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Abstract 

 

The objective of this study is to investigate the effect of local inflammation 

suppression on the bone regeneration. Gelatin hydrogels incorporating mixed 

immunosuppressive triptolide-micelles and bone morphogenic protein-2 (BMP-2) were 

prepared. The controlled release of both the triptolide and BMP-2 from the hydrogels was 

observed under in vitro and in vivo conditions. When either J774.1 macrophage-like or 

MC3T3-E1 osteoblastic cells were cultured in the hydrogels incorporating mixed 2.5, 5 or 10 

mg of triptolide-micelles and BMP-2, the expression level of pro- and anti-inflammatory 

cytokines including interleukin (IL)-6 and IL-10 was down-regulated, but the alkaline 

phosphatase (ALP) activity was promoted compared with those of hydrogels incorporating 

BMP-2 without triptolide-micelles. When implanted into a critical-sized bone defect of rats, 

the hydrogels incorporating mixed 2.5 or 5 mg of triptolide-micelles and BMP-2 showed 

significantly lower number of neutrophils, lymphocytes, macrophages or dendritic and mast 

cells infiltrated into the defect, and lower expression level of IL-6, TNF-, and IL-10 than 

those incorporating BMP-2 without triptolide-micelles. The reduced local inflammation 

responses at the defects implanted with the hydrogels incorporating mixed 2.5 or 5 mg of 

triptolide-micelles and BMP-2 subsequently enhanced the bone regeneration thereat. It is 

concluded that the proper local modulation of inflammation responses is a promising way to 

achieve the enhanced bone regeneration. 

 

Key words: Inflammation suppression, pro-inflammatory cytokines, bone regeneration, 

triptolide, bone morphogenic protein-2 (BMP-2), controlled release 
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1. Introduction 

 Bone regeneration involves complex physiological processes which are initiated with 

the local inflammation responses, followed by the mobilization of hematopoietic (HSC) and 

mesenchymal stem cells (MSC) to the site to form vascular networks, soft matrix tissues, 

cartilage, and bone. The process consists of a well-orchestrated time sequence of events to 

regulate the proliferation of stem cells and their differentiation into vascular-forming 

endothelial cells and bone-forming osteoblasts [1,2]. As it is recognized that the local 

inflammation step is required to initiate the subsequent process of tissue regeneration, the 

proper responses of inflammation are substantially necessary to guide the normal regeneration 

of damaged tissues [3]. On the other hand, deficient or excessive inflammation would 

biologically modify some subsequent signaling molecules, and consequently inhibit or delay 

the tissue regeneration [4-6]. It is demonstrated that some inflammatory molecules, e.g. pro-

inflammatory cytokines including interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-, 

can induce the release of secondary signaling molecules and to recruit cells necessary for tissue 

regeneration [7]. Absence of the pro-inflammatory cytokines often impairs the process of tissue 

healing [8]. Over-expression of pro-inflammatory cytokines causes the catabolic effects on the 

quantity and quality of tissue regeneration [9-11]. Therefore, it is highly conceivable that a fine 

balance in the cellular interaction and cytokine expression between the inflammation and 

regeneration processes is practically a key to modify the final result of damaged tissue 

regeneration. 

 In recent, the modulation of inflammation with some drugs aiming at the enhancement 

of tissue regeneration has been increasingly investigated [5,7,12,13]. Among the drug 

candidates, triptolide, a natural product isolated from the Chinese herb Tripterygium wilfordii 

Hook F., is one of potent compounds for immunosuppression and anti-inflammation treatments 

*Manuscript
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[14-20]. Triptolide is a well-tolerated small molecule which has been widely used to treat 

inflammation and autoimmune diseases, such as rheumatoid arthritis of a traditional Chinese 

medicine [21]. Many researches have attempted to explore the suppression mechanism of 

triptolide-mediated inflammation both in vitro and in vivo. It is reported that triptolide has an 

inhibitory effect on the activation of T cells and their gene transcription of pro-inflammatory 

cytokines [14,15]. In addition, it can induce apoptosis in T and dendritic cells by inhibiting a 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription [16,17]. 

Wei et al. reported that the administration of triptolide intraperitoneally every other days for 8 

weeks significantly reduced the numbers of CD4-positive T cells and macrophages in lamina 

propria and decreased the production of TNF-α and interferon (IFN)-γ in the colon of IL-10 

deficient mice [22]. Triptolide can suppress the differentiation of immature human monocytes 

as well as reduce a capacity of monocytes to stimulate the proliferation of lymphocyte in the 

allogeneic mixed lymphocyte reaction [23]. It also inhibited the migration of dendritic cells 

into tissues by inhibiting the expression of chemokine (C-C motif) receptor (CCR)-7 and 

cyclooxygenase (COX)-2 through phosphoinositide 3-kinase (PI3-K)/Akt and NF-κB pathways 

[24]. In addition, some clinical and experimental studies have demonstrated that the 

administration of triptolide by the oral route effectively prolonged the allograft survival in the 

transplantation of some organs including bone marrow, cardiac, renal, and skin tissues 

[18,19,24]. However, up to date, triptolide does not always have a wide therapeutic window 

because of its water-insolubility and dose-dependent toxicity. The effective dose of tirptolide is 

nearly equal to the toxic dose that shows adverse side effects of reversible skin irritation and 

other systemic responses [20]. To overcome the drawbacks, a controlled delivery of triptolide 

specifically to the desired site in the body should be designed to decrease or avoid the side 

effect at the non-target sites. The local delivery system can also reduce the dose required, 

prevent the first-pass metabolism, and provide the rapid action of drug at the target site. 
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The objective of this study is to investigate bone morphogenic protein-2 (BMP-2)-

induced bone regeneration under a condition of inflammation suppression. Bone regeneration 

at a critical-sized defect or a subcutaneous site is achieved by the controlled release of BMP-2 

from gelatin hydrogels [25-27]. The triptolide of water-insoluble property was encapsulated 

into the micelles of a hydrophobic gelatin derivative to allow it to solubilize in water. The 

water-soluble triptolide-micelles were incorporated into the gelatin hydrogels to achieve the 

controlled release. The local suppression of inflammation induced by the triptolide release was 

evaluated in terms of the number of inflammatory cells infiltrated and the level of pro-

inflammatory cytokines. 

