). At those a!! , the system exhibited stabilized homogeneously flow and the local 

shear rate coincided with a!! . In contrast, at intermediate a!! 	
 where the constitutive 

relationship of the Rolie-Poly model led to a decrease of the stress ( td d! "! <0; shown with 

the dotted curve), the stress is constant and independent of a!! (plots shown with the squares). 

At the constant stress (stress plateau) region, we observed two regions with different shear 

rates, which is consistent with previous study (Fielding 2005). This fact suggests that our 

simulation reproduced the most stable flow profile of the Rolie-Poly model under the 

shear-banding condition, which lends support to our simulation utilizing the pseudo-dynamic 

calculation method. (The system can be trapped at meta-stable state if there are two or more 

locally stable states, as we explained. The reduction theory (Sato et al. 2010) predicts that the 

banded state is always the globally stable for highlow γγγ  << . Therefore we consider the 

homogeneous flows obtained for highlow γγγ  <<  are meta-stable. However, the remaining 

part of this paper focuses on the conformational behavior in the shear-banded regime, and this 

problem of the global stability does not disturb our discussion.) 

 

Molecular conformation under steady shear banding 

 Following a recent study (Adams et al. 2008), Fig. 2 shows viscoelastic ellipses based 

on the eigenvectors of the polymer conformation tensor, C (cf. Eq. (7)), obtained from the 

simulation for the parameters, d R! ! =100, s! =10-4, D=10-6 and Nelem=800. These parameters 

are common for the results shown in Figs. 1 and 2. 

 As noted in Fig. 2, the molecular conformation represented by the ellipses is uniform in 

the whole range of y/Ly (normalized position in the shear gradient direction) at low and high 

a R! "!  where the system exhibited homogeneous flow (cf. Fig. 1). The chains are more 

stretched and oriented at larger a R! "! , as naturally expected. On the other hand, at intermediate 

a R! "!  where the shear banding occurs, the polymer molecule takes different conformation in 
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different bands. In the dominant part of each band away from the band boundary, the 

conformation is uniform and independent of a R! "! . 

 However, we also note an intermediate conformation (more rigorously, conformation 

averaged over a local ensemble of chains) in the vicinity of the boundary between the shear 

rate bands; see the ellipses enclosed in dashed ovals in Fig. 2. Thus, the boundary between 

the conformational bands (two regions of different molecular conformation) is rather broad. 

This is not a trivial result, because one may expect a sharp change of the molecular 

conformation similar to that of the shear rate seen on the banding (or, on the flow-induced 

phase separation described by the Ginzburg-Landau model). 

 For further investigation of this conformational banding, we focus on the molecular 

stretch ratio Λ and the orientational angle Θ, the former being defined as a ratio of the long 

axis length of the deformed ellipse under flow to the axis length of the undeformed ellipse at 

rest, and the latter, as the angle between the long axis of the deformed ellipse and the x-axis.  

(These Λ and Θ are again the averages over the local ensemble of chains.) In Fig. 3, the local 

shear rate, the stretch ratio Λ, and the orientation angle Θ are plotted against the normalized 

position y/li in the shear gradient direction. The applied shear rate was a R! "!  = 1, and all other 

parameters, including di Dl !/= = 10-2, were the same as those utilized in Figs. 1 and 2.  

The whole range spans from y/li = 0 to y/li = 100, and the plots in Fig. 3 magnify the changes in 

the vicinity of the boundary between the shear rate bands (for 75≤ y/li ≤85). Clearly, the 

changes of Λ and Θ with the position are much more gradual compared to that of the local 

shear rate. 

 For quantitative comparison of the broadness of the conformational and shear rate 

banding, we evaluated the width of the band boundary. For the shear rate bands, we fitted the 

profile shown in Fig. 3(a) with a hyperbolic tangent profile, 

!! (y) = !! + (! !! / 2) tanh((y " y) / l0 ) where !! = ( !! low + !!high ) / 2,  ! !! =  ( !!high " !! low ),

! 

y  represents 

the location of the center of the boundary, and l0 is a parameter representing the broadness of 

the profile. (This functional form was theoretically suggested in the vicinity of critical point; 

(Sato et al. 2010)) The fitting was successfully achieved as shown with the thin curve in Fig. 

