
Interaction between thermal convection and mean

flow in a rotating system with a tilted axis

Naoaki Saito1‡ and Keiichi Ishioka1

1Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku,

Kyoto 606-8502, JAPAN

E-mail: naoaki@kugi.kyoto-u.ac.jp

Abstract. Thermal convection in a sine-type horizontal shear flow in a rotating

system with a rotation axis tilted from the vertical direction is investigated, sweeping

three parameters: the Taylor number, the tilt angle of the rotation axis (i.e., latitude),

and the Rayleigh number. Nonlinear time evolutions show that there is not only a

regime in which roll convections of a herringbone pattern accelerate a mean flow but

that there is also a regime in which a large-scale east–west roll convection accelerates

the mean flow strongly. The parameter region in which this type of stable steady two-

dimensional roll solution exists is determined by linear stability analyses. Even when

the two-dimensional steady solution is not linearly stable, unsteady quasi-periodic

solutions oscillating around the steady solution can be found in the nonlinear time

evolutions. Finally, a simple mechanism for the acceleration of the mean flow by the

large-scale east–west roll convection is described in detail, in which both the tilt of the

rotation axis and the sine-type horizontal shear of the flow are important.
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1. Introduction

Thermal convection is an important type of motion in geophysical fluids. Spatial

variation of the background flow field plays an important role in determining the

pattern of thermal convection in the atmosphere, which is not the case in laboratory

experiments. Several studies have examined thermal convection in vertical shear flows

with the intention of applying the obtained results to the real atmosphere. For example,

Asai (1970) studied thermal convection in a plane Couette flow numerically. However,

there have been few studies on thermal convection in horizontal shear flows. Davies-

Jones (1971) is one of the early studies of this sort. He performed linear stability

analysis to show that roll convection with the axis parallel to the basic flow is preferred

in a horizontal plane Couette flow. While the preceding paper excluded system

rotation, Yoshikawa and Akitomo (2003) treated thermal convection in a horizontal

plane Couette flow in a rotating system and demonstrated through computing nonlinear

time evolutions that roll convection with the axis tilted from the direction of the basic

flow is formed during the transition from cellular convection to roll convection parallel

to the basic flow. Thermal convections in sine-type horizontal shear flow in a rotating

system were investigated by Furukawa and Niino (2006), who demonstrated that a

barotropic eddy of wavenumber 1 is formed in the late stage of nonlinear time evolutions.

Their energy analysis revealed that the barotropic eddy is generated by the kinetic

energy conversion from baroclinic components to the barotropic eddy. However, the

generation mechanism of the eddy was not explained, nor did the energy conversion

from the mean flow to the barotropic eddy appear to be negligible. Therefore, Saito and

Ishioka (2008) performed not only nonlinear time evolutions but also a linear stability

analysis to examine the formation process of the barotropic eddy of wavenumber 1 in

detail. They demonstrated that barotropic instability plays the most important role in

the generation of the barotropic eddy.

When thermal convections in planetary atmospheres are treated, effects caused by

the condition whereby the vertical direction is not parallel to the planetary rotation axis,

except at the poles, must be considered. Momentum transport by thermal convections

in a system with a tilted rotation axis (we hereinafter refer to such a system as a tilted f -

plane) has been attracting attention because this type of transport may account for the

zonal flow profile of the Sun obtained by the recent helioseismology (see Miesch (2000)

for a detailed review). Studies of thermal convection on a tilted f -plane date back to the

linear stability analyses conducted by Chandrasekhar (1961). Nonlinear time evolution

of convections on a tilted f -plane was performed by Hathaway and Somerville (1983),

who demonstrated that the horizontal component of the rotation vector elongates the

convection cells in a north–south direction and tends to turn upward motions to the west

and downward motions to the east in a manner that produces a large-scale circulation.

Julien and Knobloch (1998) examined the linear stability problem as well as the strongly

nonlinear problem for convections on a tilted f -plane in detail. They evaluated the

second-order acceleration by the linearly unstable mode, which yields good agreement
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with the results reported by Hathaway and Somerville (1983).

Considering the giant planets, such as Jupiter, the effects of both the horizontal

shear of the mean flow and the tilt of the rotation axis should be taken into account.

However, there are remarkably few studies that deal with both of these effects. Hathaway

and Somerville (1987) treated thermal convection in an eastward sine-type horizontal

shear flow on a tilted f -plane, with low latitudes of a rotating planet in mind. They

showed that the roll convections of a herringbone pattern accelerate the mean flow by

computing nonlinear time evolutions. However, they reached their conclusions based

on a simple energy analysis of the final state of the evolution. Therefore, Saito and

Ishioka (2009) performed both nonlinear time evolution and a linear stability analysis

with a setting similar to that of Hathaway and Somerville (1987). They examined the

acceleration mechanism of the mean flow in detail to show that the Coriolis force on

the second-order vertical flow associated with the linearly unstable mode has the most

important effect on the acceleration. However, the parameter space they explored was

not so wide.

In the present paper, nonlinear time evolutions of thermal convection in a sine-type

horizontal shear flow on a tilted f -plane are conducted, sweeping widely the following

three parameters: the Taylor number, the tilt angle of the rotation axis (i.e., the

latitude), and the Rayleigh number. The remainder of the present paper is organized as

follows. The numerical model is described in detail in section 2. The results of nonlinear

time evolutions are shown in section 3. The analysis of the acceleration mechanism of the

mean flow is presented in section 4. Finally, the summary and discussion are presented

in section 5.