In this study, gelatin hydrogels incorporating mixed various doses of triptolide-micelles 

and BMP-2 were fabricated. The in vitro and in vivo profiles of triptolide and BMP-2 release 

from gelatin hydrogels and the hydrogels degradation were investigated. The in vitro culture of 

macrophage-like and pre-osteoblastic cells in the hydrogels incorporating BMP-2 with or 

without the triptolide-micelles was carried out to compare the expression level of pro-

inflammatory cytokines and the osteogenic differentiation. After the hydrogels implantation 

into a critical-sized bone defect model of rats, the inflammation responses and bone 

regeneration were qualitatively and quantitatively evaluated in terms of histological and 

immunohistrochemical, real-time polymerase chain reaction (PCR), radiology, micro-

computed tomography (µCT), and peripheral quantitative computed tomography (pQCT) 

examinations.  
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2. Materials and methods 

2.1. Materials 

A gelatin sample prepared by an acidic treatment of porcine skin collagen (isoelectric 

point (IEP) = 9.0) was kindly supplied by Nitta Gelatin Inc., Osaka, Japan. Recombinant 

human bone morphogenetic protein-2 (BMP-2) was kindly supplied from Yamanouchi 

Pharmaceutical Co., Tokyo, Japan. Triptolide (IUPAC name: (3bS,4aS,5aS,6R,6aR,7aS,7bS, 

8aS,8bS)-3b,4,4a,6,6a,7a,7b,8b,9,10-decahydro-6-hydroxy-6a-isopropyl-8b-methyltrisoxireno 

[6,7:8a,9:4b,5] phenanthro [1,2-c] furan-1 (3H)-one, the molecular weight = 360.4) was 

purchased from Tocris Bioscience Inc., Ellisville, MO. Na
125

I (NEZ-033H, >12.95 GBq/ml) 

and N’-succinimidyl-3-(4-hydroxy-3,5-di[125I]iodophenyl)propionate or [
125

I] Bolton-Hunter 

reagent (NEX-120H, 147 MBq/ml) were purchased from Perkine Elmer Life Sciences Inc., 

Boston, MA. Disuccinimidyl carbonate (DSC) and 4-dimethylaminopyridine (DMAP) were 

obtained from Nacalai Tesque Inc., Kyoto, Japan. Glutaraldehyde, glycine, dimethyl sulfoxide 

(DMSO), and other chemicals were obtained from Wako Pure Chemical Industries, Ltd., 

Osaka, Japan and used without further purification. All the primers (Table 1) were purchased 

from Invitrogen Corporation, Ltd., Carlsbad, CA. 

2.2. Synthesis of L-lactic acid oligomer-grafted gelatin  

L-lactic acid oligomer with the number-average molecular weight of 1,000 was 

synthesized from L-lactide monomer by the ring-opening polymerization, as published 

previously [33]. L-lactic acid oligomer (3 x 10
-5

 mole) was dissolved in 15 ml DMSO, while 

DSC (9 x 10
-5

 mole) and DMAP (9 x 10
-5

 mole) were dissolved in 2.5 ml of DMSO. The 

solution was mixed to allow the reaction for 3 hr under stirring at room temperature to activate 

the hydroxyl groups of L-lactic acid oligomer. The solution of activated L-lactic acid oligomer 
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was slowly added to the gelatin (IEP = 5) solution in DMSO (33 mg/ml), and the mixture was 

stirred overnight at room temperature to chemically graft the L-lactic acid oligomer to gelatin. 

The resulting solution was dialyzed against double-distilled water (DDW) using a dialysis tube 

(molecular weight cut off = 12,000–14,000) at room temperature for 72 hr, followed by freeze-

drying to obtain the L-lactic acid oligomer-grafted gelatin. The ratio of L-lactic acid oligomer 

grafted to the amino groups of gelatin determined by fluorescamine assay was 3.1 ± 0.8 

mole/mole gelatin, as reported previously [33].  

2.3. Preparation of L-lactic acid oligomer-grafted gelatin and triptolide micelles 

 L-lactic acid oligomer-grafted gelatin solution (1 mg/ml) in DMSO and triptolide 

solution (1 mg/ml) in DMSO were prepared. The triptolide solution (1 ml) was added to the L-

lactic acid oligomer-grafted gelatin solution (30 ml), followed by stirring at room temperature 

for 3 hr. The reaction mixture was dialyzed using a dialysis tube (molecular weight cut off = 

1,000) for 72 hr. The dialysate obtained was centrifuged at 8,000 rpm, 4 °C for 10 min to 

separate water-insoluble triptolide, and freeze-dried to obtain the triptolide water-solubilized by 

L-lactic acid oligomer-grafted gelatin micelles (triptolide-micelles). To measure the amount of 

triptolide incorporated into the micelles, the triptolide-micelles freeze-dried were dissolved in 

100 vol% ethanol. The solution absorbance was measured at a wavelength of 210 nm while the 

triptolide concentration was determined from the calibration curve prepared with the 100 vol% 

ethanol containing various amounts of triptolide.  

2.4. Preparation of gelatin hydrogels incorporating triptolide-micelles and BMP-2 

Hydrogels were prepared through the chemical crosslinking of gelatin with 

glutaraldehyde according to the method described previously [25,33]. Briefly, a solution (100 

μl) containing 0, 2.5, 5 or 10 mg of triptolide-micelles was added to 400 μl of gelatin (IEP = 
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9.0) solution (50 mg/ml). Then, the solution was mixed with glutaraldehyde solution at a 

concentration of 0.16 vol%, and cast into a Tissue-Tek
®
 mold (10 mm×10 mm, Sakura Finetek 

Japan Co., Ltd., Tokyo, Japan), followed by leaving at 4 °C for 12 hr for gelatin crosslinking. 

The hydrogels were agitated in 100 mM aqueous glycine solution at room temperature for 2 hr 

to block the residual aldehyde groups of glutaraldehyde. Following washing three times with 

DDW, the hydrogels were freeze-dried and sterilized by ethylene oxide. Prior to the following 

experiments, BMP-2 (5 µg) solution was adsorbed onto each hydrogel freeze-dried (1 x 2 x 6 

mm
3
), followed by leaving at 4 C overnight for the solution incorporation to obtain gelatin 

hydrogels incorporating mixed triptolide-micelles and BMP-2.  

2.5. In vitro and in vivo release studies of triptolide from gelatin hydrogels  

 For the in vitro release study of triptolide, gelatin hydrogels incorporating 0, 2.5, 5 or 

10 mg of triptolide-micelles and 5 µg of BMP-2 were incubated in 1 ml of 100 mM phosphate-

buffered saline solution (PBS, pH 7.4) at 37 °C. At each time point, the PBS supernatant was 

collected and replaced with fresh PBS. The PBS supernatant containing triptolide released was 

freeze-dried, and then the sample was re-dissolved in 100 vol% ethanol. The triptolide amount 

was determined by measuring the solution absorbance similarly. The experiment was 

independently performed for 4 samples per experimental group at each sampling point. 

For the in vivo release study of triptolide, the hydrogels incorporating 0, 2.5, 5 or 10 mg 

of triptolide-micelles and 5 µg of BMP-2 were implanted into the back subcutis of 6-week-old 

female ddY mice (18–20 g body weight, Shimizu Laboratory Supply, Kyoto, Japan). At 

different time intervals, the hydrogel was collected and incubated with 1 ml collagenase 

solution (1 mg/ml) at 37 °C until to the complete digestion. The resulting solution was freeze-

dried, and then the sample was re-dissolved in 100 vol% ethanol, followed by the similar 
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determination of triptolide amount. The experiment was independently performed for 3 

samples per experimental group at each sampling point. 

2.6. In vitro and in vivo release studies of BMP-2 from gelatin hydrogels  

 BMP-2 was radioiodinated according to the conventional chloramine T method as 

previously described [34]. Briefly, 5 μl of Na
125

I was added into 200 μl of BMP-2 solution 

(150 μg/ml) in 0.5 M potassium phosphate-buffered solution (pH 7.5) containing 0.5 M NaCl. 

