
BRAID MONODROMIES ON PROPER CURVES
AND PRO-` GALOIS REPRESENTATIONS

NAOTAKE TAKAO

Abstract. Let C be a proper smooth geometrically connected hyperbolic
curve over a field of characteristic 0 and ` a prime number. We prove the in-

jectivity of the homomorphism from the pro-` mapping class group attached to
the two dimensional configuration space of C to the one attached to C, induced
by the natural projection. We also prove a certain graded Lie algebra version

of this injectivity. Consequently we show that the kernel of the outer Galois
representation on the pro-` pure braid group on C with n strings does not
depend on n, even if n = 1. This extends a previous result by Ihara-Kaneko.
By applying these results to the universal family over the moduli space of

curves, we solve completely Oda’s problem on the independency of certain
towers of (infinite) algebraic number fields, which has been studied by Ihara,
Matsumoto, Nakamura, Ueno and the author. Sequentially we obtain certain
information of the image of this Galois representation and get obstructions

to the surjectivity of the Johnson-Morita homomorphism at each sufficiently
large even degree (as Oda predicts), for the first time for a proper curve.

0. Introduction and motivation

Many predecessors have been studying the Galois action on the étale fundamental
group of an algebraic variety over an ‘arithmetic’ field. From this point of view, it is
known that actual higher dimensional configuration spaces of an affine hyperbolic
curve do not contain more information on the Galois group than the one dimensional
configuration space, namely, the original curve in the pro-` situation ([11], [15], [25]).
The main purpose of this paper is to show that this also holds true for a proper
(hyperbolic) curve.

This new result seems even more highly non-trivial and more mysterious, at least
to the author, than the known results in the affine case.

Let k be a field, Y a connected scheme of finite type over Speck, and ȳ a geometric
point on Y . Then we have a profinite group π1(Y, ȳ) called the étale fundamental
group ([8]). This topological group classifies finite étale coverings of Y : roughly
speaking, there exists a one-to-one correspondence between the connected finite
étale coverings of Y and the open subgroups of π1(Y, ȳ). The isomorphism class of
π1(Y, ȳ) does not depend on the choice of the base point ȳ, and usually we do not
specify ȳ in the rest of this paper. Fix a separable closure k̄ of k and assume that
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Ȳ := Y ⊗k k̄ is connected. Then the following exact sequence of profinite groups
exists

1 → π1(Ȳ ) → π1(Y )
pY/k→ Gk → 1,

where Gk stands for the absolute Galois group Gal(k̄/k) of k.
This exact sequence gives rise to the following continuous homomorphism:

ρY/k : Gk → Out(π1(Ȳ )),(1)

σ 7→ (γ 7→ σ̃γσ̃−1) mod Inn(π1(Ȳ )),

where σ ∈ Gk, σ̃ ∈ p−1
Y/k(σ) (an arbitrary lift of σ), γ ∈ π1(Ȳ ) and, for a topological

group G, Out(G) denotes the group Aut(G) of all automorphisms of G divided by
the group Inn(G) of all inner automorphisms of G. This homomorphism, which is
often called outer Galois representation, carries the information of fields of definition
of each covering of Y .

Suppose that k is of characteristic 0 and is embedded into C. Then we have a
comparison isomorphism

π1(Ȳ ) ∼= ̂πtop
1 (Y (C)).

Here Y (C) means the complex analytic space associated to Y . πtop
1 (A) stands for

the topological fundamental group of a complex analytic space A and Ĝ stands for
the profinite completion of a discrete group G.

So the isomorphism class of the geometric fundamental group π1(Ȳ ) is deter-
mined only by the homotopy type of Y (C).

Moreover suppose that Y is separated smooth over Speck and of dimension 1.
Let g and r denote the geometric genus of the smooth compactification Y ∗ of Y
and the number of k̄-rational points on Y ∗ \ Y respectively. We refer to such Y as
a (g, r)-curve over k throughout this paper. The representation (1) in the case that
Y is hyperbolic (i.e. 2− 2g− r < 0) has been studied by many predecessors for this
quarter of a century.

For each n = 1, 2, · · · , the configuration space of distinct ordered n points on Y
is defined as follows:

Fn(Y ) = Y n \ ∪1≤i<j≤n∆Y (i, j),

∆Y (i, j) = {(y1, . . . , yn) ∈ Y n| yi = yj}.

Note that F1(Y ) = Y . We denote by Π(n)top
g,r the fundamental group of the config-

uration space of distinct ordered n points on a fixed r-punctured Riemann surface
of genus g. Then there is an isomorphism

πtop
1 (Fn(Y )(C)) ∼= Π(n)top

g,r .

Let ` be a prime number. Let Π(n)
g,r be the pro-` completion of the discrete

group Π(n)top
g,r , that is to say, the maximal pro-` quotient of Π̂(n)top

g,r . Let Γ̃(n)(pro-`)
g,r

be the subgroup of Aut(Π(n)
g,r ) which consists of all the elements preserving each

‘fiber subgroup’ and the conjugacy class of each inertia subgroup. Let Γ(n)(pro-`)
g,r

be the subgroup Γ̃(n)(pro-`)
g,r /Inn(Π(n)

g,r ) of Out(Π(n)
g,r ), which is often called the ‘n-

dimensional’ pro-` mapping class group (cf. [26] §1, [25] §1 and §2, etc.).
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There is a natural central filtration {Π(n)
g,r (m)}m≥1 of Π(n)

g,r , called the weight fil-
tration ([25] (2.3), [18] §1, etc.), which is preserved by the elements of Γ̃(n)(pro-`)

g,r . Se-
quentially this filtration induces a natural filtration {Γ(n)(pro-`)

g,r (m)}m≥1 of Γ(n)(pro-`)
g,r .

More precisely, Γ(n)(pro-`)
g,r (m) is defined to be the image of

Ker(Γ̃(n)(pro-`)
g,r →

∏
d≥1

Aut(Π(n)
g,r (d)/Π(n)

g,r (d + m)))

in Γ(n)(pro-`)
g,r . In what follows, for simplicity, we sometimes denote Π(n)

g,r by Pn and
Γ(n)(pro-`)

g,r by Γn. Depending on the context, we use both notations.

For each n ≥ 1, there is a natural projection Pn+1 −→ Pn, obtained by forgetting
a strand and it induces continuous group homomorphisms

(2) Γn+1/Γn+1(m) −→ Γn/Γn(m) (m ≥ 1),

and

(3) Γn+1 −→ Γn.

Theorem 0.1. (cf. Corollary 2.8, Corollary 2.11)
If 2 − 2g − r < 0, the homomorphisms (2) and (3) are injective.

Remark 0.2. The injectivity of (2) is an expansion of [25] which treats the case
r + n ≥ 2 (i.e. Y is affine or the dimension ≥ 2). The injectivity of (3) is a
consequence of the first one combined with⋂

m≥0

Γn(m) = {1} (Lemma 2.10),

which is a higher dimensional version of [2] Theorem 2.
Y.Ihara and M.Kaneko have already proved the injectivity of (3) when 3 − 2g −

r − n < 0 and r + n ≥ 2 ([15] Theorem 1).

This theorem is a rather immediate consequence of a certain Lie algebra version
(Theorem 2.5) of it. Therefore Theorem 2.5 is the main technical result of this
paper. However we would like to state an exact formulation of Theorem 2.5 in §2,
since we need a lengthy preparation for it.

When r+n ≥ 2, we profile derivations with some conditions to prove the assertion
of Theorem 2.5 (i.e. [25] Theorem 4.3). However, in the case r + n = 1, the Lie
algebra does not have enough relations to profile derivations in the same way as in
[25]. Thus, we prove it after going through various complicated calculations of Lie
algebras in §1 and in §2.

Theorem 0.1 brings us the following many important arithmetical consequences.
We begin with considering two kinds of pro-` monodromy representations.

The first one is associated with a single curve. Let k be a field of characteristic
0 and embedded into C. Let C be a (g, r)-curve over k. For each n ≥ 1, we can
consider the quotient representation of ρFn(C)/k:

(4) ρ
(pro-`)
Fn(C)/k : Gk → Out(Π(n)

g,r ).