3(a). Thus, we evaluate the boundary width of the shear rate bands as lsr = 2l0.  A fraction, 

tanh(1) = 0.7616 (76.16%), of the total change of the local shear rate, !" ! , is achieved on a 

change in the position by Δy = lsr (from 

! 

y = y " l0  to 

! 

y = y + l0). Thus, our lsr can be also 

defined as a length scale giving 76.16% of the total change of the local shear rate. 
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 To determine the boundary width for the molecular conformation bands, lmc, we 

employ the orientation angle Θ rather than the molecular stretch Λ, since the Θ profile seems 

to change in broader region as shown in Fig. 3(b). Therefore, we expect the Θ profile reflects 

the underlying full relaxation more sensitively. (As aforementioned, the conformation tensor C 

has several different relaxation modes and we should choose the slowest mode to analyze the 

relaxation behavior correctly.) The Θ profile was asymmetric and could not be fitted with the 

hyperbolic tangent profile, therefore we defined lmc as a length scale giving 76.16% of the total 

change, ΔΘ = Θ(y = 0) − Θ(y = Ly). This definition is in harmony with that for the local shear 

rate explained above. For evaluation of lmc, we chose the boundary center of the shear rate 

bands located at 

! 

y sr  as a reference point and split the Θ profile into two profiles at sryy <  

and sryy >  (in the low and high shear bands, respectively; see Fig. 3(b)). Then, we evaluated 

low
mcl and high

mcl  as length scales achieving 76.16% of the total changes in the low and high shear 

bands, ΔΘlow = Θ(y = 0) − Θ(y =

! 

y sr ) and ΔΘhigh = Θ(y =

! 

y sr ) − Θ(y = Ly), respectively, and 

obtained the boundary width as lmc = low
mcl + high

mcl . (Note that this choice of the reference point 

is necessary to match the definitions for lsr and lmc and that a change in the position by lmc with 

respect to this reference point gives 76.16% of the total change, ΔΘ.) 

 Fig. 4 shows the normalized boundary widths, lsr/li and lmc/li, thus obtained for various 

parameters, d R! ! =100, φs =10-4, Nelem=800-8000 corresponding to li =10-2-10-3, and a R! "! ≤ 2.  

Clearly, lmc is considerably larger than lsr, confirming the broadness of the conformational 

bands compared to the shear rate bands. We also note that the widths are quite insensitive to 

the applied shear rate, a!! . This is physically reasonable, since the applied shear rate affects 

only on the position of the boundary (via the lever rule) and the shear rate in each band 

( low!! and high!! ) is independent of a!! . Consequently, the conformation in each band including 

the boundary is independent of a!!  to give the same boundary width as long as the other 

parameters are the same. 

 Fig. 4 further demonstrates that the normalized widths, lsr/li and lmc/li, are quite 

insensitive to li. Thus, the un-normalized widths are proportional to li (lsr ≅ 0.8li and lmc ≅ 4.2li 

for the parameters examined). This proportionality holds in a wide range of li
2 (10-2≤li≤10-3), 

suggesting that the two boundary widths (lsr and lmc) are dominantly determined by the 

diffusion constant D (=li
2τd) appearing in Eq. (6). This diffusion-dominance is consistent with 

theoretical predictions (Fielding 2005; Sato et al. 2010; Wilson and Fielding 2006).  
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 Here, we ask a natural question: How/why do the conformation and shear rate bands 

have different broadness in their boundaries? The diffusion-dominance explained above 

provides us with a clue to answer this question. In the limit of slow diffusion (

! 

D" 0), a 

polymer molecule should stay at the same position (y) along the velocity gradient direction and 

always adjust its steady state conformation according to the local shear rate !! (y) . For this 

case, lmc for the conformation band should coincide with lsr for the shear rate band, the latter 

being determined by the nonlinear relaxation mechanism incorporated in the Rolie-Poly 

constitutive model. Thus, the difference between lsr and lmc possibly reflects conformational 

changes of the polymer molecules that occur during their diffusion. In other words, the 

difference reflects competition between the molecular diffusion and relaxation. 

 Fig. 5 schematically illustrates this hypothesis. We first consider a polymer molecule at 

a position y = 

! 

y sr + lsr /2  with 

! 

y sr being the center position of the boundary between the low 

and high shear rate bands. This molecule is in the high shear band just out of the boundary 

region and has a highly oriented/stretched conformation corresponding to !!high  in this band.  