Then, 100 μl of the same buffer containing 0.2 mg/ml chloramine-T was added to the solution 

mixture. After vortex mixing at room temperature for 2 min, 100 μl of PBS containing 0.4 mg 

sodium metabisulfate was added to the reacting solution to stop the radioiodination. The 

solution mixture was passed through a PD-10 desalting column (GE Healthcare Life Sciences, 

Chalfont St Giles, UK) to remove the uncoupled, free 
125

I molecules from the 
125

I-labeled 

BMP-2 using PBS as an eluting solution. PBS solution containing 
125

I-labeled BMP-2 (14 

μg/ml) was mixed with PBS containing non-labeled BMP-2 to give the final concentration of 

500 μg/ml. The mixed solution containing 5 μg of BMP-2 (10 μl) was then adsorbed onto the 

hydrogel incorporating triptolide-micelles freeze-dried (1 x 2 x 6 mm
3
), followed by leaving at 

4 °C overnight to allow the solution to impregnate into the hydrogel. The gelatin hydrogels 

incorporating mixed 0, 2.5, 5 or 10 mg of triptolide-micelles and 5 µg of 
125

I-labeled BMP-2 

were obtained. 

 For the in vitro release study, the hydrogel incorporating mixed various doses of 

triptolide-micelles and BMP-2 was incubated in 1 ml of PBS solution (pH 7.4) at 37 °C. At 

each time-point, the PBS supernatant was collected and replaced with fresh PBS. The 

radioactivity of PBS supernatant was measured by the gamma counter (Auto Well Gamma 

System ARC-380 CL, Aloka Co., Ltd, Tokyo, Japan). The experiment was independently 

performed for 4 samples per experimental group at each sampling point. 
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For the in vivo release study, the hydrogel was implanted into the back subcutis of 6-

week-old female ddY mouse. At different time intervals, the hydrogels were taken out to 

measure the radioactivity remaining by the gamma counter. The experiment was independently 

performed for 3 samples per experimental group at each sampling point. 

2.7. In vivo degradation studies of gelatin hydrogels  

 To evaluate the in vivo degradation profiles of hydrogels, the implantation of 
125

I-

labeled hydrogels was performed according to the method previously reported [35]. Briefly, 20 

μl of [
125

I]Bolton–Hunter reagent solution in benzene was completely evaporated at room 

temperature. The resultant solid reagent was re-dissolved in 1 ml of PBS and the resulting 

solution (20 μl) was adsorbed onto the freeze-dried gelatin hydrogel, followed by leaving at 4 

°C overnight to introduce 
125

I into the amino groups of gelatin. The radioiodinated hydrogels 

were washed with DDW thoroughly to exclude the uncoupled, free 
125

I molecules until the 

radioactivity of DDW equaled to the background level. Following the implantation into the 

back subcutis of mice, the hydrogels were taken out at each time-point to count the 

radioactivity remaining by the gamma counter. The experiment was independently performed 

for 3 samples per experimental group at each sampling point. 

2.8. In vitro culture of macrophage-like and osteoblastic cells in the gelatin hydrogels 

incorporating triptolide-micelles and BMP-2 

Mouse J774.1 macrophage-like cells were cultured in RPMI (Roswell Park Memorial 

Institute) 1640 medium supplemented with 10 vol% fetal bovine serum (FBS), and 100 U/ml 

penicillin and streptomycin at 37 C in a 5% CO2-95% air atmospheric condition. The medium 

was refreshed every other day. Suspension of J774.1 cells (10
6
 cells/50 µl) was seeded into 

each hydrogel for 6 hr by the agitation seeding technique reported previously [36]. Further, 1 
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ml of medium was added into each cells-seeded hydrogel and the static culture was carried on. 

The total RNA of cells cultured in the hydrogels for 3 days was extracted by using RNeasy® 

fibrous tissue mini kit (Qiagen, Valencia, CA) according to the manufacturer’s instruction. 

Reverse transcription reaction was performed with the SuperScript II First-Stand Synthesis 

System (Invitrogen Corporation, Ltd., CA). Real-time polymerase chain reaction (PCR) was 

performed on a Prism 7500 real time PCR thermal cycler (Applied Biosystems, Foster City, 

CA) from 10 ng of cDNA in a total volume of 25 μl containing Power SYBR Green PCR 

Master Mix (Applied Biosystems) and 10 μM of each primer (Table 1) to analyze the mRNA 

expression level of IL-6, TNF-, and IL-10 genes. The reaction mixture was incubated for the 

initial denaturation at 95 C for 10 min, followed by 40 PCR cycles. Each cycle consisted of 

the following two steps; 95 C for 15 sec and 60 C for 1 min. Each mRNA expression level 

was normalized by the expression level of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) as an internal control. The experiment was independently performed for 3 samples 

per experimental group. 

Mouse MC3T3-E1 osteoblast-like cells were cultured in alpha-modified Eagle minimal 

essential medium (α-MEM) supplemented with 10 vol% FBS, and 100 U/ml penicillin and 

streptomycin at 37 C in a 5% CO2-95% air atmospheric condition. The medium was refreshed 

every other day. Suspension of MC3T3-E1 cells (10
6
 cells/50 µl) was seeded into the hydrogel 

and cultured as described previously. The medium was refreshed on day 3 and the activity of 

alkaline phosphatase (ALP) for cells cultured in the hydrogels for 7 days was assayed by the 

conventional p-nitrophenyl phosphate method [36]. The number of cells was determined by the 

fluorometric quantification of cellular DNA to normalize the ALP activity. The experiment was 

independently performed for 3 samples per experimental group. 
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2.9. In vivo bone defect experiment 

 All the animal experiments were performed according to the Institutional Guidance of 

Kyoto University on Animal Experimentation and under permission by animal experiment 

committee of Institute for frontier Medical Science, Kyoto University. A bone defect model of 

rat ulna was prepared to evaluate the bone regeneration after implantation of gelatin hydrogels 

incorporating 0, 2.5, 5 or 10 mg of triptolide-micelles and 5 µg of BMP-2. The surgery was 

made for 24 to 30-week-old male Wistar rats (400-500 g, n = 16) under standard sterile 

conditions according to the procedure previously reported [37]. Briefly, the rats were 

anesthetized with an intraperitoneal injection of pentobarbital sodium solution (40 mg/kg body 

weight). After shaving the hair and disinfection with 70 vol% ethanol, a longitudinal incision 

was made along the forearm skin of rats. The periosteum was incised circumferentially to 

approach to the ulna bone. A critical defect of 6 mm length was then created at the middle 

position of ulna bone by using a side-cutting diamond disk and a high-speed micromotor under 

an abundant irrigation with the sterile saline solution [38]. The hydrogel was implanted into the 

defect while the periosteum and overlying muscle were repositioned with an absorbable 

polydioxanone suture (Ethicon 5-0, NJ). Then, the wound was closed with a non-absorbable 

polypropylene suture (Ethicon 5-0, NJ). Each rat received the implantation of 2 hydrogels in 

both left and right of forearm’s ulna. The experiment was independently performed for 4 

samples per experimental group at each sampling point. 