2. Model equations and computing configurations

2.1. Basic equations

We assume a Boussinesq fluid in a system rotating around a rotation axis with an

angular velocity of f/2. The basic equations are nondimensionalized using the following

dimensional variables: depth in the vertical direction, kinematic viscosity, and the

difference in buoyancy between the top and bottom boundaries. The equation of motion,

the thermal equation, and the continuity equation are as follows:

∂u

∂t
+ (u · ∇)u = −∇p− f × (u− uB) +Ra b+∇2(u− uB) , (2.1)

∂b

∂t
+ (u · ∇) b = w +∇2b , (2.2)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (2.3)

where

u =

 u

v

w

 , f =

 f cos θ

0

f sin θ

 , b =

 0

0

b

 ,
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Figure 2. Schematic diagram of the model configuration.

uB =

 0

vB
0

 , vB = V0 cos

(
2π

Lx

x

)
, (2.4)

where t is time, (x, y, z) are the Cartesian coordinate directions (z is the vertical

direction), u is the velocity vector, p is the pressure function, f is the rotation vector,

Ra is the Rayleigh number, b is the buoyancy, ∇2 is the Laplacian, θ is the tilt angle of

the rotation axis, i.e., latitude (0 ≤ θ ≤ π/2), uB is the basic flow (a horizontal shear

flow), V0 is the maximum speed of the basic flow, and Lx is the nondimensionalized

length of the domain in the x direction. The basic flow profile is shown in figure 1. The

terms uB in the right-hand side of (2.1) are included in order to make the basic flow

a steady solution. The Prandtl number is set to 1, following Hathaway and Somerville

(1987) and Furukawa and Niino (2006). A schematic diagram of the model is shown in

figure 2.

Here, we describe the relationship between the nondimensional and dimensional
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parameters. The Rayleigh number and the Taylor number are given as follows:

Ra =
αgΓd4

κν
, Ta =

f 2d4

ν2
, (2.5)

where α is the coefficient of thermal expansion, g is the gravitational acceleration,

Γ = (T1 − T2)/d is the temperature lapse rate, T1 and T2 are the temperatures of

the bottom and top boundaries (T1 > T2), respectively, d is the depth in the vertical

direction, κ is the coefficient of thermal diffusivity, and ν is the kinematic viscosity. The

relationship between temperature T (x, y, z, t) and nondimensional buoyancy b(x, y, z, t)

is

T (x, y, z, t) = T1 + Γ [ b(x, y, z, t) d− z ] . (2.6)

Note that in the following sections T (x, y, z, t) fields are shown instead of b(x, y, z, t)

fields in figures, where we set α = g = d = κ = ν = 1, T1 = Ra, and T2 = 0 for

convenience. In this setting, the Taylor number is simplified as Ta = f2.

2.2. Vorticity equation

The vorticity equation is derived from (2.1) and (2.3):

∂ω

∂t
= ∇× [u× (ω + f)] +∇× (f × uB) +Ra (∇× b) +∇2(ω − ωB) , (2.7)

where

ω =

 ω1

ω2

ω3

 = ∇× u , ∇× (f × uB) =


0

−f cos θ
∂vB
∂x

0

 ,

ωB =

 0

0

ω3B

 , ω3B =
∂vB
∂x

= − 2πV0

Lx

sin

(
2π

Lx

x

)
, (2.8)

where ω is the vorticity vector, and ωB is the vorticity vector corresponding to the

basic flow. Since ∇·ω = 0, only two of the three vorticity components are independent.

We can calculate the nonlinear time evolution of two independent components of the

vorticity and buoyancy based on (2.7) and (2.2).

2.3. Boundary conditions

We assume periodic boundary conditions in both the x and y directions. The periods are

Lx and Ly for the x and y directions, respectively. The boundary condition at z = 0, 1

is free-slip and fixed temperature. In other words,

∂u

∂z
=

∂v

∂z
= w = b = ω1 = ω2 =

∂ω3

∂z
= 0 at z = 0, 1 . (2.9)
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2.4. Computational methods

The Fourier–Legendre spectral method is used for the space discretization of the

dependent variables. We use the Fourier expansion in the x and y directions and the

Legendre polynomial expansion in the z direction. The details of the expansion are

shown in Appendix A. The truncation wavenumbers in the x, y, and z directions are

21, 21, and 20, respectively. The number of grids for the spectral transform method

is 64 × 64 × 32. The classical fourth-order Runge–Kutta scheme is used for the time

integration.

2.5. Parameter settings

We set the parameter values following Hathaway and Somerville (1987). The maximum

speed of the basic flow is set as V0 = 50. The size of the computational domain is set

as Lx = 10, Ly = 5. Here, we set Ly = 5 in order to suppress the barotropic instability

of the basic flow. If we set Ly = 10 according to Hathaway and Somerville (1987), the

barotropic instability of the basic flow obscures the details of the interaction between

convection and the mean flow (Saito and Ishioka (2008)). The Taylor number, Ta = f 2,

is swept in the range of 104, 3 × 104, and 105. The tilt angle of the rotation axis,

θ, is swept in the range of 15◦, 30◦, 45◦, 60◦, and 75◦. In Appendix B, we discuss the

relevance of the values of V0 and Ta chosen in this manuscript compared with the Jupiter

atmosphere. We conduct 51 numerical experiments, changing Ra for each pair of Ta

and θ, which means that the total number of numerical experiments is 3×5×51 = 765.

We choose the parameter sweep range of Ra depending on the values of Ta and θ in

order to distinguish the flow regimes of the end states of the time evolutions. Please

refer to figures 11, 14, and 15 to see the swept range of the value of Ra.

