<table>
<thead>
<tr>
<th>Title</th>
<th>Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iguchi, Hiroyuki; Yurimoto, Hiroya; Sakai, Yasuyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied and environmental microbiology (2011), 77(24): 8509-8515</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/152321</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011, American Society for Microbiology.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>Author</td>
</tr>
<tr>
<td>Copyright</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Stimulation of methanotrophic growth in co-cultures by cobalamin excreted by rhizobia

Hiroyuki Iguchi,1 Hiroya Yurimoto,1 and Yasuyoshi Sakai1,2*

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto,1 and Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto,2 Japan

Corresponding author: Yasuyoshi Sakai, Ph.D. Professor
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwa, Sakyo-ku, Kyoto 606-8502, Japan.
Tel: +81 75 753 6385. Fax: +81 75 753 6454
E-mail: ysakai@kais.kyoto-u.ac.jp

Running title: Cobalamin stimulates methanotrophic growth
ABSTRACT

Methanotrophs play a key role in the global carbon cycle, in which they affect methane emissions and help to sustain diverse microbial communities through the conversion of methane to organic compounds. To investigate the microbial interactions that caused positive effects on the methanotroph, co-cultures were constructed using *Methylovulum miyakonense* HT12 and each of nine non-methanotrophic bacteria, which were isolated from a methane-utilizing microbial consortium culture established from forest soil. Three rhizobial strains were found to strongly stimulate the growth and methane oxidation of *M. miyakonense* HT12 in co-cultures. We purified the stimulating factor produced by *Rhizobium* sp. Rb122, and identified it as cobalamin. Growth stimulation by cobalamin was also observed for three other γ-proteobacterial methanotrophs. These results suggest that microbial interactions through cobalamin play an important role in methane oxidation in various ecosystems.
Methane is the second most important greenhouse gas, and mitigating emissions of methane has become a major global concern (17). Aerobic methanotrophs are the major terrestrial methane sink and are widespread in a large variety of ecosystems (26). They belong to the γ-Proteobacteria (type I), α-Proteobacteria (type II) and Verrucomicrobia (26). Methanotrophs utilize methane as a single source of carbon and energy, but only some methanotrophic strains in the class α-Proteobacteria can assimilate substrates with C-C bonds (8).

Mutual interactions that occur between methanotrophs and other organisms, ranging from microbes to plants and animals, may affect the global methane cycle in various ways. Stable isotope probing (SIP) experiments revealed that methane-derived carbon was incorporated into methylotrophic or heterotrophic bacteria when they were incubated with methanotrophs (5, 14, 20, 22-23), indicating an important role of methanotrophs in supplying nutrients in the forms of carbon sources to other non-methanotrophic organisms. At deep-sea hydrothermal vents and cold seeps, invertebrates form symbiotic associations with γ-proteobacterial methanotrophs living in their tissues (21, 26). Some invertebrates can derive most of their carbon nutrition from methane, indeed acquiring it from methane-derived metabolites of methanotrophs or by digestion of methanotrophs. Inversely, the hosts provide methanotrophs with simultaneous access to methane.
and oxygen by positioning themselves appropriately and also by providing a stable
environment. In peat bogs, *Sphagnum* mosses associate with α-proteobacterial
methanotrophs and utilize carbon dioxide that is generated from methane by
methanotrophic symbionts (18, 24). Although previous studies have demonstrated
that methanotrophs serve as food suppliers for other organisms, less attention has
been paid to the specific benefits that methanotrophs acquire from such
interactions.

Previously, we established a microbial consortium from forest soil utilizing
methane as the single carbon and energy source, from which we isolated a new
obligate methanotroph *Methylovulum miyakonense* HT12 (15). The aim of the
present study is to clarify the beneficial factors for methanotrophic growth and
methane oxidation provided by other bacteria in the methane-grown microbial
consortium to further understand interactions between methanotrophs and
microorganisms.
MATERIALS AND METHODS

Methanotrophic strains and growth conditions. M. miyakonense HT12 was a lab stock (15). Methylococcus capsulatus Bath, Methylobacter luteus, Methylocomas methanica S1 and Methylosinus trichosporium OB3b were obtained from the culture collection of NCIMB (No. 11132, No. 11914, No. 11130 and No. 11131, respectively). Details of the isolation of methanotrophic strains OS501, R4F, B3R, SH31p and SS2C will be described elsewhere: Iguchi H, Sato I, Sakakibara M, Yurimoto H and Sakai Y, in preparation. The methanotrophic strains were grown in nitrate mineral salts (NMS) medium (28) under a 20 : 80 methane to air atmosphere at 28°C with shaking in 25 ml vials capped with butyl-rubber stoppers. In order to compensate for the slow growth, M. miyakonense HT12, strain OS501 and strain R4F were subcultured in medium supplemented with Bacto tryptone (Becton, Dickinson and Company) at 0.01% (w/v).