The second one is associated with the universal family of curves. Let Mg,r be
the moduli stack over Q of proper smooth geometrically connected curves of genus
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g with disjoint ordered r sections. In [29], Takayuki Oda developed a theory of
fundamental groups of algebraic stacks, from which, as in the case of a single curve,
we obtain a monodromy representation

(5) Φ(n)(pro-`)
g,r : π1(Mg,r) → Out(Π(n)

g,r ),

called the pro-` universal monodromy representation. It is known that the images
of both ρ

(pro-`)
Fn(C)/k and Φ(n)(pro-`)

g,r are contained in the ‘n-dimensional’ pro-` mapping

class group Γ(n)(pro-`)
g,r when all points of C∗ \ C are k-rational. See the second

paragraph in §3 for more detail.

With each of these two kinds of representations, a field tower is associated. More
precisely it is defined as follows:
The field tower {k(n)(pro-`)

C (m)}m≥1 for ρ
(pro-`)
Fn(C)/k is defined by

k
(n)(pro-`)
C (m) := k̄

(ρ
(pro-`)
Fn(C)/k

)−1(Γ(n)(pro-`)
g,r (m))

.

The field tower {Q(n)(pro-`)
g,r (m)}m≥1 for Φ(n)(pro-`)

g,r is defined by

Q(n)(pro-`)
g,r (m) := Q̄pg,r((Φ(n)(pro-`)

g,r )−1(Γ(n)(pro-`)
g,r (m))).

where pg,r is the projection π1(Mg,r) → GQ. The field tower {Q(n)(pro-`)
g,r (m)}m≥1

is defined by Y.Ihara (g = 0, r = 3 and n = 1 in [10]), T.Oda (g ≥ 2, r = 0 and
n = 1 in [28]) and H.Nakamura (g, r and n general in [25]).
Moreover the fields k

(n)(pro-`)
C and Q(n)(pro-`)

g,r are defined as follows:

k
(n)(pro-`)
C := k̄

Kerρ
(pro-`)
Fn(C)/k ,

Q(n)(pro-`)
g,r := Q̄pg,r(KerΦ(n)(pro-`)

g,r ).

In what follows we shall often omit the superscript (1) that expresses one dimen-
sion. For example we write Πg,r = Π(1)

g,r, Γ(pro-`)
g,r = Γ(1)(pro-`)

g,r , k
(pro-`)
C = k

(1)(pro-`)
C ,

Q(pro-`)
g,r = Q(1)(pro-`)

g,r , and Q(pro-`)
g,r (m) = Q(1)(pro-`)

g,r (m) (m ≥ 1).
Roughly speaking, Q(pro-`)

g,r is the maximal subfield of k
(pro-`)
C which does not

depend on the moduli of the (g, r)-curve C. We note that Q(pro-`)
g,r (1) = Q(µ`∞). It

is known that [Q(pro-`)
g,r (2m) : Q(pro-`)

g,r (2m − 1)] < ∞ (cf. [25] (6.2)) and the tower
{Q(pro-`)

0,3 (2m)}m≥1 coincides with Ihara’s tower {Q(m)}m≥1 ([10], [12]). Note that
the union ∪m≥1Q(m) is described explicitly in terms of higher circular `-units in
[1].

Remark 0.3. (cf. Remark 3.1) (1)We have

k
(n)(pro-`)
C =

⋃
m≥1

k
(n)(pro-`)
C (m),

and

Q(n)(pro-`)
g,r =

⋃
m≥1

Q(n)(pro-`)
g,r (m).

(2)We have
Q(n)(pro-`)

g,r (m) ⊂ k
(n)(pro-`)
C (m) (m ≥ 1).
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(3)We have

Q(n)(pro-`)
P1\{0,1,∞}(m) = Q(n)(pro-`)

0,3 (m) (m ≥ 1).

We proceed in studying various independency of the above two kinds of field
towers.

At first it is known that the field tower {k(n)(pro-`)
C (m)}m≥1 is independent of n if

r+n ≥ 2 by Ihara and Kaneko ([11], [15]). In this paper we remove the assumption
r + n ≥ 2.

Theorem 0.4. (cf. Theorem 3.2) Suppose that C is hyperbolic. For n ≥ 1,

k
(n)(pro-`)
C (m) = k

(pro-`)
C (m) (m ≥ 1).

In particular,
k

(n)(pro-`)
C = k

(pro-`)
C .

Theorem 0.4 gives a non-trivial example in which the kernel of the Galois action on
the pro-` fundamental group of a proper variety is the same as that of the variety
minus a divisor. It implies that the smallest common field of definition of finite
étale Galois coverings of Fn(C) (n ≥ 2) of degree `-th power is not larger than that
of C even in the case where C is proper. This conclusion looks highly non-trivial
and mysterious at least to the author.

Next in the situation of the universal family of curves, Oda predicts that this
tower is independent of (g, r) ([28]). It has been already established that the tower
{Q(n)(pro-`)

g,r (m)}m≥1 is almost independent of g, r and n under the assumption
r+n ≥ 2 ([20], [25], [22], [16]) We extend these results by removing the assumption
r + n ≥ 2.

Theorem 0.5. (cf. Theorem 3.6) If 2 − 2g − r < 0, n ≥ 1, then
(1) {Q(n)(pro-`)

g,r (m)}m≥1 is independent of r and n and almost independent of g,
r and n in the following sense :

Q(pro-`)
1,1 (m) ⊃ Q(n)(pro-`)

g,r (m) ⊃ Q(pro-`)
0,3 (m),

[Q(pro-`)
1,1 (m) : Q(n)(pro-`)

g,r (m)], [Q(n)(pro-`)
g,r (m) : Q(pro-`)

0,3 (m)] < ∞.

(2) Q(n)(pro-`)
g,r is independent of g, r and n.

We have two applications of Theorem 0.5. The first one is on the image of the
Galois representation ρ

(pro-`)
C/k . For each m ≥ 1, set

gr[`] m
C Gk := Gal(k(pro-`)

C (m + 1)/k
(pro-`)
C (m)),

gr[`] m
g,r GQ := Gal(Q(pro-`)

g,r (m + 1)/Q(pro-`)
g,r (m)).

Theorem 0.6. (cf. Corollary 4.1) Suppose that C is hyperbolic. Then we have

dimQ`
(gr[`] m

C Gk ⊗Z`
Q`) ≥ rm,

where rm = dimQ`
(gr[`] m

0,3 GQ ⊗Z`
Q`).
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For the value of rm, see Remark 4.4. In the affine case, Theorem 0.6 is proved
([22] §4).

The second application is one on the so-called Johnson-Morita homomorphism
τm in low-dimensional topology ([17], [21]). (See §4 for a definition of τm).

Theorem 0.7. (cf. Corollary 4.5) If 2 − 2g − r < 0, then

dimQ`
Coker(τm ⊗Z Q`) ≥ rm (m ≥ 1).

In particular, if m 6= 2, 4, 8, 12 and m is even, then τm ⊗Z Q` is not surjective.

For the dimension of the cokernel of the Johnson-Morita homomorphism τm, sev-
eral kinds of bounds have been obtained so far by S.Morita ([21]), T.Oda ([27])
and H.Nakamura ([22]). However, we remark that any single obstruction to the
surjectivity of τm has not been known in the proper case r = 0.

The contents of this paper are as follows. In Section 1, we show some lemmas on
free Lie algebras, among which Proposition 1.3 is the main result. In Section 2, we
show some properties of the graded Lie algebra associated to Π(n)

g,r . Especially in
the case (r, n) = (0, 2), we study this Lie algebra in detail by using its presentation,
together with the results of Section 1, and get Lemma 2.2, which is the main tool
to prove the main technical result Theorem 2.5 of this paper. After establishing
Theorem 2.5, we deduce the main injectivity results (Corollary 2.8 and Corollary
2.11). In Section 3, we accomplish the main independency theorems (Theorem 3.2
and Theorem 3.4) and give a solution to Oda’s problem (Theorem 3.6). In Section
4, we present the above-mentioned two applications (Corollary 4.1 and Corollary
4.5).

1. Some lemmas on free Lie algebras

The purpose of this section is to show Proposition 1.3, which is at the core to
verify Lemma 2.2 in §2. Since the proof of Proposition 1.3 is elementary but needs
lengthy and complicated calculation, the reader may skip through this section to
the next section at the first reading.