2.6. Calculations of the critical Rayleigh number

Before conducting the numerical experiments, we perform linear stability analyses

repeatedly with the various Ra to search for the critical Rayleigh number, Rac, at

which the growth rate is σ = 0. For reference, we also calculate the case of θ = 0◦

and 90◦ as well as the case of Ta = 0. Table 1 shows Rac and the critical wavenumber

mc with respect to the disturbance of m 6= 0, i.e., the roll convections of a herringbone

pattern, and table 2 shows Rac with respect to the disturbance of m = 0, i.e., roll

convections parallel to the y axis. Here, m is the wavenumber in the y direction. Note

that Rac is independent of θ when Ta = 0 and the value of Rac for Ta = 0 is listed only

for θ = 0◦ in tables 1 and 2.

In the cases of θ = 75◦ and 90◦, Rac(m = 0) is slightly smaller than Rac(m 6= 0),

which means that roll convections parallel to the y axis appear first. This is because the

roll convections parallel to the mean flow are preferred in the horizontal shear flow. On

the other hand, in the cases of θ = 0◦, 15◦, 30◦, 45◦, and 60◦, Rac(m 6= 0) is smaller than

Rac(m = 0), which means that roll convections of a herringbone pattern appear first
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Table 1. Critical Rayleigh number and critical wavenumber with respect to the

disturbance of m 6= 0 for seven values of θ and four values of Ta.

HHHHHHHTa

θ
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

0 876.1 – – – – – –

(1) – – – – – –

104 1955.3 2421.9 3338.5 4244.1 4944.4 5441.7 5620.6

(2) (3) (3) (4) (4) (4) (4)

3× 104 2781.6 3732.8 5614.2 7671.4 9120.0 10150.4 10516.0

(3) (3) (4) (5) (5) (5) (5)

105 4156.3 6404.6 10618.5 15079.3 18683.5 21224.9 21959.3

(3) (4) (5) (6) (6) (6) (7)

Table 2. Critical Rayleigh number and critical wavenumber with respect to the

disturbance of m = 0 for seven values of θ and four values of Ta.

HHHHHHHTa

θ
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

0 671.4 – – – – – –

104 7055.5 8328.5 7980.4 7564.1 5858.2 4943.7 4659.2

3× 104 18691.6 22035.3 18986.6 15328.9 11753.0 9972.4 9433.6

105 63890.7 58812.0 45038.1 32234.4 24998.8 21502.6 20455.4

as Ra increases. Mechanism of emergence of roll convections of a herringbone pattern

can be explained as follows. Without a basic flow, roll convections the axis of which is

parallel to the x axis are preferred due to the Taylor-Proudman effect. The existence

of the upper and the lower boundaries prevents the roll axis from being parallel to the

rotation axis. With a basic flow, the roll convections are localized in the weak shear

regions and distorted by the horizontal advection, which leads to a herringbone pattern.

When the rotation axis tilts sufficiently and the Taylor-Proudman effect exceeds the

shear effect that prefers roll convections parallel to the y axis, a herringbone pattern

emerges. The smaller Rac of the two tables is hereinafter referred to as the critical

Rayleigh number.

Figure 3 shows the dependence of Rac on f sin θ, which is the vertical component of

the rotation vector. Here, f =
√
Ta. Most all the plots in figure 3 reside approximately

on a curve. This is because, if there were no basic flow, the critical Rayleigh number

should be determined by the vertical component of the rotation vector, as pointed out

by Chandrasekhar (1961).
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Figure 3. The dependence of the critical Rayleigh number (vertical axis) on f sin θ

(horizontal axis). The red square, green circles, blue triangles, and purple upside-

down triangles indicates the data for Ta = 0, Ta = 104, Ta = 3× 104, and Ta = 105,

respectively.

2.7. Adequacy of the numerical solutions

We examine the adequacy of the numerical solutions by changing the spacial resolutions

of the numerical model (doubling the resolutions in x, y, and z directions). It is found

that the numerical solutions obtained with the original resolutions do not differ those

with higher resolutions qualitatively even when Ra is the largest in the range we sweep.

3. Nonlinear time evolution—parameter-sweep experiment

We compute nonlinear time evolutions from an initial state, u = uB and b = bperturb,

sweeping Ta, θ, and Ra, in the manner described in section 2.5. Here, bperturb is the

initial perturbation on the buoyancy field that is set as follows:

bperturb (xi, yj, zk) =

{
10−10 (xi = 0, yj = 2.5, zk = 0.5) ,

0 (else) ,
(3.1)

where (xi, yj, zk) is the coordinate value of each grid. An example of the time evolution

is given in figure 4, which shows x–y sectional views of the temperature fields for

Ta = 104, θ = 45◦, and Ra = 7, 000 at t = 0.0, 1.5, 2.0, 4.0, 6.0, and 10.0. Since

the initial perturbation is imposed at x = 0 (figure 4(a)), the linear eigenmode of a
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(a) t = 0.0 (b) t = 1.5 (c) t = 2.0

(d) t = 4.0 (e) t = 6.0 (f) t = 10.0

Figure 4. Snapshots of the nonlinear time evolution for the case in which Ta = 104,

θ = 45◦, and Ra = 7, 000. x–y sectional views of the temperature fields at z = 0.5 are

given. (a) t = 0.0 , (b) t = 1.5 , (c) t = 2.0 , (d) t = 4.0 , (e) t = 6.0 , and (f) t = 10.0 .

herringbone pattern with a peak at x = 0 grows first (figure 4(b)). Then, the other

eigenmode with a peak at x = 5, which has the same growth rate as the preceding

eigenmode, also grows to have a finite amplitude (figure 4(c)). After the interaction

between the two eigenmodes makes the flow turbulent (figure 4(d)), the temperature

field changes considerably to eventually yield a 2D (i.e., y-independent) pattern (figures

4(e) and 4(f)). Figure 5 shows an x–z sectional view of the temperature field and the

profile of zonally and vertically averaged zonal velocity 〈v〉(x), as well as an x–y sectional

view of the temperature field for the final state shown in figure 4(f) (t = 10.0). As shown

in figure 5(b), the 2D pattern of the x–y sectional view of the temperature field is the

manifestation of a large-scale convective roll rising near x = 0.5 and descending near

x = 4.5. Corresponding to the appearance of the large-scale convective roll, strong

acceleration is observed in the 〈v〉(x) profile (figure 5(c)).