2.10. Evaluation of local inflammation responses at bone defects 

Histogical and immunohistochemical stainings were performed to evaluate the local 

inflammation responses at the defects 3 days after the implantation of hydrogels incorporating 

0, 2.5, 5 or 10 mg of triptolide-micelles and 5 µg of BMP-2. The hydrogel samples were 

collected, fixed with 3 wt% paraformaldehyde in PBS at 4 C for 24 hr, decalcified with Plank-
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Rychlo’s Solution (0.3 M aluminium chloride, 3 vol% hydrochloric acid, and 5 vol% formic 

acid) at 4 C for 4 days. The decalcification solution was changed every other day. After 

decalcification, the samples were neutralized with 5 wt% sodium sulfate solution at 4 C for 24 

hr, and washed repeatedly with DDW for further 24 hr. Then, the samples were embedded in 

Tissue-Tek OCT Compound (Sakura Finetek Inc., Tokyo, Japan), frozen on liquid nitrogen, 

and cryo-sectioned. The tissue sections (5 mm-thick) were stained with hematoxylin and eosin 

(H&E), Giemsa, and toluidine blue following the standard protocols to observe the infiltration 

of inflammatory cells, including lymphocytes, neutrophils, and mast cells. The images were 

taken under a microscope (AX80 Provis, Olympus Ltd., Tokyo, Japan) at 10X and 100X 

magnifications. The number of lymphocytes, neutrophils, and mast cells was counted from the 

images taken at 100X magnification randomly selected (30 images/experimental group). 

For the immunohistochemical staining, the sections were washed with PBS, blocked 

with a normal goat serum at room temperature for 1 hr before incubation with a mouse anti-rat 

macrophage/dendritic cells monoclonal antibody (1:25, Clone no. RM-4, KT014, Cosmo Bio 

Co. Ltd., Tokyo, Japan) at room temperature for 1 hr. Then, the sections were washed with 

PBS and stained with an Alexa Flour 488-conjugated goat anti-mouse IgG (1:200, Invitrogen 

Corporation, Ltd., CA) at room temperature for 45 min. After washing, the sections were 

mounted with a Super Cryomounting Medium (SCMM, Leica Microsystems Co. Ltd., Tokyo, 

Japan). The fluorescence images were taken under a fluorescent microscope (Apotome, 

Imager.Z1, Carl Zeiss, Jena, Germany) at 10X magnification.  

2.11. Evaluation of local gene expression of inflammatory cytokines at bone defects  

 The hydrogels implanted at the defects were taken out 3 days after implantation. The 

total RNA was extracted by using RNeasy fibrous tissue mini kit (Qiagen, Valencia, CA) 

according to the manufacturer’s instruction. The RT-PCR assay was performed as described 
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previously to evaluate the mRNA expression level of IL-6, TNF-, IL-10, NF-B, and matrix 

metalloproteinase (MMP)-14 genes (Table 1) of cells infiltrated into the hydrogels implanted. 

Expression level of every group was reported as the value normalized to that of the sham group 

(the bone tissue collected from the rats which did not receive the operation and hydrogel 

implantation). Each mRNA level was normalized by the expression level of β-actin as an 

internal control. The experiment was independently performed for 4 samples per experimental 

group. 

2.12. Evaluation of bone tissue regenerated at the defects 

The bone tissue regenerated at the defect was evaluated 4 and 8 weeks later by 

radiological, micro-computed tomography (µCT), peripheral quantitative computed 

tomography (pQCT), and histological examinations. The radiological examination was 

performed under the soft x-ray machine (Hitex-100, Hitachi Ltd., Tokyo, Japan) at 56 kV and 

2.5 mA for 20 s. Three-dimensional images of bone regenerated at the defects were visualized 

with the CT scans (X-RAY CT System, SMX-100CT-SV3 TYPE, Shimadzu Ltd., Kyoto, 

Japan). Samples were scanned over a fixed length of bone with a 20 mm sample holder at a 

resolution of 20 mm, energy of 30 kV, current of 25 mA, and exposure time of 300 ms. The 2-

dimensional images were reconstructed and submitted to the VGStudio MAX 1.2 software 

(Volume Graphics GmbH, Heidelberg, Germany) for processing to produce the 3-dimensional 

images of bone regenerated. The bone mineral density (BMD) of whole cortical compartment 

of bone regenerated was analyzed by using a highly accurate multi-slice pQCT (XCT Research 

SAþ, Stratec Medizintechnik, GmbH, Pforzheim, Germany) at a resolution of 0.08 m voxel 

size and a threshold value of 267 mg/cm
3
 with a scanning protocol of 3 slices with a thickness 

of 460 mm and a slice interval of 1 mm, at a defined distance. Analysis of the regional cortical 

BMD was carried out for each of 3 tomographic slices at a square region of interest (ROI) 
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generated. For the histological examination, the samples were fixed with 3 wt% 

paraformaldehyde in PBS at room temperature for 24 hr, decalcified and neutralized as 

described previously. Then, the samples were embedded in Tissue-Tek OCT Compound 

(Sakura Finetek Inc., Tokyo, Japan), and frozen on liquid nitrogen. The tissue sections (6 mm-

thick) were cut at the center of samples, followed by staining with H&E to observe the bone 

tissue newly formed. The images were taken under a microscope (AX80 Provis, Olympus Ltd., 

Tokyo, Japan) at 10X magnification.  

2.13. Statistical analysis 

All the results were statistically analyzed by the unpaired student’s t test and p < 0.05 

was considered to be statistically significant. Data were expressed as the mean ± the standard 

deviation. 

 

3. Results 

3.1 The encapsulation efficiency and amount of triptolide incorporated in the micelles 

 The encapsulation efficiency of triptolide incorporated in the micelles was around 8.9 

wt%. The amount of triptolide incorporated in the hydrogels (1 x 2 x 6 mm
3
) incorporating 2.5, 

5, and 10 mg of triptolide-micelles was 430±15, 705±38, and 1,268±230 ng, respectively.  

3.2 Controlled release of triptolide and BMP-2 from gelatin hydrogels and hydrogel 

degradation 

 Figure 1A shows the in vitro time profiles of triptolide and BMP-2 release from gelatin 

hydrogels incorporating mixed triptolide-micelles and BMP-2. Triptolide was released from the 

gelatin hydrogels, irrespective of the dose incorporated. Every hydrogel released around 14% 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 

 

of triptolide incorporated within the first day and the release became constant at 20% 5 days 

later. BMP-2 was gradually released from the hydrogels over 7 days. Within the first day, less 

BMP-2 release was observed for any gelatin hydrogel incorporating mixed triptolide-micelles 

and BMP-2 than for those incorporating BMP-2 without triptolide-micelles. However, 

thereafter, this difference became small and the percentage of BMP-2 released was around 30% 

5 days later.  

 Figure 1B shows the in vivo time profiles of triptolide and BMP-2 release from gelatin 

hydrogels incorporating mixed triptolide-micelles and BMP-2 after implantation into the back 

subcutis of mice. A 60% initial burst of triptolide release was seen within the first day, 

irrespective of the dose incorporated. Triptolide was gradually released thereafter and around 

20% of drug was remained in the hydrogels 7 days after implantation. On the first day, the 

percentage of BMP-2 released from every hydrogel was smaller (40-60%) than that of 

triptolide release. The incorporation of triptolide-micelles suppresed the initial burst of BMP-2 

release from the gelatin hydrogels.  