Notations. Throughout this section, we fix an integral domain K with frac-
tion field of characteristic 0 and a set S. We denote by L〈S〉 the free Lie alge-
bra over K with free generating set S. For s ∈ S and w ∈ L〈S〉, we denote
by degs(w) the degree of s in w. For a Lie algebra L over K and a subset T
of L, we denote the centralizer of T in L by CL(T ), the center CL(L) by Z(L),
and the Lie subalgebra (resp. the submodule) generated by T over K by 〈T 〉Lie

(resp. 〈T 〉vec). For w,w′, · · · ∈ L, CL(w,w′, · · · ) means CL({w,w′, · · · }) and
〈w,w′, · · · 〉Lie(resp.〈w,w′, · · · 〉vec) means 〈{w,w′, · · · }〉Lie(resp.〈{w,w′, · · · }〉vec).
For a Lie algebra L over K, a derivation on L means a K-linear endomorphism
D on L such that D[A,B] = [D(A), B] + [A,D(B)] for any A, B ∈ L. We denote
by Der(L) the set of all derivations on L, which is equipped with the structure
of K-Lie algebra by operation [D,D′] = DD′ − D′D. For A,B ∈ L, we denote
ad(A)n(B) = [A, [A, ..., [A︸ ︷︷ ︸

n

, B]]...] by AnB and write AB = A1B.

Lemma 1.1. We have
CL〈S〉({s}) = 〈s〉vec



PRO-` BRAID MONODROMY ON PROPER CURVES 7

for any s ∈ S.

Proof. See, e.g., [7] Lemma 2.2. ¤

Lemma 1.2. (cf. [31]) Set L = L〈S〉. Let T ⊂ L and w ∈ L. If there exist S′ ⊂ L,
λ ∈ K×, s′0 ∈ S′, w′ ∈ 〈S′ \ {s′0}〉Lie, such that T ⊂ S′ \ {s′0}, that 〈S′〉Lie is free
with free generating set S′ (namely, 〈S′〉Lie

∼← L〈S′〉), and that

w = λs′0 + w′,

then 〈T,w〉Lie is free with free generating set T q {w}(namely, 〈T,w〉Lie
∼← L〈T q

{w}〉).

Proof. 〈S′〉Lie
∼= L〈S′〉 admits a Lie algebra automorphism θ defined by θ(s′0) =

λ−1(s′0 − w′) and θ(s′) = s′ for s′ ∈ S′ \ {s′0}. (The inverse map θ−1 is given by
θ−1(s′0) = w and θ−1(s′) = s′ for s′ ∈ S′ \ {s′0}.) We see that θ|T = idT and
θ(w) = s′0. As T ∪ {s′0} is a free generating set, so is T ∪ {w} ¤

Proposition 1.3. Assume that S is a finite set {A1, ..., Ah} of cardinality h ≥ 4
and set LA = L〈S〉. Let D be a derivation on LA such that D(A2) + A3A4 ∈
〈{Aα; 4 ≤ α ≤ h}〉Lie and that D(Aα) = A1Aα for all α 6= 2. Then KerD =
〈A1, ED〉Lie, where ED := D(A2) − A1A2.

Proof. By the assumption on D, KerD ⊃ 〈A1, ED〉Lie. We shall prove the other
inclusion.

First of all we shall eliminate A1 to compute KerD. The elimination theorem
([6] Ch.2 §2 Proposition 10) ensures that a K-linear isomorphism

LA ' 〈A1〉Lie ⊕ L′
A,

where
L′

A := 〈Am
1 Aα; m ≥ 0, α ≥ 2〉Lie.

Applying Lemma 1.2 to L = LA, T = {A1}, w = ED, S′ = {Am
2 Aα;m ≥ 0, α 6= 2},

λ = 1 and s′0 = A2A1, we have 〈A1, ED〉Lie = L〈A1, ED〉. Hence

〈A1, ED〉Lie ' 〈A1〉Lie ⊕ 〈Am−1
1 ED; m ≥ 1〉Lie,

by the elimination theorem. Observing that {Am−1
1 ED; m ≥ 1} ⊂ L′

A and the
above isomorphism (LA ' 〈A1〉Lie ⊕ L′

A), we have

〈A1, ED〉Lie ∩ L′
A = 〈Am−1

1 ED;m ≥ 1〉Lie.

Taking KerD ⊃ 〈A1〉Lie into account, KerD ⊂ 〈A1, ED〉Lie if and only if Ker(D|L′
A
)

⊂ 〈Am−1
1 ED; m ≥ 1〉Lie.

Next we shall take another free generating set of the free K-Lie algebra L′
A,

extending {Am−1
1 ED; m ≥ 1}.

Let Bn,β (n ≥ 0 and h ≥ β ≥ 2) be mutually distinct indeterminates and LB :=
L〈{Bn,β ; n ≥ 0, β ≥ 2}〉. By the assumption of D, Am−1

1 D(A2) ∈ 〈Am
1 Aα; m ≥

0, α ≥ 3〉Lie. Thus we have the following Lie algebra homomorphism

θ : L′
A −→ LB ,

Am
1 Aα 7−→ Bm,α (α 6= 2 or m = 0),

Am
1 A2 7−→ −Bm,2 + θ(Am−1

1 D(A2)) (m ≥ 1),
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which is bijective, with the inverse map being given by

Bn,2 7−→ An−1
1 ED (n ≥ 1),

Bn,β 7−→ An
1Aβ (β 6= 2 or n = 0),

because of the assumption on D(A2). We denote L〈Bn,β ; n ≥ 0, β ≥ 2〉 by LB .
From the assumption of D, D induces on LB the following derivation DB :

DB : LB −→ LB ,

Bn,β 7−→ Bn+1,β (β ≥ 3),

B0,2 7−→ θ(D(A2)),

Bn,2 7−→ 0 (n ≥ 1).

It is easy to see Ker(D|L′
A
) ⊂ 〈Am−1

1 ED; m ≥ 1〉Lie if and only if KerDB ⊂
〈Bn,2; n ≥ 1〉Lie.

To prove the latter inclusion, we shall first prove KerDB ⊂ 〈Bn,2; n ≥ 0〉Lie. For
each n ≥ 0, n′ ≥ 0, h ≥ β ≥ 2, h ≥ β′ ≥ 2, s ≥ 0, t ≥ 0, let LB(Bn,β , Bn′,β′ ; s, t)
be 〈 all monomials with the degree of Bn,β being s and the degree of Bn′,β′ t 〉vec,
p(Bn,β , Bn′,β′ ; s, t): LB → LB(Bn,β , Bn′,β′ ; s, t) the canonical projection. For n ≥ 0
and h ≥ β ≥ 2, let u(n, β):LB → LB be the K-Lie algebra endomorphism of LB

given by

Bn+1,β 7→ Bn,β ,

Bn′,β′ 7→ Bn′,β′ ((n′, β′) 6= (n + 1, β)).

If b ∈ LB \ 〈Bn,2;n ≥ 0〉Lie, then there exists n0 ≥ 0, β0 ≥ 3, d0 ≥ 1 such that

degBn,β
(b) = 0 (n ≥ 0 and β > β0),

degBn,β0
(b) = 0 (n > n0),

degBn0,β0
(b) = d0.

Then we have

u(n0, β0)◦p(Bn0,β0 , Bn0+1,β0 ; d0 − 1, 1) ◦ DB(b)

= d0p(Bn0,β0 , Bn0+1,β0 ; d0, 0)(b)
6= 0.

Hence DB(b) 6= 0. Therefore KerDB ⊂ 〈Bn,2; n ≥ 0〉Lie.
Next we shall proceed to show that KerDB ⊂ 〈Bn,2;n ≥ 1〉Lie. Applying Lemma

1.2 to S = {Bn,β ;n ≥ 0, 2 ≤ β ≤ h}, w = DB(B0,2), T = {Bn,2; n ≥ 0}, S′ =
{Bν

0,3Bn,β ; 2 ≤ β ≤ h, n ≥ 0, ν ≥ 0, (n, β) 6= (0, 3)}, λ = −1, s′0 = B0,3B0,4,
and w′ = DB(B0,2) + B0,3B0,4, we can see that 〈Bn,2,DB(B0,2);n ≥ 0〉Lie '
L〈Bn,2,DB(B0,2);n ≥ 0〉, denoted by LDB

. Hence we can define u2 : LDB
→ LB ,

a K-Lie algebra homomorphism, given by

DB(B0,2) 7→ B0,2,

Bn,2 7→ Bn,2 (n ≥ 0).
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If b ∈ 〈Bn,2; n ≥ 0〉Lie \ 〈Bn,2; n ≥ 1〉Lie, then there exists d0 ≥ 1 such that
degB0,2(b) = d0. Then we have

u2 ◦ p(B0,2,DB(B0,2); d0 − 1, 1) ◦ DB(b) = d0p(B0,2,DB(B0,2); d0, 0)(b) 6= 0.