When this molecule diffuses into the low shear rate band, it cannot immediately adjust its 

conformation to the less oriented/stretched state corresponding to !! low . Instead, a characteristic 

time lh!"  for the conformational relaxation is required for this adjustment.  Then, the 

molecule would exhibit one dimensional diffusion (in the y direction) over an average distance 

2 h lDτ →≅  during the conformational adjustment, and this distance should contribute the 

broadness of the conformational band. Similarly, a molecule located at y = 

! 

y sr " lsr /2  (in the 

low shear rate band) would diffuse in the high shear band over an average distance, 

! 

" 2D# l$h  with hl!" being the relaxation time on an increase of the local shear rate to !!high , 

before it adjust its conformation in that band. This distance should also contribute to the 

broadness. Thus, the boundary width 

! 

lmc  of the conformational band is expected to be close to 

the diffusion distance and expressed as 

! 

lmc≅

! 

2D" h#l +

! 

2D" l#h +

! 

lsr . The last term in this 

expression, 

! 

lsr , represents a minor correction for the cases of very rapid relaxation (

! 

" # 0) or 

very slow diffusion (

! 

D" 0). For these cases, the polymer molecule immediately adjusts its 

conformation to the local shear rate and 

! 

lmc  should agree with 

! 

lsr . 

 Here, a comment needs to be added for the above argument. The conformational 

relaxation during diffusion is analogous to a chemical reaction during diffusion through an 

interface between separated phases, the latter process being formulated through a diffusion 
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equation incorporating the reaction term. This equation describes motion of the reactant 

starting from any position in the system thereby giving the reactant concentration profile 

affected by competition between the diffusion and reaction. The conformational relaxation 

during diffusion can be similarly formulated. However, in this paper, we examine the boundary 

width of the conformational band on the basis of the approximate argument focusing on the 

molecules in the vicinity of the boundary. Thus, we should not expect too much accuracy in 

the numerical prefactor of 

! 

2  in the relationship, 

! 

lmc = 2D" h#l + 2D" l#h + lsr . However, 

the proportionality between 

! 

lmc " lsr  and 

! 

D" h#l + D" l#h  is essential (and should be 

deduced also from the sophisticated analysis based on the diffusion equation). 

 Here, we attempt to compare the boundary width 

! 

lmc  and the diffusion distance 

! 

2D" h#l + 2D" l#h . The conformational relaxation time τ required for this comparison 

cannot be analytically expressed as a function of the simulation parameters because of the 

nonlinear feature of the Rolie-Poly model. Thus, we made simple simulation with the 

pseudo-dynamic method explained earlier to numerically evaluate τ. In this simulation, we first 

allowed the system to exhibit the homogeneous steady flow at !!high  (or at !! low ) and then 

switched the applied shear rate to !! low  (or to !!high ) at a time t = 0. Then, we followed the 

transient change of the orientation angle Θ(t) at t > 0, and the Θ(t) was approximately 

described by a single-exponential retardation function, { }( ) (0) 1 exp( / )t tΘ =Θ +ΔΘ − − λ  

with λ  being the retardation time. Thus, we determined the time tc=λ  required to achieve e 

(=63.21%) of the total change ΔΘ =

! 

"(#) $"(0) , i.e., Θ(tc) =Θ(0)+0.6321ΔΘ. (Here, we 

notice that the result of this analysis is not affected by definition of tc. For instance, even if tc is 

taken as Θ(tc) =Θ(0)+0.7616ΔΘ to make a consistency with the definition of lmc, the essential 

point is still valid.) 

 In Fig. 6(a), the boundary width lmc for the conformational band obtained for various 

τd/τR ratios (= 15-500) and different D values (= 10-5 and 10-6) is plotted against the diffusion 

distance 2 2h l l hD D! !" "+  evaluated as above. Clearly, the width is essentially a linear 

function of the diffusion distance. Furthermore, the width subjected to a minor correction 

explained earlier, lmc −  lsr, is quite insensitive to D and not only proportional but also close in 

magnitude to the diffusion distance; see Fig. 6(b). A small difference between the observed 

proportionality constant, K =

! 