Isolation of bacterial strains grown in the consortium culture. The methane-enriched culture of forest soil (15) was subcultured every month over two years. The culture was serially diluted and spread onto agar plates: the media used were modified Luria-Bertani (LB) broth (0.2% tryptone, 0.1% yeast extract, 0.1% sodium chloride, 0.1% glucose), 10-fold diluted Tryptone Soya Broth (OXOID, Cambridge, UK), 5-fold diluted Nutrient Broth (Becton, Dickinson and Company) and NMS medium with 0.1% methanol. A single colony grown on the plate at 28°C
was isolated. The 16S rRNA gene was amplified by PCR using the 27f-1492r primer set (27) and sequenced. A similarity search for the nucleotide sequence of the 16S rRNA gene of the isolates was carried out using the BLAST program.

Mixed culture experiments. The cells of the heterotrophic isolates were prepared from liquid cultures grown in modified LB broth. Because of the inability to grow in this medium, strain Rb122 was grown in TY medium (0.5% tryptone, 0.3% yeast extract, 0.083% calcium chloride). Methanotroph cells were prepared from liquid cultures in NMS medium with methane. Cells of the methanotroph and the heterotroph were washed with water, and then mixed to adjust the OD\textsubscript{600} ratio to 10 : 1 (OD\textsubscript{600} values, 0.0025 and 0.00025, respectively), and cultivated in NMS medium with methane. For the second generation culture, the cells were harvested by centrifugation from the 8 day-old mixed culture, washed with water and inoculated into fresh NMS medium at an OD\textsubscript{600} value of 0.0025. Triplicate samples were prepared for each culture and for each time point, because after the methane concentration was measured the vial was opened to measure the OD\textsubscript{600}.

Methane concentrations were determined using a Shimadzu GC-14B gas chromatograph (Shimadzu, Kyoto, Japan) equipped with a flame ionization detector and Porapak Q column (Shinwa chemical industries, Kyoto, Japan). Nitrogen gas was used as the carrier. Analytical temperatures of the oven, injector and detector were 100, 120 and 225°C, respectively.
Quantitative PCR (qPCR). qPCR was carried out using a LightCycler system (Roche Diagnostics, Tokyo, Japan) and SYBR Premix ExTaq (Takara Bio, Shiga, Japan) according to the manufacturer’s instructions. Genomic DNA, which was extracted from the culture by a method using SDS and proteinase K as described previously (16), was used as template. Primers specific for the 16S rRNA gene of each strain were designed. The primer sets were ht-fw (TGGCCCCCAATTATGGGGTAA) and ht-re (AGGGATCTCTGCGCAATCCA) for *M. miyakonense* HT12, and rb-fw (GTCGGGCAGTTGACTTGG) and rb-re (TACCGTCTCCGTAACC) for strain Rb122. A standard curve for copy number calculation was generated with plasmid DNA (pGEM-T Easy [Promega, Madison, WI] harboring the 16S rRNA gene).

Preparation of spent medium and cell extracts. The pure culture of *M. miyakonense* HT12, and the co-culture of *M. miyakonense* HT12 and strain Rb122 were grown in NMS medium with methane. Strain Rb122 was grown in Rhizobium minimal medium (RMM) with glucose (13). Bacterial cells were removed from the culture by centrifugation, and the spent medium was filter-sterilized using a 0.45 µm filter. Until use, the samples were stored at -80°C.

For quantification, cobalamins were extracted from the lyophilized culture or the harvested cells with methanol twice by incubating at 80°C. The extracts were lyophilized, dissolved in water and filter-sterilized using a 0.45 µm filter.
Stimulatory activity assay on methanotrophic growth (the HT12 assay).

M. miyakonense HT12 was grown on methane in NMS medium containing a test sample. The stimulatory activity of the sample was evaluated based on the \(\text{OD}_{600} \) value after cultivation for 48-72 hr. We confirmed that the addition of NMS medium, RMM or methanol extracts of the media did not stimulate growth. For quantification of the stimulatory activity, a calibration curve was established using a cyanocobalamin standard (Wako Pure Chemical Industries, Osaka, Japan).