Here p(B0,2,DB(B0,2); s, t) is the canonical projection, which is defined in a similar
way as the above-mentioned p(Bn,β , Bn′,β′ ; s, t). Hence DB(b) 6= 0. Therefore
KerDB ⊂ 〈Bn,2; n ≥ 1〉Lie, which completes the proof. ¤

2. Braid groups on compact Riemann surfaces and injectivity results
for their outer automorphism groups

The main purpose of this section is as follows. First, we show Lemma 2.2 by
using Proposition 1.3. Second, we obtain Theorem 2.5 by using Lemma 2.2. Third,
we establish the main injectivity results (Corollary 2.8 and Corollary 2.11), as
corollaries of Theorem 2.5. These corollaries are key ingredients of the proof of the
main results Theorem 3.2 and Theorem 3.6 of this paper.

2.1. Some basic facts about surface groups and braid groups. We shall
begin by recalling some facts about surface groups and braid groups ([15], [24],
[25],etc). Let g ≥ 0 and r ≥ 0. Let Rg,r be an r-punctured Riemann surface of
genus g, and for each n = 1, 2, . . . set

Fn(Rg,r) := Rn
g,r \

⋃
1≤i<j≤n

∆i,j ,

where ∆i,j := {(x1, . . . , xn) ∈ Rn
g,r|xi = xj}. We denote by Π(n)top

g,r the topo-
logical fundamental group πtop

1 (Fn(Rg,r), b) of Fn(Rg,r) with the base point b =
(b1, . . . , bn) ∈ Fn(Rg,r) and write Πtop

g,r for Π(1)top
g,r .

We fix g ≥ 0, r ≥ 0, n ≥ 1. For each j = 1, . . . , n + 1, the canonical projection

R
(n+1)
g,r

fj→ R
(n)
g,r defined by fj(p1, · · · , pn+1) = (p1,

j

ˇ· · ·, pn+1) gives a locally trivial
topological fibration. By means of topological homotopy theory, we see that fj

induces a short homotopy exact sequence

1 → πtop
1 (Rg,r\{b1,

j

ˇ· · ·, bn+1}, bj) → πtop
1 (Fn+1(Rg,r), (b1, · · · , bn+1))(6)

πtop
1 (fj)→ πtop

1 (Fn(Rg,r), (b1,
j

ˇ· · ·, bn+1)) → 1.

We shall denote the leftmost group πtop
1 (Rg,r\{b1,

j

ˇ· · ·, bn+1}, bj) of the above exact
sequence (6) by N

(j)top
n+1 (' Πtop

g,r+n).

Let x
(j)
i , z

(j)
k (1 ≤ i ≤ 2g, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ r + n + 1, k 6= r + j) be the

canonical generators of N
(j) top
n+1 (cf. Fig.1);
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..... .....

.
x

1
i

g

i+g
(j)

j

... ...

... .... ... .
z(j)

.
1

k r

(j)z
xi

(j)

b 1
b j’

b n+1

k

r+j’

b

Fig.1.Generators of N
(j)top
n+1 (' Πtop

g,r+n) ⊂ πtop
1 (Fn+1(Rg,r), (b1, . . . , bn+1))(' Π(n+1)top

g,r )

Let ` be a prime number. We denote the pro-` completion of Π(n)top
g,r by Π(n)

g,r

or Pn and write Πg,r for Π(1)
g,r. The exact sequence (6) of (discrete) groups induces

one of pro-` groups

(7) 1 → N
(j)
n+1 → Pn+1

π1(fj)→ Pn → 1,

(cf.[15] (1.2.2)), where N
(j)
n+1 means the pro-` completion of N

(j)top
n+1 .

For 1 ≤ i ≤ 2g, 1 ≤ j ≤ n + 1, 1 ≤ k ≤ r + n + 1 and k 6= r + j, we identify
x

(j)
i , z

(j)
k with their images in N

(j)
n+1 and moreover with those in Pn+1. They make

up a generating set of Pn+1. We remark that a presentation of Pn is well-known for
n = 1, 2, · · · ([30]). We have a natural central filtration {Pn(m)}∞m=1 of Pn, called
the weight filtration ([18] §1, [25] (2.3)). We note that this filtration coincides with
the lower central filtration in the case r ≤ 1 and n = 1. For m ≥ 1, let grmPn

denote the m-th graded piece Pn(m)/Pn(m + 1) of Pn with respect to the weight
filtration. The direct sum

GrΠ(n)
g,r = GrPn :=

⊕
m≥1

grmPn

becomes a graded Z`-Lie algebra naturally.
The exact sequence (7) of pro-` groups induces one of graded Z`-Lie algebras

(8) 0 → GrN (j)
n+1 → GrPn+1

Grπ1(fj)→ GrPn → 0

for j = 1, · · · , n + 1 (cf. [25] (2.8.1)). We note that grmPn+1 is generated by⋃
1≤j≤n+1

grmN
(j)
n+1 as Z`-module for each m ≥ 1([25] (2.7)), and that GrPn+1 is

center-trivial when 2 − 2g − r < 0 (cf. [25] (2.8)).

2.2. Some properties of GrΠ(2)
g,0. Throughout this subsection, we consider GrP2

for g ≥ 2 and r = 0 (namely, GrP2 = GrΠ(2)
g,0) in detail. At first we recall a

presentation of GrP2 ([25] (2.8.2)).
We denote x

(j)
i mod Π(2)

g,0(2) by X
(j)
i and z

(j)
j′ mod Π(2)

g,0(3) by Z(j), where {j, j′} =

{1, 2}. We remark that GrN (j)
2 = L〈{X(j)

i ; 1 ≤ i ≤ 2g}〉. We also note that
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Z(1) = Z(2) and denote this element by Z. Now, we have the following presenta-
tion of GrP2:

generators X
(j)
i , Z (1 ≤ i ≤ 2g, 1 ≤ j ≤ 2),(9)

relations
g∑

i=1

[X(j)
i , X

(j)
i+g] + Z = 0 (1 ≤ j ≤ 2),(10)

[X(j)
i , X

(j′)
i′ ] =

{
0 (j 6= j′, i ≤ i′ and i′ 6= i + g),
Z (j 6= j′, i ≤ i′ and i′ = i + g).

(11)

Observe that (10) and (11) imply

(12) [X(1)
i + X

(2)
i , Z] = 0 (1 ≤ i ≤ 2g).

For simplicity we shall denote CGrP2(w) by C(w) for w ∈ GrP2. We shall also
abbreviate suffix signifying the second strand (e.g. N

(2)
2 = N2, X

(2)
i = Xi, etc.)

and write just N for N2.

Lemma 2.1. (1) GrP2 = GrN + C(Z).
(2) GrN ∩ C(Z) = 〈Z〉vec.

Proof. (1) Thanks to (12), it is easy to see that X
(1)
i ∈ GrN + C(Z). Since GrN is

a Lie ideal and C(Z) is a Lie subalgebra, the conclusion follows immediately.
(2) Let T = {Xn

1 Xi ; n ≥ 0, 2g ≥ i ≥ 2}. As GrN = L〈{Xi; 1 ≤ i ≤ 2g}〉, by
the elimination theorem ([6] Ch.2 §2 Proposition 10), we have an isomorphism as
Z`-modules

GrN ' 〈X1〉Lie ⊕ 〈T 〉Lie,

and

〈T 〉Lie ' L〈T 〉.