(lmc " lsr) / 2D# h$l + 2D# l$h{ } ≅ 2.3, and that expected from 

our earlier argument, K = 1, is not important because of the approximate nature of the 
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argument. These results lend support to our hypothesis that the lmc is affected by the 

competition between the molecular diffusion and relaxation thereby being larger than lsr and 

the difference between lmc and lsr vanishes in the limit of fast relaxation/slow diffusion. 

 In relation to the above results, it is also informative to compare two conformational 

relaxation times, hl!"  and lh!" . For example, hl!"  = 34.0 10−× τd and lh!"  = 02.5 10× τd 

> hl!"  for the case of d R! ! =100 and φs =10-4. This relationship, hl!" < lh!" , was found for 

all sets of parameters examined. In fact, the corresponding difference of the molecular 

relaxation times on the step-up and step-down of the shear rate has been observed 

experimentally (Oberhauser et al. 1998). 

 The difference between hl!"  and lh!"  is a characteristic feature of the diffusive 

Rolie-Poly equation, Eq. (8). When the conformation tensor C is the same in the whole space 

(no conformational banding) and the flow is uniform (no shear rate banding), this equation 

with βCCR = 0 (as adopted in this study) is rewritten as	
 

CCICuCCuC
Rd

T

dt
d

!!
)/tr21(2)(1)( "

"""#$+$#= .     (10) 

The last term in the right hand side of Eq. (10) is nonlinear with respect to C while the other 

terms are linear to and/or independent of C. Mathematically, the difference between hl!"  and 

lh!"  deduced from the Rolie-Poly model under homogeneous flow emerges through the 

nonlinear term. 

 For further examining how this difference emerges, we decompose C(t) as 

C(t)=C0+δC(t), where C0 and δC(t) are the time-independent reference part and a small 

time-dependent perturbation part, respectively. Utilizing this decomposed form of C in Eq. 

(10) and retaining only linear terms with respect to δC(t), we find a linearized equation for 

δC(t): 

CC
C

C
C

uCCuC
!

"
!

""
!!

! tr
)(tr

2)/tr21(21)()(
02/3

0

0

RRd

T

dt
d

#
$
$
%

&

'
'
(

) #
+#*+++*= .  (11) 

Since δC is a 2×2 symmetric tensor, it has three independent components. Thus, we can 

decompose the tensor equation (Eq. (11)) into three linear equations for the components and, in 

principle, calculate the relaxation times τ as the reciprocal of the real parts of the eigenvalues 

associating to those equations. The last term in Eq. (11) becomes negligible under fast shear 

( 3/ 2
0 0(tr ) 0!C C ). Considering this feature, we neglected the off-diagonal components of 



17 

δC to approximately analyze a relationship between τ and the shear rate and obtained a simple, 

analytic form of the eigenvalues. The corresponding longest relaxation time τ is given by 

Rd !!!

)/tr21(211 0C"
+# .         (12) 

Eq. (12) suggests a decrease of τ with increasing trC0. Consequently, τ deduced from the 

Rolie-Poly model decreases when the polymer molecule is subjected to fast homogeneous 

shear flow thereby being deformed largely. This feature clearly leads to a relationship 

hl!" < lh!"  (faster conformational relaxation on step-up of the shear rate than on step-down) 

observed in our simulation. 

 Although here we performed analysis for the diffusive Rolie-Poly model, we expect 

that we have qualitatively similar results for other constitutive models (as long as the 

constitutive relation is non-monotonic for shear stress and the relaxation is nonlinear). It is fair 

to mention that the ratio lmc / lsr depends on details of the model and the value of lmc / lsr 

obtained in this work may differ from experiments. Nevertheless, we consider our results are 

qualitatively valid, since our simulations or analysis are based on simple and reasonable 

physical mechanisms which are fairly common for other constitutive models of entangled 

polymers. 

 

First normal stress difference (N1) 

 In the Rolie-Poly model, the steady state first normal stress difference N1 increases 

monotonically with increasing shear rate, as different from the behavior of the shear stress 

(Likhtman and Graham 2003). This monotonic behavior of N1 is noted experimentally for 

shear banding systems (Tapadia and Wang 2004). Thus, there appears to be no constitutive 

instabilities originated from the normal stress difference. 