Bioassay of cobalamin (the *Lactobacillus* assay). Cobalamin was quantified by the growth of *Lactobacillus delbrueckii* NBRC 3073 on B12 Assay Medium (Becton, Dickinson and Company) according to the Difco & BBL Manual.

Purification of cobalamins from the Rb122 culture. Four 500 ml batches of stationary-phase cultures of strain Rb122 were prepared by growing in RMM with glucose at 28°C with shaking. The cells were removed by centrifugation, and the resulting 1.9-liter supernatant was incubated with potassium cyanide to convert cobalamins to cyanocobalamin. This was performed to facilitate purification and detection because cobalamins may occur in different forms in cells and are sensitive to light. The solution was evaporated with ethanol and extracted with methanol. The extracts were evaporated and dissolved in water. The sample was applied to an Amberlite XAD-2 column (Sigma-Aldrich, St. Louis, MO). The column was eluted with 50% methanol after washing with water. Then, the elution was
evaporated, dissolved in water and applied to a Sep-Pak C18 cartridge column (Waters, Milford, MA). The column was eluted with 30% acetonitrile after washing with 10% acetonitrile.

Nucleotide sequence accession numbers. The determined partial 16S rRNA gene sequences have been deposited in GenBank under accession numbers AB636288 to AB636303.
RESULTS

Isolation of bacterial strains from the methane-grown consortium culture.

Previously, we established a stable microbial consortium utilizing methane as the single carbon and energy source from a forest soil sample, which has been maintained over two years (15). From this consortium culture, the methanotroph *M. miyakonense* HT12 was isolated (15). Sequence analysis based on the 16S rRNA gene identified another methanotroph *Methylocystis* sp. and ten heterotrophic bacteria in the consortium (Table 1). Nine out of these ten heterotrophic strains were isolated in pure culture (Table 1). They are all gram-negative bacteria belonging to either *Proteobacteria* or *Bacteroidetes*. Strain NS1203 was a facultative methylotroph that grew on methanol while the other eight strains were non-methylotrophic heterotrophs. Among the strains identified in the consortium, *Methylocystis* sp. and *Sphingobacterium* sp. could not be isolated (Table 1).

Methane oxidation and growth of *M. miyakonense* HT12 were stimulated in the mixed culture. Each of the isolated strains was added to the culture of *M. miyakonense* HT12 to test for positive effects on growth and methane oxidation. Five strains Rb122, NL123, NS1202, NL124 and NL127 caused significant effects on methane oxidation (Fig. 1). The concomitant increase in methane consumption with the cell density indicated that *M. miyakonense* HT12 showed improved growth on methane in the mixed culture. Interestingly, three of the five strains were
members of the order *Rhizobiales*. We used the representative rhizobial strain Rb122, which is closely related to the genus *Rhizobium* (Table 1), for an in-depth analysis of the stimulatory effect on methane oxidation by *M. miyakonense* HT12.

Analysis of the co-culture consisting of M. miyakonense HT12 and Rhizobium sp. Rb122

Growth of the co-culture of *M. miyakonense* HT12 and *Rhizobium* sp. Rb122 was analyzed by qPCR. Although we could not quantify the cell mass during the early growth phase, the cell mass of both strains certainly increased in the mixed culture, and the number of cells was estimated to be one- to two-orders of magnitude higher for *M. miyakonense* HT12 than for *Rhizobium* sp. Rb122 (Fig. 2B). *M. miyakonense* HT12 exhibited slow growth in pure culture (Fig. 3A), while the growth of the co-culture with *Rhizobium* sp. Rb122 was stable even after repetitive subculturing with methane. These results indicate that *Rhizobium* sp. Rb122 plays a critical role in stimulating the growth of *M. miyakonense* HT12.

Rhizobium sp. Rb122 produces a methanotrophic growth-stimulating factor.

We hypothesized that the observed positive effect on *M. miyakonense* HT12 growth by *Rhizobium* sp. Rb122 was due to the production of some growth-stimulating factor(s). To verify this, we examined filtered spent medium from *Rhizobium* sp. Rb122 for a stimulatory effect. The quantitative assay method to evaluate the growth-stimulatory effect on *M. miyakonense* HT12 was established as described
Materials and Methods (designated as the HT12 assay).