The final states differ depending on the sweeping parameters. Figure 6 shows the

final state for Ta = 104, θ = 45◦, and Ra = 9, 300. In this case, the temperature

field has wavenumber components of 2 and 3 (figure 6(a)). However, as shown in the

x–z sectional view (figure 6(b)), a large-scale roll convection is dominant, and strong

acceleration is observed in the 〈v〉(x) profile (figure 6(c)), which is similar to the case of

figure 5.

Large-scale roll convection is not always observed for all of the parameter ranges.

When Ra is small, remnants of linear eigenmodes can be observed even in the final

states. Figure 7 shows the final state for Ta = 104, θ = 30◦, and Ra = 5, 000, in
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Figure 5. A snapshot of the nonlinear time evolution for the case in which Ta = 104,

θ = 45◦, and Ra = 7, 000 at t = 10.0. (a) x–y sectional view of the temperature field

at z = 0.5. (b) x–z sectional views of the temperature field and its anomaly field at

y = 2.5. (c) Solid line: zonally and vertically averaged flow profile 〈v〉(x). Dashed line:

〈v〉(x) profile at t = 0.0.

Figure 6. Same as figure 5, except for Ra = 9, 300.
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Figure 7. Same as figure 5, except for θ = 30◦ and Ra = 5, 000.

which a herringbone pattern remains in the x–y sectional view of the temperature field

(figure 7(a)). Figure 8 shows the final state for Ta = 104, θ = 75◦, and Ra = 5, 000. In

this case, small-scale roll convections parallel to the y axis are observed (figure 8(a)),

corresponding to the fact that the system is linearly stable to disturbances of m 6= 0

but unstable to disturbances of m = 0 (c.f., tables 1 and 2). When Ra is large, the

final state becomes turbulent. Figure 9 shows an example of the final turbulent state

for Ta = 104, θ = 15◦, and Ra = 9, 500. Figure 10 shows another example of the final

turbulent state for Ta = 104, θ = 75◦, and Ra = 7, 700. This final turbulent state

is regarded as a mixture of roll convections of a herringbone pattern and small-scale

roll convections (figure 10(a)). In this case, the system is linearly unstable not only to

disturbances of m = 0 but also to disturbances of m 6= 0 (c.f., tables 1 and 2).

The dependence of the final convection pattern on the experimental parameters is

summarized in figure 11 for Ta = 104. A magnified view of the regime diagram is also

shown in figure 12. Here, we classify the final convection patterns into five regimes: 2D

large-scale roll (as shown in figure 5), quasi-2D large-scale roll (as shown in figure 6),

herringbone pattern (as shown in figure 7), small-scale rolls, including small-scale rolls

with weak wavy disturbances (as shown in figure 8), and turbulence (as shown in figures

9 and 10). As shown in figure 11, the (quasi-)2D large-scale roll convection regime, in

which the zonal mean flow is accelerated strongly, can be observed for θ = 30◦, 45◦, and

60◦ when Ra is relatively large. The formation mechanism of the (quasi-)2D large-scale

roll is examined in detail in the next section. On the other hand, herringbone patterns

appear for θ = 15◦, 30◦, 45◦, and 60◦ when Ra is relatively small. This herringbone
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Figure 8. Same as figure 5, except for θ = 75◦, Ra = 5, 000, and t = 60.0.

Figure 9. Same as figure 5, except for θ = 15◦ and Ra = 9, 500.
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Figure 10. Same as figure 5, except for θ = 75◦ and Ra = 7, 700.

pattern regime was explored deeply by Saito and Ishioka (2009). We present an overview

of the results of their study in Appendix C for the convenience of the reader. Here, we

determine the border between each regime by observing time evolutions. We can judge

whether the flow has a turbulent nature by examining time evolution of vertical profile

of the horizontal mean temperature (figure 13). The overwritten line plots coincide

for a herringbone pattern regime (figure 13(a)) while those spread for a turbulent

regime (figure 13(b)). Note that the regime of quasi-2D large-scale roll convection has

a turbulent nature when Ra is large and line plots spread if we draw time evolution of

vertical profile of the horizontal mean temperature as figure 13(b) (not shown).

The regime diagram changes depending on the Taylor number. Figure 14 shows

the regime diagram for Ta = 3× 104, and figure 15 shows that for Ta = 105. As Ta is

increased, Rac increases and each regime found for Ta = 104, roughly speaking, moves

toward the positive direction of the Ra axis. When Ta = 3 × 104, the quasi-2D large-

scale roll convection regime can be seen for θ = 30◦ and 45◦. Although we cannot find

the large-scale roll convection regime for Ta = 105 in the parameter range for which

we have swept, several additional experiments show that the large-scale roll convection

regime exists where Ra ≈ 60, 000 for θ = 30◦ and Ra ≈ 70, 000 for θ = 45◦ (figures are

not shown).
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Figure 11. Regime diagram for Ta = 104. The horizontal axis is the tilt angle of the

rotation axis θ, and vertical axis is the Rayleigh number Ra. Red triangles, light blue

upside-down triangles, blue upside-down triangles, green circles, and orange diamonds

represent turbulent states, regimes of quasi-2D large-scale roll convection, regimes of

2D large-scale roll convection, regimes of roll convection of a herringbone pattern, and

regimes of small-scale roll convection, respectively.