 On the other hand, the gelatin hydrogels of release carriers were gradually degraded 

over 7 days and remained around 40% 7 days later (data not shown). Figures 2A and 2B show 

the remaining amount of the triptolide and BMP-2 incorporated in the gelatin hydrogels as a 

function of the hydrogels remaining, respectively. Irrespective of the dose incorporated, the 

time profile of both triptolide and BMP-2 releases were not always linearly correlated with that 

of the hydrogel degradation.      
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3.3 Expression level of inflammatory cytokines of J774.1 macrophage-like cells cultured in 

the hydrogels 

 Figure 3 shows the mRNA expression level of IL-6, TNF-, and IL-10 genes of J774.1 

macrophage-like cells cultured in the gelatin hydrogels incorporating mixed various doses of 

triptolide-micelles and BMP-2. The expression level of IL-6 and IL-10 genes was dose-

dependently down-regulated with an increase in the amount of triptolide-micelles incorporated. 

On the other hand, no significant difference in the expression level of TNF- gene was 

observed among the groups although the level seemed to increase with the increasing dose of 

triptolide-micelles.  

3.4 Osteogenic differentiation of MC3T3-E1 osteoblastic cells cultured in the hydrogels 

 Figures 4A and B show the number and ALP activity of MC3T3-E1 cells cultured in 

the gelatin hydrogels incorporating mixed various doses of triptolide-micelles and BMP-2. No 

difference in the cell number was observed among the experimental groups. On the other hand, 

the ALP activity of cells cultured in the hydrogels incorporating every dose of triptolide-

micelles and BMP-2 showed almost 3-time higher than that of the hydrogels incorporating 

BMP-2 without triptolide-micelles.  

3.5 Local inflammation responses at the bone defect implanted with the hydrogels 

 Figures 5A-D show the histological and immunohistochemical images of inflammatory 

cells around the defects implanted with gelatin hydrogels incorporating mixed various doses of 

triptolide-micelles and BMP-2. H&E-stained sections indicated a significant inflammation 

response to the gelatin hydrogels incorporating BMP-2 without triptolide-micelles (Figure 5A). 

The accumulation of inflammatory cells was seen around this hydrogel implanted. In contrast, 

less number of inflammatory cells were observed for the hydrogels incorporating 2.5 and 5 mg 
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of triptolide-micelles and BMP-2. However, the hydrogels incorporating 10 mg of triptolide-

micelles and BMP-2 showed the reverse inflammation, as observed by a highly accumulated 

inflammatory cells around the hydrogel. The similar phenomena were observed for Giemsa-

stained sections (Figure 5B). In the toluidine blue-stained sections, a number of mast cells were 

present around the gelatin hydrogels incorporating BMP-2 without triptolide-micelles, whereas 

the cells infiltration was reduced for any hydrogel incorporating mixed triptolide-micelles and 

BMP-2 (Figure 5C). The infiltration of immunohistochemical-stained macrophages and 

dendritic cells was observed in the gelatin hydrogels incorporating BMP-2 without triptolide-

micelles (Figure 5D). The infiltration was suppressed for the hydrogels incorporating mixed 

triptolide-micelles and BMP-2. Figure 5E shows the quantitative results of cells infiltration. 

The number of neutrophils and lymphocytes infiltrated was significantly reduced for the 

hydrogels incorporating 2.5 and 5 mg of triptolide-micelles and BMP-2. However, for the 

hydrogels incorporating 10 mg of triptolide-micelles and BMP-2, the number of neutrophils 

and lymphocytes was similar to that of the hydrogels incorporating BMP-2 without triptolide-

micelles. On the other hand, the number of mast cells was signifficantly less for the hydrogels 

incorporating every dose of triptolide-micelles and BMP-2 than those incorporating BMP-2 

without triptolide-micelles. A slightly increased cell number was seen for the hydrogels 

incorporating 10 mg of triptolide-micelles and BMP-2, compared with the hydrogels 

incorporating less amount of triptolide-micelles and BMP-2.   

3.6 Expression of local inflammatory cytokines at the defect implanted with the hydrogels 

 Figure 6 shows the mRNA expression level of inflammatory cytokines of cells in the 

gelatin hydrogels 3 days after hydrogels implantation. The implantation of gelatin hydrogels 

incorporating BMP-2 without triptolide-micelles resulted in a highly up-regulated the 

expression of IL-6 (~900-fold) and TNF- genes (~80-fold), while those incorporating 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 

 

triptolide-micelles and BMP-2 dose-dependently down-regulated the expression. Despite the 

significantly down-regulated expression level, IL-6 and TNF- expression of cells in hydrogels 

incorporating every dose of triptolide-micelles and BMP-2 remained higher than those of the 

sham group. The highly up-regulated expression of IL-10 gene was also observed for cells 

around the hydrogels incorporating BMP-2 without triptolide-micelles, although the expression 

level was approximately 2-fold decreased for the hydrogels incorporating every dose of 

triptolide-micelles and BMP-2. The tendency of NF-B expression was rather similar to that of 

IL-6, TNF-, and IL-10 genes for all the hydrogel groups, although they all were down-

regulated from that of the sham group. The expression of MMP-14 gene in the hydrogels 

incorporating 2.5 and 5 mg of triptolide-micelles and BMP-2 was significantly reduced from 

that of other groups. 

3.7 Bone regeneration at the defects implanted with the hydrogels 

 Figure 7 shows the qualitative and quantitative results of bone regeneration at the 

defects implanted with gelatin hydrogels incorporating triptolide-micelles and BMP-2. Soft x-

ray images showed a slightly higher extent of bone regeneration at the defects implanted with 

the hydrogels incorporating 2.5 or 5 mg of triptolide-micelles and BMP-2 than that of other 

groups 4 and 8 weeks after implantation (Figure 7A). No bone regeneration was observed for 

the hydrogels incorporating 10 mg of triptolide-micelles and BMP-2 even at 8 weeks. The µCT 

results were in good accordance to those of x-ray examinations (Figure 7B). In the H&E-

stained images, a high density of collagen tissue formation was observed for the hydrogels 

incorporating 2.5 and 5 mg of triptolide-micelles and BMP-2 4 weeks after implantation 

(Figure 7C). In contrast, the amount of collagen tissue formed was less for the hydrogels 

incorporating BMP-2 without or with 10 mg of triptolide-micelles incorporation. The 

quantitative results indicated a significantly enhanced BMD for the defects implanted with the 
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hydrogels incorporating 2.5 and 5 mg of triptolide-micelle and BMP-2, compared with the 

hydrogels incorporating BMP-2 without triptolide-micelles (Figure 7D). For the hydrogels 

incorporating 10 mg of triptolide-micelles and BMP-2, the BMD value was not obtained 

because of no bone regeneration. 