Both the spent medium from the co-culture of *M. miyakonense* HT12 and *Rhizobium* sp. Rb122 and the spent medium from the pure culture of *Rhizobium* sp. Rb122 (Fig. 4A) showed stimulatory activity, whereas the spent medium from the *M. miyakonense* HT12 culture did not. These results indicated that *Rhizobium* sp. Rb122 produces growth-stimulating compounds in the medium for *M. miyakonense* HT12.

Next, we characterized the chemical properties of the growth-stimulating factor present in the spent medium of *Rhizobium* Rb122. Growth stimulation for *M. miyakonense* HT12 was observed by addition of the spent medium at 0.01% (v/v) concentration. Neither autoclaving (121°C, 20 min) nor enzyme treatments with proteinase K or lipase significantly changed the stimulatory activity. The activity could be extracted from the spent medium with methanol or butanol, but not with ethyl acetate. These observations suggested that the factor is heat-stable, relatively polar microelement for cells.

Based on these data, we tested the following bioactive compounds for stimulation of the growth of *M. miyakonense* HT12: thiamine, riboflavin, pyridoxine, cyanocobalamin, niacin, calcium pantothenate, biotin, folic acid, inositol, ascorbic acid, pyrroloquinoline quinone, glutathione and amino acids. Among them, cyanocobalamin was found to have a clear stimulatory activity in a dose dependent
manner (Fig. 4B), whereas the other compounds had no activity. Vitamin B₁₂ is used
to describe compounds of the cobalamin group, which include cyanocobalamin
(CN-Cbl), methylcobalamin (Me-Cbl), hydroxocobalamin (OH-Cbl) and
adenosylcobalamin (Ado-Cbl). Me-Cbl and OH-Cbl also exhibited the stimulatory
effect equivalent to CN-Cbl (data not shown).

Bacto tryptone, which is used to stimulate the growth of methanotrophs in
pure culture, was also found to contain cobalamins (93 ng/g) by the *Lactobacillus*
assay (12).

Cobalamin is the growth-stimulating factor produced by *Rhizobium* sp.

Rb122. The cobalamin content in the spent culture was quantified by the
Lactobacillus assay. Cobalamin was detected from both the co-culture and the
Rb122 culture, and the amount detected in the co-culture was two-orders of
magnitude lower than that in the Rb122 culture (Table 2). On the other hand,
cobalamin was not detected in the *M. miyakonense* HT12 culture (Table 2). These
results show that *Rhizobium* sp. Rb122 release cobalamin into the medium, but *M.
miyakonense* HT12 does not produce it.

In order to identify the cobalamin compound produced by *Rhizobium* sp.
Rb122 and confirm its growth-stimulatory activity, we purified cobalamin
compounds according to the standard method for vitamin B₁₂ (29). *Rhizobium* sp.
Rb122 was grown in RMM with glucose, and the culture supernatant was incubated
with potassium cyanide to convert cobalamins to CN-Cbl. The resultant solution
was evaporated, extracted with methanol, and purified using an Amberlite XAD-2
column and a Sep-Pak C18 column. The purified compounds exhibited stimulatory
activity based on the HT12 assay (Table 3). The activity detected in the HT12 assay
and the cobalamin content assessed by the *Lactobacillus* assay were nearly
identical throughout the purification step (Table 3), indicating that cobalamin is the
principal methanotrophic growth-stimulating compound produced by *Rhizobium* sp.
Rb122.

The final preparation was subjected to LC-MS analysis with CN-Cbl as the
standard. The final preparation generated a peak at 10.5 min that was identical to
the CN-Cbl standard based on the retention time (Fig. S1A). The MS profile showed
that this peak yielded a *m/z* 678.90 fragment ion, which corresponded to
[CN-Cbl+2H]^2+ (Fig. S1B). The LC elution of the purified compounds was examined
for growth-stimulating activity for *M. miyakonense* HT12, and only the fraction
including the peak at 10.5 min was found to possess the activity. Based on these
results, we concluded that cobalamin is the growth-stimulating factor for *M.
miyakonense* HT12 produced by *Rhizobium* sp. Rb122.

Stimulatory activity for methanotrophs. *M. miyakonense* HT12 is in a
new phylogenetic lineage (15), so we raised the question of whether *Rhizobium* sp.
Rb122 as well as cobalamin exerts a stimulating effect on other methanotrophs.
Growth and methane consumption rates were compared between three cultures of methanotrophs: addition of *Rhizobium* sp. Rb122 (co-culture), addition of cyanocobalamin and no additive. Four methanotrophic strains from the culture collection and five methanotrophic isolates obtained by our laboratory were used in this experiment.