4. Analyses of the acceleration of a mean flow by the transition to the

regime of a large-scale roll convection

As described in the previous section, the zonal mean flow is strongly accelerated when

a large-scale roll convection appears. Therefore, in this section, we explore why such a

large-scale roll convection appears and how this convection accelerates the mean flow.

4.1. Search for 2D steady solutions

The large-scale roll convection that appears in the nonlinear time evolution shown in the

previous section appears to be a stable steady solution of the system. In the following,

we investigate whether perfectly 2D stable steady solutions exist.

We first calculate the nonlinear time evolution of the 2D (x–z) model for Ta = 104,

θ = 45◦, and Ra = 6, 500 until it converges to a steady roll solution. The initial condition

is set as the m = 0 component of the final state (at t = 10.0) of the corresponding 3D

nonlinear time evolution, in which a large-scale east–west roll convection is formed. We

then calculate the 2D nonlinear time evolution from an initial condition, which is set as

the converged solution that we found in the previous calculation, changing the values
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Figure 12. A magnified view of figure 11 for 4, 000 ≤ Ra ≤ 10, 000.

(a) (b)

Figure 13. Snapshots of the vertical profile of the horizontal mean temperature for

Ta = 104 and θ = 15◦ (solid line). (a) for a herringbone pattern regime (Ra = 4500)

and (b) for a turbulent regime (Ra = 6000). The profiles are drawn on every 0.01

nondimensional time from t = 8.0 to 9.0. The horizontal axis is temperature T and

the vertical axis is z. Dashed line is the initial profile, which is the heat conduction

solution.
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of Ra and θ. By repeating this procedure, we determine the parameter regime in which

a large-scale 2D steady roll solution exists.

The 2D steady solutions, however, are not always stable with respect to 3D

disturbances. Next, we perform linear stability analysis of the 2D steady solutions

in order to determine whether these solutions are stable to 3D disturbances. Figure 16

shows a regime diagram of stable and unstable 2D steady roll convections for Ta = 104.

A magnified view of the regime diagram is also shown in figure 17. A difference is found

between the parameter region in which 2D stable steady solutions exist and the region

in which a large-scale east–west roll convection appears in the nonlinear time evolutions

(c.f., figure 11 or figure 12). Let us examine the correspondence between the 2D steady

solutions and the final states of the 3D nonlinear time evolutions for Ta = 104 and

θ = 45◦ in detail. In the range of 5, 200 ≤ Ra ≤ 6, 400, a large-scale east–west roll

convection does not appear in the nonlinear time evolution, whereas a 2D stable steady

solution exists. This is considered to be because the system cannot reach the steady

solution from the initial condition. In the range of 6, 500 ≤ Ra ≤ 8, 000, the nonlinear

time evolution converges to the 2D large-scale steady roll solution. In the range of

8, 100 ≤ Ra ≤ 9, 200, there still exists a stable 2D steady solution. Although a large-

scale east–west roll convection is formed in the nonlinear time evolution, disturbances

of wavenumber 2 or 3 do not disappear. It is thought that the disturbances in the

final state with respect to the perfectly 2D steady stable solution are so large that the

flow pattern settles down to an unsteady quasi-periodic solution oscillating around the

steady solution. In the range of Ra ≥ 9, 300, a large-scale east–west roll convection with

disturbances of wavenumber 2 or 3 is formed in the nonlinear time evolution, whereas

the 2D large-scale steady solution is unstable. It is thought that a transition of the

flow pattern to a quasi-periodic solution oscillating around the unstable steady solution

occurs. In fact, the largest and second largest growing wavenumbers of the unstable

steady solution for Ra = 10, 300 are 2 and 3, respectively, which is consistent with the

wavenumbers of the disturbances in the final state of the nonlinear time evolution.

In summary, when the nonlinear time evolution converges to a perfectly 2D large-

scale roll solution, this solution is the stable 2D steady solution of the system. However,

whether a 2D stable solution exists does not directly correspond to whether a large-scale

roll convection appears in the nonlinear time evolutions.

While the above description is for θ = 45◦, let us examine the case in which θ = 60◦.

Comparing figures 11 and 16 (or the corresponding magnified views in figures 12 and 17,

respectively), a 2D stable steady solution exists when 3, 800 ≤ Ra ≤ 6, 100. However,

in this range of Ra, the nonlinear time evolution does not converge to a large-scale

roll solution. On the other hand, a large-scale roll convection with wavy disturbances

appears in the nonlinear time evolution for 7, 600 ≤ Ra ≤ 7, 900 and Ra ≥ 9, 000,

even though the 2D steady solution is unstable. This is also the case in the range of

Ra ≥ 6, 700 for θ = 30◦. Therefore, for some ranges of experimental parameters, the 2D

steady roll solution is important in describing a large-scale roll convection that appears

in the nonlinear time evolution, even when the steady solution is unstable.
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Figure 16. Regime diagram of the stable and unstable 2D steady roll solutions for

Ta = 104. The horizontal axis is the tilt angle, θ, and the vertical axis is the Rayleigh

number. Blue circles represent stable solutions, and yellow squares represent unstable

solutions.
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19

4.2. Explanation of the acceleration mechanism

Now, let us examine how the large-scale roll convection accelerates the zonal mean flow.