 Since N1 is exclusively determined by the conformation tensor C (cf. Eq. (5)), the broad 

boundary of the conformational bands discussed in the previous sections naturally results in a 

gradual change of N1 in the velocity gradient direction. As an example, Fig. 7 shows the profile 

of N1 in this direction obtained from our simulation for d R! ! =100, s! =10-4, D=10-6 , a R! "! =1 

and Nelem =800. The gradual change of N1 is similar to that noted for the molecular stretch ratio 

Λ (Fig. 3b) obtained for the same set of parameters. This change of N1 is compensated by a 

change of the local pressure. 

 No literature data can be found for the N1 profile under shear banding. Thus, we here 

attempt to compare our result (Fig. 7) with a theoretical prediction based on the diffusive 



18 

Johnson-Segalman (JS) model. This model has a monotonic constitutive relationship for N1 

and thus predicts different N1 in the high shear and low shear bands (Yuan 1999), as 

qualitatively similar to our situation. Nevertheless, the reduction theory (Sato et al. 2010) 

based on the diffusive JS model predicts that the model has only one boundary width scale 

common to N1 and shear stress. In this sense, the banding behavior of N1 is different for the 

Rolie-Poly model (utilized in our simulation) and the JS model. This difference appears to 

reflect a difference of the molecular relaxation mechanisms in these models. The Rolie-Poly 

model exhibits nonlinear relaxation as discussed earlier, and its constitutive instability 

essentially results from this nonlinearity. On the other hand, the JS model exhibits linear 

relaxation, and its instability is attributed to a slippage effect. 

 Thus, different models appear to exhibit different banding behavior of N1, which in 

turn suggests that this behavior may serve as a sensitive monitor for differences of the 

relaxation mechanisms and constitutive instability in various materials. We consider that the 

N1 behavior depends on the constitutive model in the similar way as the molecular orientation 

case. Therefore, the information of N1 in shear-banding systems may help us to investigate the 

molecular relaxation mechanisms. Our analysis and simulation results imply that the molecular 

orientation or N1 profiles reflect the molecular relaxation mechanism rather strongly. (Namely, 

these profiles strongly reflect the information of the underlying molecular level dynamics.) 

Though, it will be practically difficult to directly observe N1 profiles in experiments, we hope 

some experiments provide information about the N1 profiles and our results are confirmed. For 

this issue, a further study is desired. 

 

Comments for the yielding and other possible mechanism(s) of shear banding 

 The constitutive instability is widely believed to be the origin of the shear banding 

phenomena, and our simulation results are consistent with this belief. However, Wang and 

coworkers proposed that yielding (rupture) of entanglement networks is the origin of the shear 

banding phenomena in highly entangled polymer systems (Wang et al. 2007). They argued that 

the intrinsic heterogeneity of the entanglement network (such as a distribution of the network 

strand size) is essential in the relaxation/shear banding of entangled polymers. The effect of 

this intrinsic heterogeneity is not incorporated in most of constitutive models including the 

Rolie-Poly model. (Although some effort has been made for incorporation of this effect, the 

result was not easy to apply to molecular models (Douglas and Hubbard 1991).)  

 In the scenario by Wang and coworkers, entangled polymers subjected to rapid flow 
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( aγ& > 1/τd) exhibit the shear banding through the yielding mechanism. Once the yielding occurs 

and a fault plane is formed, this plane exists stably. Furthermore, they reported some 

experimental results supporting their scenario. For example, they observed the fault planes 

after imposition of large step shear strains (Ravindranath and Wang 2007). The positions of 

fault planes appear to be rather randomly distributed, which is consistent with their scenario. In 

steady shear experiments, they reported that differently banding textures (showing different 

fault planes) emerged at different runs with the same sample (Ravindranath et al. 2008). This 

feature is also in harmony with the yielding mechanism. 