Let Vn,i (n ≥ 0, 2g ≥ i ≥ 2) be mutually distinct variables and LV := L〈Vn,i; 2 ≤
i ≤ 2g, n ≥ 0〉. Then we have an isomorphism as Z`-Lie algebras

θ : L〈T 〉 → LV ,

Xn
1 X1+g 7→ −Vn,1+g −

g∑
i=2

n−1∑
ν=0

(
n − 1

ν

)
[Vν,i, Vn−1−ν,i+g] (n ≥ 1),

Xn
1 Xi 7→ Vn,i (otherwise),

whose inverse homomorphism is given in the following:

Vn,1+g 7→ −Xn
1 X1+g −

g∑
i=2

n−1∑
ν=0

(
n − 1

ν

)
[Xν

1 Xi, X
n−1−ν
1 Xi+g] (n ≥ 1),

Vn,i 7→ Xn
1 Xi (otherwise).

Observed that θ(Z) = V1,1+g and θ([X1, Z]) = V2,1+g. Hence [X1, Z] is trans-
formed to an element of degree 1 in LV and [W,Z] to one of degree ≥ 2 in LV for
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any W ∈ L〈T 〉. Thus

GrN ∩ C(Z) ⊂ L〈T 〉

or, equivalently,

GrN ∩ C(Z) = CL〈T 〉(Z).

Now, we have

θ(GrN ∩ C(Z)) = θ(CL〈T 〉(Z))

= CLV
(V1,1+g)

= 〈V1,1+g〉vec (Lemma 1.1),

whence

GrN ∩ C(Z) = 〈Z〉vec,

which is the desired conclusion. ¤

Lemma 2.2.

(13) C(X(1)
i + Xi) ∩ GrN = 〈Xi, Z〉Lie for 1 ≤ i ≤ 2g

Proof. We prove this in a similar way to Lemma 2.1 (2), but here we have the extra
difficulty that Xi + X

(1)
i /∈ GrN . Note that for each 1 ≤ i ≤ 2g,

ad(X(1)
i + Xi) : GrN −→ GrN,

Xj 7−→ [Xi, Xj ] (j 6= i ± g),

Xi+g 7−→
g∑

ι=1,ι 6=i

[Xι+g, Xι] (i ≤ g),

Xi−g 7−→
g∑

ι=1,ι 6=i−g

[Xι, Xι+g] (i > g).

We may suppose that i = 1 without loss of generality. Since g ≥ 2, we can
apply Proposition 1.3 to h = 2g, A2ι−1 = Xι, A2ι = Xι+g (1 ≤ ι ≤ g) and
D = ad(X1 + X

(1)
1 ). Consequentially we can prove this lemma. ¤

We denote the set {Xi, Xi′ , Z} by Si,i′,Z .

Lemma 2.3. 〈Si,i′,Z〉Lie = L〈Si,i′,Z〉 (1 ≤ i 6= i′ ≤ 2g).

Proof. As g ≥ 2, we may assume i, i′ 6= 1 without loss of generality. Eliminating X1

as in the proof of Lemma 2.1, it suffices to apply Lemma 1.2 to S = {X1, . . . , X2g},
w = Z, T = {Xi, Xi′}, S′ = {Xn

1 Xι; ι = 2, . . . , 2g, n ≥ 0}, λ = −1, s′0 = X1X1+g,
w′ = −

∑g
ι=2 XιXι+g. ¤

Lemma 2.4. Let i and i′ be integers with 1 ≤ i ≤ 2g and 1 ≤ i′ ≤ 2g such that
i 6≡ i′ (mod g). Let m be an integer ≥ 1. Let Wi ∈ 〈Xi, Z〉Lie ∩ grm+1N,Wi′ ∈
〈Xi′ , Z〉Lie ∩ grm+1N such that

(14) [Wi, Xi′ ] + [X(1)
i ,Wi′ ] = 0.

If m 6= 2, then Wi = Wi′ = 0. If m = 2, then Wi + Wi′ ∈ 〈[Z,Xi − Xi′ ]〉vec.
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Proof. At first, we note

[Wi, Xi′ ], [X(1)
i , Wi′ ] ∈ 〈Si,i′,Z〉Lie

from (11) and (12). We denote {Xn
i Xi′ , X

n
i Z;n ≥ 0} by SXi′ ,Z . By Lemma 2.3

and the elimination theorem ([6]), we have

〈Si,i′,Z〉Lie ' 〈Xi〉Lie ⊕ 〈SXi′ ,Z〉Lie

and

(15) 〈SXi′ ,Z〉Lie ' L〈SXi′ ,Z〉.
As m ≥ 1, we notice

[Wi, Xi′ ], [X(1)
i ,Wi′ ] ∈ L〈SXi′ ,Z〉.

The case m = 1: It is clear that 〈Xi, Z〉Lie∩gr2N = 〈Xi′ , Z〉Lie∩gr2N = 〈Z〉vec.
Hence there are λ, µ ∈ Z` such that Wi = λZ and Wi′ = µZ. From (12) and (14),
we have

[Z, λXi′ + µXi] = 0.

By lemma 2.1(2), we have

λXi′ + µXi ∈ 〈Z〉vec.

Observing the difference of degrees in GrP2, we have λ = µ = 0. Thereby we
conclude that Wi = Wi′ = 0.

The case m = 2: Note that 〈Xi, Z〉Lie ∩ gr3N = 〈[Z,Xi]〉vec and 〈Xi′ , Z〉Lie ∩
gr3N = 〈[Z,Xi′ ]〉vec. Hence there are λ, µ ∈ Z` such that Wi = λ[Z,Xi] and
Wi′ = µ[Z,Xi′ ]. From (12) and (14), we have

(λ + µ)[[Z,Xi], Xi′ ] = 0.

From Lemma 2.3, we have λ + µ = 0. Hence we have

Wi + Wi′ = λ[Z,Xi − Xi′ ],

as desired.
The case m ≥ 3: From (15), we can define a Lie algebra homomorphism u as

follows:

u : 〈SXi′ ,Z〉Lie −→ 〈Si,i′,Z〉Lie,

Xn
i Xi′ 7−→ Xn

i Xi′ ,

Xn
i Z 7−→ Z.

By Lemma 2.3, we can define the canonical projection pd from 〈Si,i′,Z〉Lie to 〈 all
monomials of degree d with respect to Z in L〈Si,i′,Z〉〉vec.

Then we can see

0 = pd ◦ u([Wi, Xi′ ] + [X(1)
i ,Wi′ ])

=

{
λ[Z,Xi′ ] − p1(Wi′) for some λ ∈ Z` if d=1
−dpd(Wi′) otherwise.

Moreover as m ≥ 3, the total degree of p1(Wi′) in GrN is greater than 4, unless
p1(Wi′) = 0. Consequently pd(Wi′) = 0 for d ≥ 1, which means Wi′ = 0. Hence
[Wi, Xi′ ] = 0 by (14). Applying Lemma 1.1 to L = GrN ' L〈X1, · · · , X2g〉 and
s = Xi′ , we have Wi ∈ 〈Xi′〉vec ∩ grm+1N = {0}, which completes the proof. ¤
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2.3. Filtered injectivity. The purpose of this subsection is to show Theorem 2.5
by using results of §2.2 and to prove Corollary 2.8 and Corollary 2.11, which lead
us to the main results Theorem 3.2, Theorem 3.6 of this paper.

Notations. We define some Z`-modules as follows: For m ≥ 1, set

Der[(GrPn)(m)

:=


D(grdGrPn) ⊂ grd+mGrPn (d ≥ 1),

D ∈ Der(GrPn) D(GrN (j)
n ) ⊂ GrN (j)

n (1 ≤ j ≤ n),
D(Z(j)

k ) = [T (j)
k , Z

(j)
k ] for some T

(j)
k ∈ grmPn

(1 ≤ j ≤ n, 1 ≤ k ≤ r + n)

 .

Here Z
(j)
k := z

(j)
k mod Π(n)

g,r (3) (1 ≤ j ≤ n, 1 ≤ k ≤ r + n). For n ≥ 1, set

Der[(GrPn) := 〈
⋃

m≥1

Der[(GrPn)(m)〉vec ' ⊕m≥1Der[(GrPn)(m),

Inn(GrPn) := {adT : GrPn → GrPn |T ∈ GrPn},

Out[(GrPn) := Der[(GrPn)/Inn(GrPn).