 

4. Discussion  

 The initial inflammation is recognized to be a crucial stage for the subsequent 

reparative and remodeling processes of bone healing. It is well known that excessive local 

inflammation characterized by the over-expression of pro-inflammatory cytokines, particularly 

that induced by the surgical procedure or the material implantation, often delays the process of 

tissue regeneration [4-6,9-11]. Thus, it is important to consider the inflammation modulation to 

maintain or enhance the capability of tissue regeneration. In this study, it is hypothesized that 

the enhanced tissue regeneration would be achieved under a condition of inflammation 

suppression in the inflammation-induced model. Bone regeneration was evaluated for a 

critical-sized defect implanted with hydrogels incorporating immunosuppressive drug and 

BMP-2 to prove this hypothesis. The inflammation was artificially induced by the surgical 

operation and the implantation of foreign-body hydrogels incorporating BMP-2 of a foreign 

protein. The combined effects would result in a highly local inflammation around the defect 

area, as can be confirmed by a significant up-regulated expression of pro- and anti-

inflammatory cytokines, compared with that of sham group (Figure 6). Furthermore, in this 

study, middle-aged rats (24 to 30-week-old) were used to prepare the defect model instead of 

young rats (~12-week-old) in order to make use of stronger activation of pro-inflammatory 

cytokines [39]. Another challenging point of this study is to experimentally confirm whether or 

not the bone regeneration may be enhanced by the inflammation modulation for aged rats.  
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As the controlled release carrier, the gelatin hydrogel was selected because it is non-

cytotoxic, biodegradable, easy to process, inexpensive, and has been used clinically. Our 

previous researches demonstrated that gelatin hydrogels could release various kinds of growth 

factors, such as basic fibroblast growth factors (bFGF) [28], BMP-2 [25-27], and transforming 

growth factor-β1 (TGF- β1) [29], the nucleic acids of plasmid DNA [30] and small interfering 

RNA [31] or low molecular-weight drugs [32,33]. In this study, triptolide of a water-insoluble 

drug can be released in a controlled fashion from the gelatin hydrogels by utilizing the micelle 

formation. The triptolide release can modulate the extent of local inflammation. The doses of 

triptolide incorporated were selected based on the effective dose demonstrated by other 

researches [40-42]. The in vitro release of triptolide-micelles and BMP-2 from the hydrogels 

showed a saturated pattern within 7 days (Figure 1A). This saturation is due to the complete 

incorporation of drug in the hydrogel matrix. In the in vitro system without any degradation 

enzymes of hydrogels, the drug incorporated is not released following the initial diffusional 

release of non-incorporated drug. On the other hand, both the triptolide and BMP-2 were 

released simultaneously from the hydrogels over 7 days in vivo (Figure 1B). It is possible that 

the presence of degradation enzymes accelerated the hydrogel degradation to make water-

soluble gelatin fragments, resulting in the drug release in the in vivo system. It is important to 

note that most of triptolide incorporated was released within the initial inflammation period (< 

7 days) which is a target timing of this study. The initial release of BMP-2 from the hydrogels 

co-incorporating triptolide-micelles was slightly suppressed compared with the hydrogels 

without triptolide-micelles incorporation, while the release of triptolide was not affected by the 

BMP-2 incorporation for both the in vitro and in vivo systems. This phenomenon can be 

explained by the viewpoint of interaction forces between the two molecules incorporated in the 

hydrogel carriers. Triptolide, BMP-2, and the gelatin have a co-interaction in the matrix of 

hydrogels.  It is possible that the BMP-2 interacts not only with the gelatin of hydrogel matrix, 
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but also with the triptolide-micelles. As the result, the double interaction would suppress the 

BMP-2 release. Several studies have also reported on difference in the release behavior 

between the two molecules incorporated in one carrier [43,44]. It is found that the release of 

indomethacin from a heparin-conjugated polymeric micelle was suppressed by the combination 

of basic fibroblast growth factor (bFGF) whereas the indomethacin combination did not affect 

the profile of bFGF release [43].  

The expression of IL-6 and IL-10 by J774.1 macrophage-like cells was dose-

dependently down-regulated when cultured in the hydrogels incorporating mixed triptolide-

micelles and BMP-2 (Figure 3). This experimentally confirms the potential activity of triptolide 

incorporated in vitro. An increase in the ALP activity, an early marker of osteogenic 

differentiation, was observed for MC3T3-E1 osteoblastic cells cultured in the hydrogels 

incorporating triptolide-micelles and BMP-2 (Figure 4). The reason for the enhanced 

osteogenic differentiation of osteoblastic cells by the co-incorporation of triptolide-micelles 

and BMP-2 in the hydrogels is not clear at present. To our knowledge, the effect of triptolide 

on osteogenic differentiation of cells has not been reported elsewhere. It is hypothesized that 

the suppression of pro-inflammatory cytokines of osteoblastic cells by the triptolide 

incorporation (data not shown) would be one of the reasons to modify the subsequent signaling 

cascade of BMP-2-induced osteogenic differentiation [9,11].  

 The inflammation suppression effect of hydrogels incorporating triptolide-micelles and 

BMP-2 was further confirmed by the local histology and gene expression level of inflammatory 

cytokines after implantation in the bone defects 3 days (Figures 5 and 6). A number of 

neutrophils, lymphocytes, mast cells, macrophages, and dendritic cells were accumulated 

around the defects implanted with the hydrogels incorporating BMP-2 without triptolide-

micelles. This would be the combined effects of the surgery, foreign body hydrogel, and BMP-
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2 to induce the local inflammation. In Figure 5, the reduced number and accumulation of 

inflammatory cells around the defects implanted with the hydrogels incorporating 2.5 and 5 mg 

of triptolide-micelles and BMP-2 indicated the suppressed inflammation responses at the bone 

defects. The similar reduced number of inflammatory cells by triptolide was also reported by 

other research groups although the triptolide was delivered via different routes, such as an oral 

administration, intraperitoneal injection or medium supply [16,17,23,24,45-47].  

Liu et al. demonstrated that triptolide significantly impaired dendritic cells-mediated 

chemoattraction of neutrophils and T-lyphocytes both in vitro and in vivo by suppressing the 

production of macrophage inflammatory protein (MIP)-1, MIP-1β, and interferon-c-inducible 

protein (IP)-10 in response to lipopolysaccharide (LPS) [17]. Yang et al. reported that triptolide 

added into the culture medium suppressed mitogen-induced T-lymphocytes proliferation by 

inducing their apoptotic death and by inhibiting IL-2 receptor expression [16,46]. Triptolide 

also effectively inhibited the growth of both human and murine mast cells by the inhibition of 

KIT (transmembrane receptor tyrosine kinase of the type III subgroup) mRNA levels and the 

levels of phosphorylated and total Stat3, Akt, and Erk1/2, downstream targets of KIT [47]. In 

addition, triptolide suppressed the differentiation of immature human monocytes to 

macrophages and inhibited the migration of dendritic cells into tissues by inhibiting the 

expression of chemokine (C-C motif) receptor (CCR)-7 and cyclooxygenase (COX)-2 through 

phosphoinositide 3-kinase (PI3-K)/Akt and NF-κB pathways [23,24]. However, it is important 

to note that the triptolide release from the hydrogels incorporating 2.5 and 5 mg of triptolide-

micelles and BMP-2 only suppressed, but not completely diminished the local inflammation.  