Considering the tilt of the rotation vector and the horizontal shear of the zonal flow,

the acceleration mechanism by a large-scale east–west roll convection is explained as

follows:

(i) The region of 0 < x < 5 is convectively more unstable than that of 5 < x < 10

because the horizontal shear of the zonal flow has the opposite sign to the vertical

component of the system rotation in the region of 0 < x < 5. On the other hand,

the opposite occurs in the region of 5 < x < 10, which leads to a reduction in

convective instability.

(ii) Let us assume that a large-scale roll convection is formed in the region of 0 < x < 5

with an upward flow near x = 0.5 and a downward flow near x = 4.5 (figure 18(a)).

(iii) The Coriolis force acting on the upward and downward flows accelerates the mean

flow westward and eastward, respectively, which enhances the horizontal shear of

the zonal flow (figure 18(b)). Here, the horizontal component of the system rotation

plays an important roll.

(iv) The enhanced horizontal shear further destabilizes the region of 0 < x < 5, so

that the large-scale east–west roll convection is enhanced. In contrast, the region

of 5 < x < 10 is stabilized. The positive feedback in the region of 0 < x < 5 occurs

because we are assuming an upward flow near x = 0.5 and a downward flow near

x = 4.5. If we assume the opposite vertical flow pattern, the feedback becomes

negative.

(v) As the convection becomes intense, horizontal transport of the zonal momentum

by the overturning flow grows to have a tendency to decelerate the zonal flow.

The entire flow pattern becomes steady when the acceleration by the Coriolis

force and the deceleration by the horizontal transport of the zonal momentum

balance. Figure 19 shows the balance in the final state for Ta = 104, θ = 45◦, and

Ra = 7, 000. (The equation of ∂〈v〉/∂t and the definition of each effect drawn in

the figure 19 are shown in Appendix D.)

Thus, the acceleration mechanism described above can work only in a system with a

tilted rotation axis and a sine-type horizontal shear flow.

5. Summary and discussion

In the present paper, we investigated thermal convection in a sine-type horizontal shear

flow in a rotating system with a tilted axis, sweeping three parameters: the Taylor

number, the tilt angle of the rotation axis (i.e., latitude), and the Rayleigh number.

Nonlinear time evolutions have shown that there exists not only a regime in which roll

convections of a herringbone pattern accelerate the mean flow but also a regime in

which a large-scale east–west roll convection accelerates the mean flow strongly. By
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Figure 18. Schematic diagram of the acceleration mechanism of the mean flow by a

large-scale east–west roll convection. Green arrows represent rotation vectors. (a) Roll

convection pattern. The red oval represents the overturning flow pattern of a large-

scale east–west roll convection. (b) Acceleration. Red arrows represent the vertical

flow associated with the roll convection. Blue circles represent the direction of the

acceleration of the mean flow by the Coriolis force acting on the vertical flow. The

cross symbol indicates the westward direction, whereas the dot symbol indicates the

eastward direction.

means of 2D calculations and linear stability analyses, it has been demonstrated that

stable/unstable steady 2D roll solutions exist. The appearance of the large-scale roll

convections in the nonlinear time evolutions can be regarded as a transition to the stable

2D solution or a quasi-periodic solution around the steady solution.

The occurrence of the transition and the acceleration of the zonal flow by the

large-scale roll convection are accounted for by the following feedback mechanism. The

region in which the horizontal shear of the zonal flow has the opposite sign to the

vertical component of the system rotation is convectively more unstable than the region

without the shear flow. Once a large-scale roll convection rising in the westward mean

flow and descending in the eastward mean flow is formed in the aforementioned region,

the Coriolis force acting on the upward and downward flows accelerates the mean flow

westward and eastward, respectively, which enhances the horizontal shear of the zonal

flow. The enhanced horizontal shear further destabilizes this region so that the large-

scale east–west roll convection is enhanced.

Not only a tilted rotation axis but also a sine-type horizontal shear flow is necessary

for this feedback mechanism to work. Most of previous studies on thermal convection

in a tilted f -plane have not found this feedback mechanism because they have not

included such a basic flow. Although Hathaway and Somerville (1987) included a sine-

type horizontal shear flow, they did not find the feedback mechanism, either, within the

relatively narrow parameter region for which they swept.

The validity of imposing such a basic zonal flow, however, should be discussed. As

Hathaway and Somerville (1987) described, we assume that there is some effect, such

as the Rhines effect of β-plane turbulence (Rhines 1975), that maintains the zonal flow.

In the future, we intend to investigate whether a spontaneously formed zonal flow by

the Rhines effect can be accelerated through the feedback mechanism we found in the
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Figure 19. A snapshot of the nonlinear time evolution for the case in which Ta = 104,

θ = 45◦, and Ra = 7, 000 at t = 10.0. (a), (b), and (c) are the same as figure 5. (d)

The profiles of the accelerations in the zonal (y) direction by the following effects of

the roll convection. The green line represents the effect of the Coriolis force acting on

the vertical flow. The light blue line represents the effect of the horizontal transport

of the zonal momentum by the overturning flow. The blue line represents the effect of

viscosity. The summation of the aforementioned three effects is zero because the flow

has settled to a steady state.

present study, by including the β effect in the system.