Both *Rhizobium* sp. Rb122 and cobalamin stimulated three methanotrophic strains, OS501, R4F and *M. methanica* S1 (Table 4 and Fig. 3). The growth profiles revealed that the slow growth and the deficient growth of strain OS501 and strain R4F, respectively, was significantly stimulated by *Rhizobium* sp. Rb122 (Fig. 3B, C). No growth-stimulating effects were observed for the other methanotrophs by either *Rhizobium* sp. Rb122 or cobalamin, although *M. luteus* showed a slight stimulation in growth and methane oxidation by *Rhizobium* sp. Rb122.

Cobalamin production was quantified for the methanotrophs grown on methane by the *Lactobacillus* assay. All of the tested methanotrophs except strain OS501 produced cobalamins (Table 4). Accordingly, cobalamin was determined to be the stimulating factor in the co-culture with *Rhizobium* sp. Rb122 for strain OS501, strain R4F and *M. methanica* S1, but some other factors are likely to be provided for *M. luteus* in the co-culture. We screened stimulating factors from the bioactive compounds as performed for *M. miyakonense* HT12, and found that thiamine, pyridoxine and calcium pantothenate slightly stimulated the growth of *M. luteus.*
The phylogenetic tree based on the 16S rRNA gene sequences showed that the methanotrophs tested (Table 4) were divergently located in the tree, and no obvious phylogenetic correlation could be found with respect to the stimulatory effect or cobalamin production of methanotrophs, except that the methanotrophs for which growth stimulation was observed belong to the γ-Proteobacteria (Fig. S2).
DISCUSSION

We investigated the microbial interaction that caused a positive effect on methanotrophic growth and methane oxidation of *M. miyakonense* HT12, and showed that five bacterial strains related to the genera of *Rhizobium*, *Sinorhizobium, Mesorhizobium, Xanthobacter* and *Flavobacterium* stimulated the growth of *M. miyakonense* HT12 (Fig. 1 and Table 1). Further analysis of the stimulatory mechanism exerted by *Rhizobium* sp. Rb122 identified cobalamin as the growth-stimulating factor. We also detected cobalamin production by the other four strains NS1202, NL123, NL127 and NL124 in pure cultures (Table S1), indicating that the pivotal stimulatory mechanism in these co-cultures is mediated by cobalamin. The degree of variation in the stimulatory effect observed in the co-culture experiments (Fig. 1) is thought to be dependent on the growth of the co-cultured bacterium and its cobalamin productivity (Table 2 and S1). Strains Rb122, NS1202 and NL123 excreted a considerable amount of cobalamin into the medium while strains NL127 and NL124 did not. Such an extracellular production of cobalamin may be the cause of the strong stimulatory effect on methanotrophic growth exerted by rhizobia.

With respect to methylotrophs (methanol-utilizers incapable of growth on methane) employing the ribulose monophosphate (RuMP) pathway, *Methylophaga* species were reported to show cobalamin auxotrophy (9), while *Methylobacillus*...
flagellatus KT is deficient in cobalamin synthesis but can grow on methanol without cobalamin (11). However, cobalamin auxotrophy related to methanotrophic growth has not been investigated. It is worthwhile to note that among the tested methanotrophs, methanotrophic growth of four γ-proteobacterial methanotrophs that employ the RuMP pathway were stimulated by cobalamin (Table 4). And their slow or deficient growth in pure culture was correlated with the ability to synthesize cobalamin de novo (Fig. 3 and Table 4). On the other hand, α-proteobacterial methanotrophs and methylotrophs, which employ the serine cycle, require ethylmalonyl-CoA mutase, an Ado-Cbl dependent enzyme, for methylotrophic growth (1, 6). Indeed, all of the tested α-proteobacterial methanotrophs were shown to produce cobalamin de novo (Table 4). Therefore, although the positive effect of cobalamin on methanotrophic growth seems to be limited to γ-proteobacterial methanotrophs, cobalamin should have significant functions in methanotrophic metabolism.

Bowman et al. (3) reported that cobalamin increases the sMMO activity of M. trichosporium OB3b. However, activation of sMMO cannot explain the growth-stimulation of M. miyakonense HT12 since cobalamin also stimulates the growth of this strain on methanol. In some organisms (4, 7), cobalamin auxotrophy was reported to be stimulated by addition of methionine, because methionine synthase (MetH) requires cobalamin as a cofactor (25). However, addition of
methionine had no effect on the growth of *M. miyakonense* HT12 on methane.

Further work is needed to elucidate the specific function of cobalamin in methanotrophic metabolism.