 The entangled polymers behave as unrelaxed rubbers in a time scale where the polymer 

molecules have not attained the large-scale relaxation. From this point of view, the yielding 

mechanism should capture some part of reality. Concerning this point, however, we should 

also make several comments. First of all, some experiments showed that the location of the 

shear band boundary systematically changes with the applied shear rate (Boukany et al. 2008; 

Boukany and Wang 2009a, b). The yielding mechanism does not straightforwardly results in 

this systematic change. Furthermore, several meta-stable flow profiles, different from the most 

stable band profile, may be observed in an experimental time scale texp, as suggested from the 

reduction theory (Sato et al. 2010). Such a meta-stable profile can last not forever but for a 

considerably long time > texp, as noted from a similar meta-stability known for the phase 

transition phenomena. The reduction theory also suggests that for some cases, the first stage of 

the band formation dynamics strongly depends on small perturbations to the initial state (initial 

condition), as similar to the situation in the spinodal decomposition described by the 

time-dependent GL equation (Onuki 2002). In analogy with such well-known phenomena, one 

could argue that the most-stable shear-banded profile (determined by the constitutive 

instability) may be difficult to be observed experimentally under some conditions and a 

meta-stable profile similar to a random ensemble of fault planes may emerge with a different 

mechanism such as the yielding of the entanglement network. 

 Of course, this argument is one-sided and we do not rule out a possibility that the 

yielding is the fundamental banding mechanism for entangled polymers. We should emphasize 

that the “experimentally observed” shear banding (either stable or meta-stable) could results 

from several different mechanisms, not only the constitutive instability and yielding discussed 

so far but also some unspecified mechanism that could have a very microscopic origin. (Note 

that the macroscopic stress related to the thermal tension of each polymer chain fluctuates 

significantly with time and varies from point to point, meaning that the constant shear stress 
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requirement never works in this molecular level.) Furthermore, there are other factors, such as 

the curvature effect of the Couette geometry, that may affect the shear banding (Adams and 

Olmsted 2009; Zhou et al. 2008). Thus, it is strongly desired to characterize the “observed” 

shear banding for many properties without having a pre-assumption of the underlying 

mechanism. The normal stress difference may serve as an important property for this purpose, 

as discussed earlier. Further experimental studies along this line as well as more elaborated 

theoretical studies connecting the phenomena at molecular and macroscopic levels (including 

the macroscopic yielding) are strongly desired. 
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CONCLUDING REMARKS 

 We have utilized the diffusive Rolie-Poly model to simulate the flow behavior and 

investigate properties related to the boundary between shear bands. This model gave the shear 

banding due to its constitutive instability. Our simulation showed that the shear rate and 

conformational bands had quite different widths of their boundaries: The latter was much 

broader than the former. As a result, the first normal stress difference determined by the 

polymer conformation exhibited broad banding similar to the conformational banding. 

Detailed analysis revealed that the difference of the broadness of the shear rate and 

conformational bands resulted from competition of the molecular diffusion and relaxation 

mechanism affecting the conformational band. The stability and meta-stability of the shear 

banding phenomena were also discussed briefly. Although our simulation results depend on 

the employed constitutive model and parameter sets, we consider our results are qualitatively 

unchanged for other constitutive models or parameter sets. Therefore, the presented analysis 

would be meaningful to understand the molecular level relaxation mechanism in shear-banded 

systems. 
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Appendix: Calculation details in simulation 
 
 The finite element method was employed to discretize the governing equations (1)-(6) 

with stabilizing schemes for viscoelastic fluids such as DEVSS-G (Liu et al. 1998) and SUPG 

(Brooks and Hughes 1982). We reformulate the continuity Eq. (1) and the momentum Eq. (2) 

with DEVSS-G scheme (Liu et al. 1998) into the following weak form: 

; 0! " # =u ,               ( A 1 ) 

; ; ( ) ( ) ; 0T T
p pp! ! " "# !$ % + % % +% $ + + % =I u u G G ó ,        ( A 2 ) 

; 0T! "# =G u ,              ( A 3 ) 

where !  and !  are linear and quadratic shape functions, respectively, and ;  denotes 

integral along the finite elements. Variables such as p, G (the velocity gradient tensor), pó  

are approximated in terms of linear shape functions, while u is discretized with quadratic shape 

function. 