As for the relevance of this study to the real planetary atmospheres, one may

suspect that the strong mean flow acceleration found in this study is worthless since

the strong acceleration occurs not in the turbulent regime but in the quasi-2D large-

scale roll convection regime. Although we classified the regime in which the mean flow

is significantly accelerated as the regime of “quasi-2D large-scale roll convection”, the

flow field in the regime has a turbulent nature when Ra is large. We think the regime

of turbulent quasi-2D large-scale roll convection may have some relevance to the real

planetary atmospheres like Jupiter even though Ra for the real planetary atmospheres

is much larger than that examined in this study. In order to examine this speculation,

a wider experimental parameter range should be explored in the future.



22

Acknowledgments

Naoaki Saito was supported by the Ministry of Education, Culture, Sports, Science and

Technology of Japan through a Grant-in-Aid for JSPS Fellows, 21-57051, 2009.

Appendix A. Spectral expansion of dependent variables

We use the Legendre polynomials for spectral expansion in the vertical direction. The

Legendre polynomials are defined as follows:

Pn(µ) =
√
2n+ 1

1

2n n!

dn

dµn
(µ2 − 1)n (−1 ≤ µ ≤ 1, n ≥ 0 ) . (A.1)

The Legendre polynomials satisfy the following orthogonal relation:

〈Pn(µ)Pn′(µ)〉 = δnn′ . (A.2)

Here,

〈 〉 = 1

2

∫ 1

−1

dµ.

A variable having a value that vanishes at both ends is expanded as follows:

w(z) =
N∑

n=1

ŵn φn(z) (−1 ≤ z ≤ 1 ) . (A.3)

Here, φn(z) (n = 1, 2, · · · , N) are defined as follows:

φn(z) ≡
∫ z

−1

Pn(µ) dµ

=
Pn+1(z)√

(2n+ 1)(2n+ 3)
− Pn−1(z)√

(2n− 1)(2n+ 1)
(A.4)

and satisfy the following relations:

dφn(z)

dz
= Pn(z) , φn(±1) = 0 . (A.5)

A variable having a z-derivative that vanishes at both ends is expanded as follows:

v(z) =
N∑

n=0

v̂n ξn(z) (−1 ≤ z ≤ 1 ) . (A.6)

Here,

ξ0 = 1, (A.7)

ξn(z) =

∫ z

−1

φn(z
′)dz′ −

〈∫ z

−1

φn(z
′)dz′

〉
(n = 1, 2, · · · , N ) , (A.8)

which satisfy the following relations:

〈ξn(z)〉 = 0 (n ≥ 1) ,
dξn
dz

(±1) = 0 . (A.9)
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The dependent variables are expanded as follows:

u (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=0

ûlmn e
i (rxlx+rymy)ξn(z) , (A.10)

v (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=0

v̂lmn e
i (rxlx+rymy)ξn(z) , (A.11)

w (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=1

ŵlmn e
i (rxlx+rymy)φn(z) , (A.12)

b (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=1

b̂lmn e
i (rxlx+rymy)φn(z) , (A.13)

ω1 (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=1

(ω̂1)lmn e
i (rxlx+rymy)φn(z) , (A.14)

ω2 (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=1

(ω̂2)lmn e
i (rxlx+rymy)φn(z) , (A.15)

ω3 (x, y, z) =
L∑

l=−L

M∑
m=−M

N∑
n=0

(ω̂3)lmn e
i (rxlx+rymy)ξn(z) , (A.16)

where rx = 2π/Lx, ry = 2π/Ly, L is the truncation wavenumber in the x direction, and

M is that in the y direction.

Appendix B. The relevance of the chosen values of V0 and Ta compared

with the Jupiter atmosphere

As explained in section 4, in order for the large-scale zonal convection regime to appear,

the value of ζ must be of the same order as fz . Here, ζ is the maximum value of

the horizontal shear and fz = f sin θ. Table B1 compares ζ, fz, and ζ/fz at θ = 30◦

for Ta = 104 and Ta = 105 in the experiments of this paper with those of the Jupiter

atmosphere near 25◦N from Cassini data. From this table, we do not think the parameter

region we explore is unrealistic as for the value of ζ/fz.

Table B1. Comparison of the typical value of ζ/fz used in this paper (Ta = 104,

105, and θ = 30◦ ) with that of the Jupiter atmosphere (near 25◦N).

ζ (= ∂v/∂x) fz ζ/fz

Ta = 104
2πV0/Lx = 31.4

√
104 sin 30◦ = 50 31.4/50 = 1/1.59

Ta = 105
√
105 sin 30◦ = 158 31.4/158 = 1/5.03

Jupiter
130[m/s]/(4×106)[m]

1.5× 10−4 [1/s]
(3.2×10−5)/(1.5×10−4)

= 3.2× 10−5 [1/s] = 1/4.7
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(a) (b)

y y

x x

Figure C1. x–y sectional views of the temperature field of the two largest growing

eigenmodes for the case in which Ta = 105, θ = 15◦, and Ra = 104, that have the

same growth rate and the structure of a herringbone pattern. (a) Eigenmode that has

a peak at x = 0. (b) Eigenmode that has a peak at x = 5. This figure is taken from

Saito and Ishioka (2009).

Appendix C. Acceleration of the mean flow by roll convection of a

herringbone pattern

The regime in which roll convections of a herringbone pattern accelerate the mean flow

was investigated in detail by Saito and Ishioka (2009). In this appendix, we summarize

their results briefly for the convenience of the reader. Their model settings are almost the

same as those used in the present paper, except that Lx is set to 10 and the experimental

parameters are limited to Ra = 104, θ = 15◦, and Ta = 0, 104, 3× 104, and 105.