The reduced inflammation would be possibly sufficient to initiate the subsequent regeneration 

processes.  
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In term of gene expression of pro- (IL-6 and TNF-) and anti-inflammatiory cytokines 

(IL-10), the implantation of gelatin hydrogels incorporating BMP-2 without triptolide-micelles 

induced a significant inflammation response at the defect site (Figure 6). However, the 

expression of IL-6 and TNF- was suppressed by the triptolide incorporated in the hydrogels in 

a dose-dependent manner (Figure 6), although the up-regulation was still observed when 

compared with that of the sham group. This finding confirms that triptolide has a potential 

effect on the suppression of pro-inflammatory cytokines, which is reported by other groups 

[48]. IL-10, as an anti-inflammatory cytokine inhibiting the release of pro-inflammatory 

cytokines and subsequent preventing tissue damage [49], also showed the up-regulated 

expression similarly to that of pro-inflammatory cytokines (Figure 6). It is understandable that 

the highest up-regulation of anti-inflammatory cytokines would be required for the highest 

expression of pro-inflammatory cytokine of the hydrogels incorporating BMP-2 without 

triptolide-micelles in order to counter balance the inflammation responses [50,51], while the 

expression of IL-10 became lower for the hydrogels incorporating triptolide-micelles and 

BMP-2 where the inflammation was reduced.  

The expression of NF-B, a transcription factor controlling the expression of many 

genes involved in biological cascades, also corresponded to that of pro- and anti-inflammatory 

cytokines. The hydrogels incorporating triptolide-micelles and BMP-2 suppressed the NF-B 

expression, compared with that of the hydrogels incorporating BMP-2 without triptolide-

micelles. This was possibly due to a direct regulatory role of triptolide to suppress the NF-B 

transcriptional signal-mediated inflammation [52,53]. However, it is known that the NF-B 

transcription is regulated by other biological events, such as apoptosis, metastasis, carcinoma 

or cell survival in addition to the inflammation [54,55]. This may partially explain the reason 
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why the NF-B expression was down-regulated under the inflammation-induced condition of 

every hydrogel group in this study, compared with that of the sham group. 

The overall effect of inflammation suppression induced by the hydrogels incorporating 

2.5 and 5 mg of triptolide-micelles and BMP-2 may contribute to the less tissue damage and 

consequently enhanced the bone regeneration. An enhanced tissue repair is reported by the 

neutralizing IL-6 signal [56]. Mukaino et al. demonstrated that the repair of spinal cord injury 

can be promoted by the administration of an anti-IL-6 receptor antibody immediately after 

injury [56]. This effect was explained by the switch of the central player in the post-traumatic 

inflammation, from hematogenous macrophages to resident microglia, accompanied by 

alterations in the expression of relevant cytokines within the injured spinal cord. 

The hydrogels incorporating 10 mg of triptolide-micelles and BMP-2 showed the strong 

inflammation (Figure 5E). This inflammation was also confirmed by a separated experimental 

model. The hydrogels incorporating various doses of triptolide-micelles without BMP-2 were 

implanted subcutaneously in the LPS-induced mice. The implantation of hydrogels 

incorporating 10 mg of triptolide-micelles substantially up-regulated IL-6 and TNF-  

expression while those mRNA genes and the number of neutrophils and macrophages were 

significantly suppressed for the hydrogels incorporating 5 mg of triptolide-micelles, as 

analyzed by real-time PCR (Figure S1) and flow cytometry (Figure S2). The inflammation-

induction responses of triptolide at high dose were also reported by Xu et al. [57]. The 

effective dose of triptolide was nearly equal to its toxic dose and the reversible skin irritation 

was observed on the animals given at the high dose of triptolide. On the other hand, in this 

study, macrophages and dendritic cells seemed to be suppressed by every dose of triptolide-

micelles incorporated and the inflammation-induced responses were not observed even at the 
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high dose (Figure 5D). The reason is still unclear at present. However, the controlled release of 

triptolide may influence the dose-dependent response. 

Considering the gene expression of inflammatory cytokines, no higher expression of 

pro-inflammatory cytokines was observed even for the hydrogels incorporating 10 mg of 

triptolide-micelles and BMP-2 (Figure 5). This is not well corresponded to the increased 

number of inflammatory observed histologically (Figure 5). It may be that triptolide plays a 

direct role in the inhibition of IL-6 and TNF- production by inflammatory cells through the 

suppression of NF-B signal [52,53]. Thus, it is possible that the suppressed IL-6 and TNF- 

expression was remained even though the number of some inflammatory cells increased. 

Interestingly, no bone regeneration was observed at the defects implanted with the hydrogels 

incorporating 10 mg of triptolide-micelles and BMP-2. It is supposed that a significant local 

inflammation would hinder the regeneration processes. In addition, IL-6 and TNF- expression 

almost completely diminished by the hydrogels incorporating 10 mg of triptolide-micelles and 

BMP-2 would not facilitate the following biological sequences.  

MMP-14 is of the matrix metalloproteinase (MMP) family involved in the breakdown 

and turnover of extracellular matrix (ECM) [58]. It is reported that the expression level of 

MMP family including MMP-14 was induced to breakdown the ECM during tissue 

inflammation and subsequently down-regulated to diminish matrix degradation thereby 

promoting matrix deposition to achieve reconstitution of the tissue repair process [59]. In this 

study, the MMP-14 expression was up-regulated only for the hydrogels incorporating BMP-2 

without triptolide-micelles, while the hydrogels incorporating 2.5 and 5 mg of triptolide-

micelles and BMP-2 showed a significantly down-regulation. This may suggest that the tissue 

around the defects implanted with the hydrogels incorporating 2.5 and 5 mg of triptolide-

micelles and BMP-2 would be possibly in the earlier turnover phase for tissue repair than that 
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of other two hydrogel groups. As a result, the bone tissue was regenerated in the defects 

implanted with the hydrogels incorporating 2.5 and 5 mg of triptolide-micelles and BMP-2 to a 

high extent even at the earlier time-point (4 weeks) post-operation (Figures 7A and C). 

Some potential osteoinductive molecules, such as dexamethasone and 1,25-

dihydroxyvitamin D3, are also known for their anti-inflammatory function [60-63]. Their 

underlying mechanism to promote bone regeneration may be explained in terms of the 

inflammation suppression effect, in addition to the direct regulatory role on the osteogenesis 

cascades. The present study demonstrates that a proper condition of inflammation suppression 

is one of the main factors contributing to the enhanced BMP-2-induced bone regeneration. The 

reduced number of inflammatory cells as well as the suppressed expression of pro-

inflammatory cytokines were achieved by the controlled co-release of triptolide and BMP-2 

from the gelatin hydrogels. 