 We also employed the matrix logarithm (Hulsen et al. 2005) to enhance the numerical 

stability of calculation. The conformation tensor C can be diagonalized with the relationship 
T= ! !C R c R , where R is a matrix composed of the eigenvectors of C and the diagonal tensor 

c have the corresponding eigenvalues ci as its components. We can replace the C-based 

constitutive model with the logarithm tensor based formulation. Thus, we dealt with the 

evolution equation of 
2 2

1 1

log log( )i i i i i i
i i

c s
= =

= = =! !s c n n n n , with s, si, and ni being the 

logarithm tensor in the principal frame, the eigenvalue of the logarithm tensor, and the 

principal direction conjugated with the eigenvalues ic of C. The time derivative of s for the 

Rolie-Poly model can be written as 
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Here, ijG is the components of the velocity gradient tensor in the principal frame. 

Consequently, the constitutive model with the diffusive term is described by the logarithm 

tensor S in the global frame as 
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2D
t

!
+ "# = + #

!

S u S S S! ,             ( A 5 ) 

where S! is the tensor transformed from s!  through the matrix diagonalization; T= ! !S R s R! ! . 

The discrete form of Eq. (A5) with SUPG scheme (Brooks and Hughes 1982) can be written as 
1

1 1 2; ;
n n

s n n s n nD
t

! ! ! !
+

+ +"
+ + #$ = + + $

%

S S u S S S! .         ( A 6 ) 

Here, s! is the element-wise upwinding shape function, ( ) ( )2s
c c c! "= # #u h u u , cu is the 

velocity vector at center node of an element, and h is a characteristic size of the element.  

Following previous literatures (Baaijens 1998; Chung et al. 2008; Kim et al. 2004; Ramirez 

and Laso 2005), we utilized the streamline upwinding coefficient ! =2 in Eq. (A6). The 

superscripts n and n+1 appearing in Eq. (A6) denote the present and the next time steps, 

respectively.  

 The numerical solution of Eq. (A6) was transformed into the principal frame through a 

relationship T= ! !s R S R to obtain the conformation tensor C ( T Te= ⋅ ⋅ = ⋅ ⋅sR c R R R ). 

Finally, the stress tensor for the polymeric component, pó , was calculated by Eq. (5). Then, 

the set of the desired variables, G, u, and p, was obtained after solving the coupled Eqs. 

(A1)-(A3) at every time step. 
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Fig. 1. Constitutive relationship obtained from the flow simulation based on the Rolie-Poly 

model ( 100d R! ! = , s! =10-4, D=10-6 and Nelem=800). 
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Fig. 2. Molecular conformation depicted as the stress ellipse at various positions under various 

applied shear rate ( d R! ! =100, =10-4, D=10-6 and Nelem=800). 
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Fig. 3. Profiles of (a) local shear rate and (b) stretch ratio Λ and orientation angle Θ near the 

boundary between shear rate bands ( d R! ! =100, s! =10-4, D=10-6, a R! "! =1 and Nelem=800). The 

boundary width for the shear rate ( srl ) is estimated by fitting the profile with the hyperbolic 

tangent function (thin curve). In part b, the characteristic lengths low
mcl  and high

mcl , respectively, 

are defined as length scales achieving 76.16% of the total change of Θ in the regimes y < sry  
and y ≥ sry , where sry  is the boundary center position of the shear rate bands (cf. part a).  

The boundary width for the conformational band (defined for Θ) is given by lmc = low
mcl + high

mcl . 
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Fig. 4. Effect of the applied shear rate ( a R! "! ) and li on the boundary widths, srl and mcl . The 

parameter set are d R! ! =100, s! =10-4 and Nelem=800, 1600, 4000, 8000 for li =10-2, 5ⅹ10-3, 

2ⅹ10-3, 10-3, respectively (i.e., D=10-6~10-8 ). 
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Fig. 5. Schematic diagram showing competition of molecular diffusion and relaxation. srl and 

mcl  are the boundary widths for the shear rate and conformation bands, respectively. h l! "  

and l h! "  are the characteristic relaxation times of molecular conformation on a switch of 

local shear rate, from high!!  to low!!  and from low!!  to high!! , respectively. 
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Fig. 6. Dependence of (a) lmc and (b) lmc-lsr on the diffusion distance in the time scale of 

molecular relaxation. The parameter set is 15 d R! !" " 500, s! =10-4 and Nelem=800. 
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Fig. 7. The profile of N1 across the boundary of the shear rate bands. The parameter set is 

d R! ! =100, s! =10-4, D=10-6 , a R! "! =1 and Nelem =800. 

 
 