Linear stability analyses of the basic state in the cases of Ta = 3×104 and Ta = 105,

in which roll convections of a herringbone pattern are formed in the nonlinear time

evolutions, are performed. Figure C1 shows x–y sectional views of the temperature

field of the two largest growing eigenmodes for the case in which Ta = 105. These two

eigenmodes have the same growth rate, the same wavenumber in the y direction, and the

same structure of a herringbone pattern with a peak at x = 0 and x = 5, respectively.

Roll convections of the herringbone pattern observed in the nonlinear time evolutions

correspond to the structure of the fastest growing eigenmodes.

In the nonlinear time evolutions in which a herringbone pattern appears, the growth

rate of the deviation of the mean flow velocity from the initial velocity vB is twice as

large as the largest growth rate of linear eigenmodes. This implies that the acceleration

of the mean flow is due to the second-order effect of the fastest growing eigenmode.

In order to examine which effect contributes most to the acceleration, the second-
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Figure C2. Acceleration profiles by the second-order effects of the eigenmode with

a peak at x = 0 for the case in which Ta = 3 × 104, θ = 15◦, and Ra = 104. The

red line represents the effect of direct momentum transport. The green line represents

the effect of the Coriolis force acting on the second-order vertical flow. The blue line

represents the effect of viscosity. The purple line represents the sum of the three effects,

i.e., the net acceleration. This figure is taken from Saito and Ishioka (2009).

order acceleration by the eigenmode is decomposed. Figure C2 shows the acceleration

profiles given by three effects of the eigenmode for the case in which Ta = 3 × 104.

These three effects are direct momentum transport, the Coriolis force acting on the

second-order vertical flow, and viscosity. Comparing these three effects reveals that the

Coriolis force acting on the second-order vertical flow contributes to the net acceleration

more than direct momentum transport.

Based on further detailed analyses, the mechanism of the acceleration of the mean

flow by the second-order effect of the fastest growing eigenmode with a peak at x = 0

is described as follows. A schematic diagram of the following description is shown in

figure C3. For the fastest growing eigenmode with a peak at x = 5, the direction of the

acceleration is reversed.

(i) Roll convection localizes around x = 0, where the horizontal shear of the mean

flow is weak. The axis of each roll convection tilts parallel to the rotation vector f .

The overturning flow of roll convection is faster in 0 < x < 5 than in −5 < x < 0

because the former region is convectively more unstable than the latter region.

(ii) Heat transport by the roll convections generates buoyancy deviations. The absolute

value of the upper positive buoyancy deviation is larger than that of the lower

negative buoyancy deviation, corresponding to the localization, the axis tilt, and

the strength asymmetry of the roll convections described in (i).

(iii) The vertical mean of the buoyancy deviation near x = 0 becomes positive, which
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Figure C3. Schematic diagram of the acceleration of the mean flow by roll convections

of a herringbone pattern. The green line represents the axis of each convection roll. The

red and blue ovals represent positive and negative buoyancy deviations, respectively.

The red and blue arrows represent the second-order vertical flow. This figure is taken

from Saito and Ishioka (2009).

induces upward second-order vertical flow.

(iv) The Coriolis force acting on the upward flow accelerates the mean flow. The

horizontal component of f is important for the acceleration.

Appendix D. Derivation of the equation that describes time evolution of

the mean flow

In this appendix, we derive the equation that describes time evolution of the mean flow

in order to examine which effect contributes to the acceleration.

The equation of motion (2.1) can be rewritten as

∂u

∂t
+

1

2
∇|u|2 = u× ω −∇p− f × (u− uB) +Ra b+∇2(u− uB) . (D.1)

Taking the y component of (D.1) yields

∂v

∂t
+

1

2

∂

∂y
|u|2 = (wω1 − uω3)−

∂p

∂y
− (f3 u− f1w) +∇2(v − vB) . (D.2)

Here, f1 and f3 are the x and the z components of the rotation vector, respectively.

Averaging (D.2) in the y direction and using the periodic boundary condition, we obtain

∂v

∂t
= (wω1 − uω3)− f3 u+ f1w +

(
∂2

∂x2
+

∂2

∂z2

)
(v − vB) . (D.3)

Here the overbar ( a ) indicates the average in the y direction. Averaging (D.3) in the

z direction and using the boundary conditions at the top and the bottom, we obtain

∂〈v〉
∂t

= 〈wω1 − uω3 〉+ f1〈w〉+
∂2

∂x2
(〈v〉 − vB) . (D.4)

Here, the bra-ket 〈 〉 indicates the average in the z direction. In (D.4), the term f3〈u〉
does not appear because 〈u〉 = 0 in the settings of the model. We decompose the

dependent variables in (D.4) as follows:

u = u+ u′ , w = w + w′ , ω1 = ω1 + ω′
1 , ω3 = ω3 + ω′

3 , (D.5)
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where the prime ( ′ ) indicates the deviation from the average in the y direction.

Substituting (D.5) into (D.4), we obtain the following equation:

∂ 〈v〉
∂t

= 〈w′ω′
1 − u′ω′

3 〉+ 〈wω1 − uω3 〉 + f1〈w〉+
∂2

∂x2
(〈v〉 − vB) . (D.6)

Here, the first term in the right-hand side is the effect of the eddy momentum transport,

the second term is the effect of the horizontal transport of the zonal momentum by the

overturning flow, the third term is the effect of the Coriolis force acting on the vertical

flow, and the fourth term is the effect of the viscosity. In figure 19, we compare the values

of the terms in the right-hand side of (D.6) and we examine which term contributes most

to the acceleration of the mean flow. Note that the first term in the right-hand side of

(D.6) is so small that it is omitted in figure 19.
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