Note that each of the last three Z`-modules is naturally endowed with structure
of graded Z`-Lie algebra. The projection Grπ1(f) : GrPn+1 → GrPn, obtained by
forgetting the (n + 1)-th strand, induces a graded Z`-Lie algebra homomorphism

Out[Grπ1(f) : Out[(GrPn+1) −→ Out[(GrPn).

Theorem 2.5. If 2 − 2g − r < 0, n ≥ 1, then Out[Grπ1(f) is injective.

Remark 2.6. This map has already been studied by many predecessors. Y.Ihara
proved the injectivity when g = r = 0 and n ≥ 4([11]) and surjectivity (the Sn-fixed
parts) when g = r = 0 and n ≥ 5([13]). H.Nakamura, R.Ueno and the author
proved the injectivity in the case 2 − 2g − r < 0 and r + n ≥ 2 ([25] Theorem 4.3).
H.Tsunogai proved the surjectivity when g ≥ 1, r = 1 and n ≥ 3([32]).

Proof of Theorem 2.5. Before we begin the proof, we would like to explain the main
difference between the proof for r + n ≥ 2 in [25] Theorem 4.3 and the proof for
r+n = 1 given below. To prove the theorem, we need to profile D ∈ Der[(GrPn+1)
which maps to an inner derivation on GrPn by the projection Grπ1(f). To do this,
we may put the extra condition that D is homogeneous, D(GrPn+1) ⊂ GrN (n+1)

n+1

and D(Z) = 0, where Z := Z
(n+1)
1 . When r + n ≥ 2, we do so by using [Z, V ] = 0

for any V ∈ {X(n)
1 , · · · , X

(n)
2g , Z

(n)
2 , · · · , Z

(n)
r+n−1}. However, when r + n = 1 (i.e.

r = 0 and n = 1), we have [Z, V ] 6= 0 for any V ∈ {X(1)
1 , · · · , X

(1)
2g }. Thus, we

resort to the relation [X(1)
i +X

(2)
i , Z] = 0 (1 ≤ i ≤ 2g) (12) instead. As X

(1)
i +X

(2)
i

does not belong to any ‘fiber subalgebra’, calculations are difficult. We overcome
this difficultly by the elimination theorem on free Lie algebras. (See Subsection
2.2.)
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Now we enter into details about the proof in the case r + n = 1 (i.e. (r, n) =
(0, 1) and therefore g ≥ 2). We follow the notations of Subsection 2.2. Let D ∈
Der[(GrP2) and assume that D induces an inner derivation on GrP1 by Grπ1(f).
We shall prove that D is inner. We may assume that D ∈ Der[(GrP1)(m) for
some m ≥ 1. As the map Inn(GrP2) → Inn(GrP1) is surjective, we may assume
D(GrP2) ⊂ GrN . Moreover we may assume D(Z) = 0 by means of lemma 2.1(1).
We denote D(X(j)

i ) by Di,j in this proof.
From (11),

(16) [Di,1, Xi′ ] + [X(1)
i , Di′,2] = 0,

for any i, i′. By combining (12) with lemma 2.1(2),

(17) Di,1 + Di,2 ∈ 〈Z〉vec (1 ≤ i ≤ 2g).

The case m = 1: Observing that the relations (10) and (11) of GrP2, we have

GrN (1) ∩ GrN =Ker(Grπ1(f)|GrN(1))

=(Z),

where (Z) is the ideal generated by Z in GrN (1), whence

gr2N (1) ∩ gr2N = 〈Z〉vec.

Hence Di,1 ∈ 〈Z〉vec (1 ≤ i ≤ 2g) by the assumption on D. From this and (17),
Di,2 ∈ 〈Z〉vec (1 ≤ i ≤ 2g). Combining these with (12), equation (16) can be
regarded as one in 〈Si,i′,Z〉Lie. Since g ≥ 2, 〈Si,i′,Z〉Lie = L〈Si,i′,Z〉 if i 6= i′,
by Lemma 2.3. Hence C〈Si,i′,Z〉Lie

(Z) is 〈Z〉vec by Lemma 1.1. Considering the
difference between the degree of Z and those of Xi and Xi′ in GrP2, we get Di,1 =
Di′,2 = 0 (1 ≤ i 6= i′ ≤ 2g), because Xi and Xi′ are linearly independent. Thereby,

Di,1 = Di,2 = 0 (1 ≤ i ≤ 2g).

Since GrP2 is generated by {X(1)
i , Xi; 1 ≤ i ≤ 2g}, D = 0 ∈ Inn(GrP2).

The case m ≥ 2: Using (17) and observing the degrees, Di,1 + Di,2 = 0 for
1 ≤ i ≤ 2g. Since [X(j)

i , X
(1)
i + Xi] = 0 (1 ≤ j ≤ 2, 1 ≤ i ≤ 2g) by (11),

Di,j ∈ C(X(1)
i + Xi) ∩ GrN (1 ≤ j ≤ 2, 1 ≤ i ≤ 2g).

By virtue of Lemma 2.2,

(18) Di,j ∈ 〈Xi, Z〉Lie (1 ≤ j ≤ 2, 1 ≤ i ≤ 2g).

By (16) and (18), we may apply Lemma 2.4 to Wi = Di,1, Wi′ = Di′,2 and conclude
that for each i, i′ such that i 6≡ i′ (mod g),

Di,1 + Di′,2 ∈ 〈[Xi′ − Xi, Z]〉vec when m = 2,(19)

Di,1 = Di′,2 = 0 when m ≥ 3.(20)

When m = 2, by (18) and (12), it can be checked that

(21) Di,j ∈ 〈[X(j)
i , Z]〉vec,

for j = 1, 2. Hence there exists λi,j ∈ Z` such that Di,j = λi,j [X
(j)
i , Z]. From (19),

(12) and Lemma 2.1(2), we have

λi′,2Xi′ − λi,1Xi − µ(Xi′ − Xi) ∈ 〈Z〉vec,
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for some µ ∈ Z`. By the difference between the degree of Xi and that of Z, we get

λi′,2 = λi,1(= µ),

if i 6≡ i′ (mod g).
Now, when g ≥ 3, we conclude that λi,j = λ1,1 (1 ≤ i ≤ 2g, 1 ≤ j ≤ 2) and

D = ad(λ1,1Z)

directly. When g = 2, we have

λ1,1 = λ2,2 = λ3,1 = λ4,2,

λ1,2 = λ2,1 = λ3,2 = λ4,1.

Since D(Z) = 0, we have

0 = D([X1, X3] + [X2, X4])

= [λ1,2[X1, X3] + λ2,2[X2, X4], Z].

By Lemma 2.1(2), we have

(λ1,2 − µ′)[X1, X3] + (λ2,2 − µ′)[X2, X4] = 0,

for some µ′ ∈ Z`. As GrN ' L〈X1, X2, X3, X4〉, we obtain

λ1,2 = λ2,2(= µ′),

which completes the proof of the case m = 2.
When m ≥ 3,

Di,1 = Di,2 = 0 (1 ≤ i ≤ 2g)
from (20) together with g ≥ 2, which means D = 0.

Thus, we have completed the proof. ¤

Now we apply the above filtered injectivity for Lie algebras to show that for
pro-` groups.

Notations. For n ≥ 1,

Γ̃n :=


f(N (j)

n ) ⊂ N
(j)
n (1 ≤ j ≤ n),

f ∈ AutPn f(z(j)
k )

conj.∼ z
(j)α
k for some α ∈ Z×

`

(1 ≤ j ≤ n, 1 ≤ k ≤ r + n)

 ,

Γn := Γ̃n/InnPn.

For n ≥ 1 and m ≥ 1,

Γ̃n(m) :=
{

σ ∈ Γ̃n
σ(x)x−1 ∈ Pn(1 + m) (x ∈ Pn),

σ(x′)x′−1 ∈ Pn(2 + m) (x′ ∈ Pn(2))

}
,

Γn(m) := (Γ̃n(m)InnPn)/InnPn,

grmΓ̃n := Γ̃n(m)/Γ̃n(m + 1),

grmΓn := Γn(m)/Γn(m + 1).