Interestingly, *M. miyakonense* HT12 seemed to obtain some growth factors from *Rhizobium* sp. 122 other than cobalamin, since the culture supernatant of *Rhizobium* sp. 122 exhibited higher cobalamin activity in the HT12 assay than in the *Lactobacillus* assay (Table 3). The presence of another growth-stimulatory factor was also suggested for *M. luteus* (Table 4). Vitamins and organic acids were reported to enhance the growth rate of the methanotroph (30), and amino acids could be utilized as a nitrogen source for methanotrophs (10). Production of such compounds by *Rhizobium* sp. 122 may support methanotrophic growth in co-cultures.

In natural environments, organisms lacking the ability to synthesize cobalamin must rely on cobalamin producers such as bacteria and archaea (25). Cobalamin availability in the environment may thus restrict the growth of such organisms (2). The four tested methanotrophic strains were isolated from different habitats (HT12 forest soil; OS501, lake water; R4F, rice root; S1, aquatic plant), and cobalamin-producing microorganisms including rhizobia are found ubiquitously in these environments (19, 25). Therefore, we suggest that microbial interactions with methanotrophs through cobalamin are distributed in various natural environments,
and play an important role in the methane cycle.
ACKNOWLEDGEMENTS

This work was supported in part by a Grants-in-Aid for Scientific Research (B) 22380052 to Y.S., and a Grants-in-Aid for Scientific Research (B) 22310046 to H.Y. from Japan Society for the Promotion of Science. This work was also supported in part by Research Grant Programs for Natural Science from the Asahi Glass Foundation to Y.S.

Figure Legends

FIG. 1. Stimulatory effect of the bacterial inocula on the growth (A) and methane oxidation (B) of *M. miyakonense* HT12. Mixed cultures were constructed by inoculating *M. miyakonense* HT12 together with each of the bacterial strains into the medium. To generate stable bacterial co-cultures, mixed cultures grown on methane for eight days were transferred to fresh medium. Shown are the data for these second cultures. The data are the means from triplicate samples.

FIG. 2. Growth profiles of *M. miyakonense* HT12 in pure culture and co-culture with *Rhizobium* sp. Rb122. (A) Methane oxidation (closed symbols) and growth (open symbols) were compared between the pure culture (circles) and the co-culture (triangles). The data are the means from triplicate samples. (B) Cell mass of *M. miyakonense* HT12 (circles) and *Rhizobium* sp. Rb122 (triangles) in the co-culture were determined by quantitative PCR targeting the 16S rRNA gene. Representative data from triplicate samples are shown.

FIG. 3. Comparison of the growth on methane between the pure methanotroph culture (circles) and the co-culture of the methanotroph with *Rhizobium* sp. Rb122 (triangles). Methanotroph: (A), *M. miyakonense* HT12; (B), strain OS501; (C), strain R4F; (D), *M. methanica*. Open symbols indicate growth. Methane consumption
(closed symbols) in the co-culture demonstrates that growth was dependent on the methanotrophic activity. The data are the means of triplicate samples.