 

5. Conclusion 

The effect of local inflammation suppression on the bone regeneration was evaluated by 

the controlled co-release of immunosuppressive triptolide and BMP-2 from the gelatin 

hydrogels. The local inflammation responses were significantly reduced at the defects 

implanted with the hydrogels incorporating mixed 2.5 or 5 mg of triptolide-micelles and BMP-

2, and the subsequent bone regeneration was enhanced thereat, compared with the hydrogels 

incorporating BMP-2 without triptolide-micelles. On the other hand, the implantation of 

hydrogels incorporating mixed 10 mg of triptolide-micelles and BMP-2 highly induced 

inflammation and inhibited the bone regeneration. Therefore, the proper local modulation of 

inflammation responses is a promising way to achieve the enhanced bone regeneration. 
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Figure captions 

 

Figure 1 (A) In vitro release profiles of triptolide (solid marks) and BMP-2 (open marks) from gelatin hydrogels 

incorporating mixed triptolide-micelles and 
125

I-labeled BMP-2 in PBS at 37 °C. (B) In vivo release profiles of 

triptolide (solid marks) and BMP-2 (open marks) from gelatin hydrogels incorporating mixed triptolide-micelles 

and 
125

I-labeled BMP-2 after implantation into the back subcutis of mice. The amount of triptolide-micelles 

incorporated was 0 (    ), 2.5 (    ,    ), 5 (   ,    ) or 10 mg (    ,    ) while that of BMP-2 was 5 µg. 

Figure 2 (A) Relationship of the remaining amount between the triptolide incorporated in hydrogels and the 

hydrogels of release carriers after implantation of gelatin hydrogels incorporating mixed 2.5 (    ), 5 (    ) or 10 mg 

of triptolide-micelles (     ) and 5 µg of BMP-2 into the back subcutis of mice. (B) Relationship of the remaining 

radioactivity between the 
125

I-labeled BMP-2 incorporated in hydrogels and the 
125

I-labeled hydrogels of release 

carriers after implantation of gelatin hydrogels incorporating mixed 0 (    ), 2.5 (    ), 5 (    ) or 10 mg of triptolide-

micelles (     ) and 5 µg of BMP-2 into the back subcutis of mice.   

Figure 3 Gene expression of IL-6, TNF-, and IL-10 cytokines of J774.1 macrophage-like cells 3 days after 

cultured in gelatin hydrogels incorporating mixed various amounts of triptolide-micelles and 500 ng of BMP-2. *p, 

< 0.05; significant against the value of gelatin hydrogels incorporating BMP-2 without triptolide-micelles, †p, < 

0.05; significant between the two experimental groups.  

Figure 4 (A) Number and (B) ALP activity of MC3T3-E1 cells 7 days after cultured in gelatin hydrogels 

incorporating mixed various amounts of triptolide-micelles and 500 ng of BMP-2. *p, < 0.05; significant against 

the value of gelatin hydrogels incorporating BMP-2 without triptolide-micelles.  

Figure 5 Histological and immunohistochemical (IHC) images of inflammatory cells at the bone defects 3 days 

after implantation of gelatin hydrogels incorporating mixed various amounts of triptolide-micelles and 5 µg of 

BMP-2: (A) H&E, (B) Giemsa or (C) toluidine blue stainings, and (D) IHC images of macrophages and dendritic 

cells  (scale bar = 100 µm, arrow: inflammatory cells). (E) Number of neutrophils, lymphocytes, and mast cells at 

the bone defect 3 days after the hydrogels implantation. *p, < 0.05; significant against the value of gelatin 

hydrogels incorporating BMP-2 without triptolide-micelles, †p, < 0.05; significant between the two experimental 

groups.  

Figure 6 Gene expression of IL-6, TNF-, IL-10, NF-B, and MMP-14 of cells in gelatin hydrogels incorporating 

mixed various amounts of triptolide-micelles and 5 µg of BMP-2 3 days after implantation into the bone defects. 

*p, < 0.05; significant against the value of sham group, †, p < 0.05; significant between the two experimental 

groups. 

Captions
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Figure 7 (A) Soft x-ray images of bone regenerated at the defects 4 (left) and 8 weeks (right) after implantation of 

gelatin hydrogels incorporating mixed various amounts of triptolide-micelles and 5 µg of BMP-2. (B) µCT images 

of bone regenerated at the defects 8 weeks after implantation of the same hydrogels. (C) H&E images of bone 

regenerated at the defects 8 weeks after implantation of the same hydrogels (scale bar = 100 µm, C: collagen 

newly formed, S: scaffolding hydrogel). (D) Bone mineral density of bone regenerated at the defects 8 weeks 

after implantation of the same hydrogels. *p, < 0.05; significant against the value of gelatin hydrogels 

incorporating BMP-2 without triptolide-micelles. 

Figure S1 Gene expression of IL-6 and TNF- of cells in gelatin hydrogels incorporating mixed various amounts 

of triptolide-micelles 3 days after implantation into the back subcutis of LPS-induced mice. *p, < 0.05; significant 

against the value of gelatin hydrogels without triptolide-micelles. 

Figure S2 Fraction of CD11b- and F4/80-positive (macrophages) and CD11b- and Ly6G-positive cells 

(neutrophils) in gelatin hydrogels incorporating 5 and 10 mg of triptolide-micelles 3 days after implantation into 

the back subcutis of LPS-induced mice.*p, < 0.05; significant between the two experimental groups. 
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Table 1. Primers used in quantitative real-time PCR analysis. 

 

m RNA Forward Reverse 

In vitro mouse cell line 

IL-6 5´-TGATGGATGCTACCAAACTGG-3´ 5´-TTCATGTACTCCAGGTAGCTATGG-3´ 

TNF- 5´-TCTTCTCATTCCTGCTTGTGG-3´ 5´-GGTCTGGGCCATAGAACTGA-3´ 

IL-10 5´-CAGAGCCACATGCTCCTAGA-3´ 5´-GTCCAGCTGGTCCTTTGTTT-3´ 

GAPDH 5´-TGTTGAAGTCACAGGAGACAAACCT-3´ 5´-AACCTGCCAAGTATGATGACATCA-3´ 

In vivo rat model 

IL-6 5´-CCCTTCAGGAACAGCTATGAA-3´ 5´-ACAACATCAGTCCCAAGAAGG-3´ 

TNF- 5´-TGAACTTCGGGGTGATCG-3´ 5´-GGGCTTGTCACTCGAGTTTT-3´ 

NF-B 5´-ACTGCTCAGGCCCACTTG-3´ 5´-TGTCATTATCTCGGAGCTCATCT-3´ 

IL-10 5´-AGTGGAGCAGGTGAAGAATGA-3´ 5´-TCATGGCCTTGTAGACACCTT-3´ 

OPG 5´-TGAGGTTTCCAGAGGACCAC-3´ 5´-GGAAAGGTTTCCTGGGTTGT-3´ 

IFN- 5´-TTTTGCAGCTCTGCCTCAT-3´ 5´-AGCATCCATGCTACTTGAGTTAAA-3´ 

MMP-14 5´-AACTTCGTGTTGCCTGATGA-3´ 5´-TTTGTGGGTGACCCTGACTT-3´ 

β-actin 5´-CCCGCGAGTACAACCTTCT-3´ 5´-CGTCATCCATGGCGAACT-3´ 

 

IL, interleukin; TNF-, tumor necrosis factor-; NF-B, nuclear factor kappa-light-chain-enhancer of activated B 

cells; OPG, osteoprotegerin; IFN-, interferon-; MMP-14, Matrix metalloproteinase-14; GAPDH, glyceraldehyde-3-

phosphate dehydrogenase 
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