Moreover
GrΓn := ⊕m≥1grmΓn

has a natural graded Z`-Lie algebra structure, for {Γn(m)}m≥1 is central in Γn(1)
([25], cf. also [4] Theorem 2, [18] Proposition 6(1)). Note that Γn is denoted by
Γ(n)

g,r in [25].
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Corollary 2.7. For n ≥ 1, the Z`-Lie algebra homomorphism

(22) GrΓn+1 −→ GrΓn,

induced by the projection Pn+1 → Pn is injective.

Proof. (cf. [25] (2.13); also [18] Lemma 5) We have injective Z`-Lie algebra homo-
morphisms

(23) δ̄ : GrΓn ↪→ Out[(GrPn),

for n ≥ 1 (cf. [25] (2.13.2)), compatible with the projection. Thus the assertion
follows from Theorem 2.5. ¤

Corollary 2.8. The continuous group homomorphism

(24) Γn+1/Γn+1(m) −→ Γn/Γn(m)

induced by the projection Pn+1 → Pn is injective for each m ≥ 1.

Proof. (cf. [25] (2.9) ∼ (2.11)) By using the relations of GrPn+1 ([25] (2.8.2)), we
see that Γn+1 acts diagonally on

gr1Pn+1 ' (gr1P1)⊕(n+1).

Thus we have

(25) Γn+1/Γn+1(1) ↪→ Γn/Γn(1).

Now we have a commutative diagram

1 → grmΓn+1 → Γn+1/Γn+1(m + 1) → Γn+1/Γn+1(m) → 1
↓ ↓ ↓

1 → grmΓn → Γn/Γn(m + 1) → Γn/Γn(m) → 1

for each m ≥ 1, in which both rows are exact. Now, considering (22) and (25), we
get the conclusion by induction on m. ¤

We also have the injectivity result (Corollary 2.11) for the whole pro-` mapping
class groups. We shall begin with:

Lemma 2.9. Let G be finitely generated pro-` group and {G(m)}m≥1 a central
filtration such that ∩m≥1G(m) = {1}. Let Γ̃ be a subgroup of AutG such that
Γ̃G(m) ⊂ G(m) and Γ̃ ⊃ InnG. Denote Γ̃/InnG (⊂ OutG) by Γ. Denote Ker(Γ̃ →
AutG/G(m + 1)) by Γ̃[m] and Γ̃[m]/(InnG ∩ Γ̃[m]) by Γ[m] for m = 1, 2, · · · . If
Z(GrG) = {0}, then we have ⋂

m≥1

Γ[m] = {1}.

Here GrG is the graded Z`-Lie algebra induced by the central filtration {G(m)}m≥1.

Proof. This lemma is a generalization of [2] Theorem 2, which treats the case where
{G(m)}m≥1 is the lower central filtration. The proof of the lemma is done in the
same way as that of [2] Theorem 2 except for obvious modifications. ¤

Lemma 2.10. ⋂
m≥1

Γn(m) = {1},

for n ≥ 1.
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Proof. As mentioned after (8), Z(GrPn) = {0}. Hence applying the above lemma
2.9 to G = Pn, G(m) = Pn(m) and Γ̃ = Γ̃n for m = 1, 2, · · · , we have ∩m≥1Γn[m] =
{1}. As Γn(m) ⊂ Γn[m], the lemma follows. ¤

Corollary 2.11. The continuous group homomorphism

Γn+1 −→ Γn

induced by the projection Pn+1 → Pn is injective.

Proof. Combining Corollary 2.8 and Lemma 2.10 (for n + 1), we complete the
proof. ¤

Remark 2.12. We can consider a discrete situation by substituting the topological
mapping class group Γtop

n for the pro-` mapping class group Γn. In exactly the same
way as the pro-` situation, Π(n)top

g,r has a central filtration called the weight filtration
and it induces a filtration {Γtop

n (m)}m≥1 on Γtop
n (cf. [5] (2.1.1) and (2.1.6)). The

results of this section also hold in the discrete case except possibly for Corollary
2.11. For the present, the validity of the analogue of Corollary 2.11 in the discrete
case is unclear, since we do not know whether

∩m≥1Γtop
n (m) = {1}

or not in general. (It is known that it is true when n = 1 and (g, r) 6= (2, 0) cf. [3]
Proposition 2).

3. Galois representations and universal monodromy representations

The purpose of this section is to show the main independency theorems of this
paper. The one (Theorem 3.2) extends and completes previous results by Y.Ihara
and M.Kaneko ([11] The Galois Kernel Theorem, [15] Theorem 2) and the other
(Theorem 3.6) almost verifies Oda’s prediction on pro-` universal monodromy rep-
resentations ([28]).

In this section we continue to employ the notation in the previous section.

Let k be a subfield of C and C a (g, r)-curve over k (i.e. smooth separated
geometrically irreducible curve over k such that its smooth compactification C∗

has geometric genus g and the number of k̄-rational points on C∗ \ C is r). As
we have seen in (4), to each n ≥ 1, we can attach the following continuous group
homomorphism

ρ
(pro-`)
Fn(C)/k : Gk → OutPn.

For simplicity we denote ρ
(pro-`)
Fn(C)/k by ϕn in the rest of this paper. We denote by

k
(n)(pro-`)
C the fixed subfield of k̄ by Kerϕn. Let k′ be the compositum of the residue

fields of the points of C∗ \ C, which is a finite Galois extension of k. Then we can
see that the image of Gk′ under ϕn is contained in the pro-` mapping class group
Γn as follows: for σ ∈ Gk′ and 1 ≤ j ≤ n, ϕn(σ) preserves N

(j)
n by the functoriality

of π1 and the definition of ϕn. By means of the branch cycle argument, ϕn(σ)
maps the inertia generator z

(j)
j′ to a conjugate of z

(j)χ`(σ)
j′ (1 ≤ j′ ≤ r + n) where

χ` : Gk′ → Z×
` is the `-adic cyclotomic character. Hence ϕn(Gk′) ⊂ Γn.

Then we obtain the following field tower {k(n)(pro-`)
C (m)}m≥1:

k
(n)(pro-`)
C (m) := k̄ϕ−1

n (Γn(m)).
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Another kind of field tower {Q(n)(pro-`)
g,r (m)}m≥1 (defined by Ihara, Oda, Naka-

mura, cf. §0) is obtained by considering the universal family of curves instead of a
single curve. Let 2 − 2g − r < 0 and Mg,r be the moduli stack over Q of smooth
geometrically connected curves of genus g with disjoint ordered r sections. In [29],
Takayuki Oda developed a theory of fundamental groups of algebraic stacks and
showed that there are two exact sequences

1 → π1(Mg,r ⊗Q Q) → π1(Mg,r)
pg,r→ GQ → 1,(26)

and for each n ≥ 1,

1 → π1(Fn(Cy)) → π1(Mg,r+n) → π1(Mg,r) → 1.(27)

Here (C∗ → Mg,r, s1, · · · , sr) is the universal family of proper smooth geometrically
connected curves of genus g with r disjoint sections {s1, · · · , sr : Mg,r → C∗}, C =
C∗ \ q1≤k≤rsk(Mg,r), y → Mg,r is a geometric point and Cy is the geometric fiber
at y.
As in the case of a single curve, (27) induces a continuous homomorphism

Φ(n)(pro-`)
g,r : π1(Mg,r) → OutPn,

called the pro-` universal monodromy representation, and ImΦ(n)(pro-`)
g,r is also con-

tained in the pro-` mapping class group Γn. Then the filtration {Γn(m)}m≥1 in-
duces the following tower of fields:

Q ⊂ Q(n)(pro-`)
g,r (1) ⊂ · · · ⊂ Q(n)(pro-`)

g,r (m) ⊂ · · · ⊂ Q(n)(pro-`)
g,r ⊂ Q̄,

where

Q(n)(pro-`)
g,r (m) := Q̄pg,r((Φ(n)(pro-`)

g,r )−1(Γn(m))) (m ≥ 1),

and

Q(n)(pro-`)
g,r := Q̄pg,r(KerΦ(n)(pro-`)

g,r ).

Just as in §0, in what follows we shall often omit the superscript (1) expressing
one dimension.

Roughly speaking, Q(pro-`)
g,r is the maximal subfield of k

(pro-`)
C which does not

depend on the moduli of the (g, r)-curve C.