FIG. 4. Stimulatory activity of the Rb122 culture supernatant (A) and cyanocobalamin (B) on the growth of *M. miyakonense* HT12. The cells were grown on methane in NMS medium containing the indicated concentrations of additives. Plotting OD₆₀₀ value of the culture measured at a time point (cultivated for 48-72 h) with respect to the concentrations of the additives showed dose-dependent growth-stimulatory activity.
<table>
<thead>
<tr>
<th>Strain/clone (Accession number)</th>
<th>Phylum</th>
<th>Closest relative(^b) (Accession number)</th>
<th>Similarity(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT12 (AB501287)</td>
<td>Proteobacteria (gamma)</td>
<td>Methylovulum miyakonense HT12 (AB501287)</td>
<td>100</td>
</tr>
<tr>
<td>NM120(^a) (AB636288)</td>
<td>Proteobacteria (alpha)</td>
<td>Methylocystis sp. 18-2 (AB007841)</td>
<td>99</td>
</tr>
<tr>
<td>NL123 (AB636289)</td>
<td>Proteobacteria (alpha)</td>
<td>Mesorhizobium sp. WSM3872 (FJ827044)</td>
<td>99</td>
</tr>
<tr>
<td>Rb122 (AB636290)</td>
<td>Proteobacteria (alpha)</td>
<td>Rhizobium sp. BZ3 (HQ588847)</td>
<td>97</td>
</tr>
<tr>
<td>NS1202 (AB636291)</td>
<td>Proteobacteria (alpha)</td>
<td>Sinorhizobium sp. J1 (DQ294628)</td>
<td>100</td>
</tr>
<tr>
<td>NL127 (AB636292)</td>
<td>Proteobacteria (alpha)</td>
<td>Xanthobacter flavus (EF592179)</td>
<td>100</td>
</tr>
<tr>
<td>NL121 (AB636293)</td>
<td>Proteobacteria (beta)</td>
<td>Hydrogenophaga sp. AH-24 (AB300163)</td>
<td>99</td>
</tr>
<tr>
<td>NS1203 (AB636294)</td>
<td>Proteobacteria (beta)</td>
<td>Ideonella sp. B513 (AB049107)</td>
<td>99</td>
</tr>
<tr>
<td>NS1204 (AB636295)</td>
<td>Proteobacteria (beta)</td>
<td>Lutiella nitroferrum 2002 (AY609199)</td>
<td>93</td>
</tr>
<tr>
<td>NL124 (AB636296)</td>
<td>Bacteroidetes</td>
<td>Flavobacterium sp. WG2 (FN547416)</td>
<td>95</td>
</tr>
<tr>
<td>NL128 (AB636297)</td>
<td>Bacteroidetes</td>
<td>Emticia ginsengisoli Gsoil 085 (AB245370)</td>
<td>98</td>
</tr>
<tr>
<td>NC22(^a) (AB636298)</td>
<td>Bacteroidetes</td>
<td>Sphingobacterium sp. P-7 (AM411964)</td>
<td>94</td>
</tr>
</tbody>
</table>

\(^a\) Not isolated.

\(^b\) Closest relative and similarity are based on 16S rRNA gene sequences.
TABLE 2. Cobalamin production determined by the *Lactobacillus* assay

<table>
<thead>
<tr>
<th>Culture</th>
<th>Cultivation time (days)</th>
<th>OD$_{600}$</th>
<th>Cobalamin (pg/ml culture)a</th>
<th>Extracellular</th>
<th>Intracellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-culture of HT12 and Rb122</td>
<td>1</td>
<td>0.041</td>
<td>3.79</td>
<td>2.77 x 10^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.520</td>
<td>1.34 x 10</td>
<td>6.70 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.918</td>
<td>9.56</td>
<td>1.15 x 10^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.873</td>
<td>1.29 x 10</td>
<td>1.28 x 10^2</td>
<td></td>
</tr>
<tr>
<td>Rb122 culture</td>
<td>1</td>
<td>0.142</td>
<td>7.68 x 10</td>
<td>1.53 x 10^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.738</td>
<td>1.24 x 10^3</td>
<td>4.91 x 10^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.714</td>
<td>2.52 x 10^3</td>
<td>4.82 x 10^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.689</td>
<td>2.39 x 10^3</td>
<td>4.24 x 10^3</td>
<td></td>
</tr>
<tr>
<td>HT12 culture</td>
<td>7</td>
<td>0.108</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.301</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

a ND, not detected.
TABLE 3. Cobalamin activity of the purified compound from the culture of *Rhizobium* sp. Rb122

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cobalamin (µg)</th>
<th>HT12 assay</th>
<th>Lactobacillus assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture supernatant</td>
<td>7.52</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>Amberlite XAD-2</td>
<td>2.75</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Sep-Pak C18</td>
<td>1.16</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4. Stimulatory activity and cobalamin production for methanotrophs

<table>
<thead>
<tr>
<th>Strain</th>
<th>Proteobacterial subgroup</th>
<th>Stimulatory activity<sup>a</sup></th>
<th>Cobalamin<sup>b</sup> (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylovulum miyakonense HT12<sup>T</sup></td>
<td>Gamma</td>
<td>++</td>
<td>ND</td>
</tr>
<tr>
<td>Methylococcaea bacterium strain OS501</td>
<td>Gamma</td>
<td>++</td>
<td>ND</td>
</tr>
<tr>
<td>Methylomonas sp. R4F</td>
<td>Gamma</td>
<td>++</td>
<td>ND</td>
</tr>
<tr>
<td>Methylomonas methanica S1<sup>T</sup></td>
<td>Gamma</td>
<td>+</td>
<td>2.76</td>
</tr>
<tr>
<td>Methyllobacter luteus<sup>β</sup></td>
<td>Gamma</td>
<td>+</td>
<td>2.58</td>
</tr>
<tr>
<td>Methylococcus capsulatus Bath</td>
<td>Gamma</td>
<td>-</td>
<td>2.16</td>
</tr>
<tr>
<td>Methylomis trichosporium OB3b<sup>T</sup></td>
<td>Alpha</td>
<td>-</td>
<td>4.32</td>
</tr>
<tr>
<td>Methylosinus sp. B3R</td>
<td>Alpha</td>
<td>-</td>
<td>6.26</td>
</tr>
<tr>
<td>Methylocystis sp. SS2C</td>
<td>Alpha</td>
<td>-</td>
<td>5.05</td>
</tr>
<tr>
<td>Methylocystis sp. SH31p</td>
<td>Alpha</td>
<td>-</td>
<td>3.65</td>
</tr>
</tbody>
</table>