Remark 3.1. (1)By Lemma 2.10 and the higher dimensional version of [25] (6.6),
we can prove

k
(n)(pro-`)
C =

⋃
m≥1

k
(n)(pro-`)
C (m),

and

Q(n)(pro-`)
g,r =

⋃
m≥1

Q(n)(pro-`)
g,r (m).

(2)By extending [25] (6.4) to higher dimensional cases, we can prove

Q(n)(pro-`)
g,r (m) ⊂ k

(n)(pro-`)
C (m) (m ≥ 1).
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(3)By definition, we have

Q(n)(pro-`)
P1\{0,1,∞}(m) = Q(n)(pro-`)

0,3 (m) (m ≥ 1).

(4)(cf. [25] (6.4)) We have

Q(pro-`)
g,r (m) ⊂

⋂
C/k: (g, r)-curve,

[k:Q]<∞

k
(pro-`)
C (m) (m ≥ 1),(28)

and

Q(pro-`)
g,r ⊂

⋂
C/k: (g, r)-curve,

[k:Q]<∞

k
(pro-`)
C .(29)

The author does not know whether the equality holds in (28), (29) or not.

Theorem 3.2. Suppose that C is hyperbolic. Then, for n = 1, 2, · · · , we have

(1) k
(n)(pro-`)
C (m) = k

(n+1)(pro-`)
C (m) (m ≥ 1).

In particular,

(2) k
(n)(pro-`)
C = k

(n+1)(pro-`)
C .

When r + n ≥ 2, (2) has been proved in [15] Theorem 2 (under the assumption
3 − 2g − r − n < 0, weaker than the hyperbolicity assumption 2 − 2g − r < 0).

Proof. The following commutative diagram exists

Γn+1 → Γn+1/Γn+1(m)
↗

Gk′ ↓ ↓ (m ≥ 1)
↘

Γn → Γn/Γn(m),

where vertical maps are induced by the projection Pn+1 → Pn. The commuta-
tivity of the diagram is due to the functoriality of π1 and the definitions of pro-`
mapping class groups and their weight filtrations. By virtue of Corollary 2.8 and
Corollary 2.11, vertical maps are both injective. The conclusion follows from this
and ϕ−1

n (Γn) = Gk′ . ¤
Remark 3.3. According to [15], we have assumed that k is a subfield of C. However
the same statement is still true when k is any field of characteristic 0. Indeed,
choosing a suitable model and using various standard arguments, we reduce the
proof for the general case to the case where k is a subfield of C.

Theorem 3.4. Suppose that 2 − 2g − r < 0. Then, for n = 1, 2, · · · , we have

(1) Q(n)(pro-`)
g,r (m) = Q(n+1)(pro-`)

g,r (m) (m ≥ 1).

In particular,
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(2) Q(n)(pro-`)
g,r = Q(n+1)(pro-`)

g,r .

When r + n ≥ 2, the theorem has been proved in [25] Corollary (4.4).

Proof. Similarly as in the proof of Theorem 3.2, the following commutative diagram
exists:

Γn+1 → Γn+1/Γn+1(m)
↗

π1(Mg,r) ↓ ↓ (m ≥ 1)
↘

Γn → Γn/Γn(m).

Now Corollary 2.8 and Corollary 2.11 complete the proof. ¤
Theorem 3.5. Suppose that g ≥ 2 and n ≥ 1. Then, for r ≥ 0, we have

(1) Q(n)(pro-`)
g,r (m) = Q(n)(pro-`)

g,r+1 (m) (m ≥ 1).

In particular,

(2) Q(n)(pro-`)
g,r = Q(n)(pro-`)

g,r+1 .

When r + n ≥ 2, the theorem has been proved in [25] Theorem B(1).

Proof. This is a direct consequence of Theorem 3.4 and [25] Theorems B(1). ¤
Theorem 3.6 (Oda Prediction). If 2 − 2g − r < 0 and n ≥ 1, then

(1) {Q(n)(pro-`)
g,r (m)}m≥1 is independent of (r, n) and almost independent of

(g, r, n) in the following sense:

Q(pro-`)
1,1 (m) ⊃ Q(n)(pro-`)

g,r (m) ⊃ Q(pro-`)
0,3 (m),

[Q(pro-`)
1,1 (m) : Q(n)(pro-`)

g,r (m)], [Q(n)(pro-`)
g,r (m) : Q(pro-`)

0,3 (m)] < ∞.

(2) Q(n)(pro-`)
g,r is independent of (g, r, n).

Proof. The conclusion follows immediately from Theorem 3.4 and Theorem 3.5
together with known results ([25] Theorem B, [22] Theorem A and [16] Theorem
3B). ¤

4. Images of Galois groups and mapping class groups

In this section we present applications of Theorem 3.6, which generalize [22]
Section 4 to the case of proper curves. Let ` be a prime number and C a hyperbolic
(g, r)-curve over a number field k. For a Z`-module M , we denote M ⊗Z`

Q` by
MQ`

.

Notations. For each m ≥ 1, set

gr[`] m
g,r GQ := Gal(Q(pro-`)

g,r (m + 1)/Q(pro-`)
g,r (m)),

gr[`] m
C Gk := Gal(k(pro-`)

C (m + 1)/k
(pro-`)
C (m)).
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Corollary 4.1. dimQ`
(gr[`] m

C Gk)Q`
≥ dimQ`

(gr[`] m
0,3 GQ)Q`

(m ≥ 1).

Proof.

Lemma 4.2.
(gr[`] m

g,r GQ)Q`
∼= (gr[`] m

0,3 GQ)Q`
(m ≥ 1).

Proof. Immediate from Theorem 3.6. ¤

As Q(pro-`)
g,r (m) ⊂ k

(pro-`)
C (m) (Remark 3.1(2)), there exists a natural Q`-linear

map
φ

[`] (m)
C : (gr[`] m

C Gk)Q`
→ (gr[`] m

g,r GQ)Q`
(m ≥ 1).

Lemma 4.3. The map φ
[`] (m)
C is surjective for each m ≥ 1.

Proof. The proof of this lemma for hyperbolic (g, r)-curves with r > 0 is in
[22] (4.5). It works just as it is for r = 0. ¤

Corollary 4.1 is a direct consequence of the above two lemmas. ¤

Remark 4.4. For the value of rm = dimQ`
(gr[`] m

0,3 GQ)Q`
the following are known:

rm

{
≥ 1 if m is even and m 6= 2, 4, 8, 12, ([10], [12], [19], [9])
= 0 otherwise,

r2m → ∞ as m → ∞ ([19]).
Moreover it is conjectured by P. Deligne and Y. Ihara (resp. proved by R. Hain and
M. Matsumoto [9]) that the graded Q`-Lie algebra ⊕m≥1(gr[`] m

0,3 GQ)Q`
is generated

freely (resp. generated) by certain elements σ4m+2 ∈ (gr[`] 4m+2
0,3 GQ)Q`

(m ≥ 1),
called ‘Soulé elements’. This conjecture gives a (conjectural) formula for the exact
value of rm([14] (4.2)):

rm =
1
m

∑
d|m

µ

(
m

d

)
(

3∑
i=1

(αd
i − 1 − (−1)d)),

where αi (1 ≤ i ≤ 3) are the roots of x3 − x − 1. For the value of rm for m ≤ 20,
see [22] (4.3).

Finally we shall give an application of Lemma 4.2 to pure topology. Here we
follow the notation of Remark 2.12. We have a natural homomorphism

τm ⊗Z Q` : (grmΓtop
1 ) ⊗Z Q` → (grmΓ1)Q`

,

where
grmΓtop

1 := Γtop
1 (m)/Γtop

1 (m + 1).
This homomorphism essentially coincides with the Johnson-Morita homomorphism
τm tensored with Q` (cf. [5], [22]). By [3] Theorem B, we know that Ker(τm⊗Z Q`)
is trivial.

Corollary 4.5. For m ≥ 1,

dimQ`
Coker(τm ⊗Z Q`) ≥ rm,

where rm = dimQ`
(gr[`] m

0,3 GQ)Q`
. In particular, if m 6= 2, 4, 8, 12 and m is even,

then τm ⊗Z Q` is not surjective.
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Proof. The affine case has been proved in [22] (4.8). The proper case can be proved
in the same way by using Lemma 4.2 and Remark 4.4. ¤
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