^a Stimulatory activity was evaluated by growth and methane oxidation. ++, strong stimulation; +, weak stimulation; -, no stimulation.

^b Cyanocobalamin was added to the medium at a final concentration of 100 pg/ml.

^c Cobalamin in the whole culture at the stationary phase was quantified by the *Lactobacillus* assay. ND, not detected; NT, not tested due to the inability to grow without cobalamin.
Figure 1
Figure 2
Figure 3
Figure 4
Supplemental material

Materials and Methods

LC-MS analysis. LC-MS analysis was performed on Shimadzu LC-20 series HPLC system (Shimadzu) and 4000 Q TRAP MS system (Applied Biosystems, Foster city, CA). Hydrosphere C18 column (2 mm x 150 mm, 3 mm [YMC, Kyoto, Japan]) was used and the column flow was maintained at 0.2 ml/min with a linear gradient of 5 to 40% acetonitrile in 20 mM ammonium acetate for 20 min. The UV detector was set at 361 nm. The MS spectra were acquired by scanning Q1 from 500·1400 Da in the positive electrospray ionization mode. The following conditions were used for MS quantification: declustering potential, 60; entrance potential, 10; curtain gas, 30; ionSpray voltage, 5500; temperature, 300°C; ion source gas 1, 50 L/min; ion source gas 2, 80 L/min.
TABLE S1. Cobalamin production of heterotrophic strains determined by the *Lactobacillus* assay.

<table>
<thead>
<tr>
<th>Culture</th>
<th>Cultivation time (hr)</th>
<th>OD<sub>600</sub></th>
<th>Cobalamin (pg/ml culture)</th>
<th>Extracellular</th>
<th>Intracellular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL123</td>
<td>95</td>
<td>1.032</td>
<td>1.30 x 10<sup>3</sup></td>
<td>4.93 x 10<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>1.928</td>
<td>2.96 x 10<sup>3</sup></td>
<td>3.75 x 10<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>NL124</td>
<td>56</td>
<td>1.696</td>
<td>3.71 x 10</td>
<td>7.09 x 10<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>2.044</td>
<td>4.13 x 10</td>
<td>8.98 x 10<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td>NL127</td>
<td>56</td>
<td>1.644</td>
<td>3.43 x 10</td>
<td>6.04 x 10<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>2.060</td>
<td>4.55 x 10</td>
<td>6.67 x 10<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td>NS1202</td>
<td>32</td>
<td>1.648</td>
<td>8.50 x 10<sup>2</sup></td>
<td>5.96 x 10<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>3.780</td>
<td>1.69 x 10<sup>3</sup></td>
<td>5.59 x 10<sup>5</sup></td>
<td></td>
</tr>
</tbody>
</table>

a The culture media used were RMM supplemented with glucose for strains NL123 and NS1202, and with succinate for strains NL124 and NL127.

b Shown are the data of the time points in the exponential and stationary growth phase, respectively.
FIG. S1. LC-MS analysis of the purified compounds from the Rb122 culture (top panels) and CN-Cbl standard (bottom panels). (A) UV spectrum at 361 nm. The peak at 10.5 min marked with an arrow is identical to CN-Cbl based on the retention time. (B) MS spectrum of the peak with retention time of 10.5 min. The purified compounds yielded the major ion at m/z 678.90, which corresponds to CN-Cbl.
FIG. S2. Phylogenetic tree of 16S rRNA gene sequences. GenBank accession numbers are given in parentheses. Bootstrap values based on 100 resamplings are shown at branch points. Methanotrophs tested in Table 4 are shown in bold letters. Sequence alignment of the 16S rRNA gene was performed using the CLUSTAL W program. The tree was constructed using the neighbor-joining method with Kimura two-parameter model.