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The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored

at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-

deconfinement transition. We point out that the confined phase is characterized by a cos3�I=T

dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase

this dependence is given by cos�I=T and accompanied by a cusp structure induced by the Zð3Þ transition.
We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop

potentialU. Furthermore, we find that by changing the four fermion coupling constant Gs, the location of

the critical end point of the deconfinement transition can be moved into the real chemical potential region.

We propose a new parameter characterizing the confinement-deconfinement transition.
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I. INTRODUCTION

The exploration of the phase diagram of strongly inter-
acting matter has received a lot of attention in recent years.
First principle calculations of the phase structure from the
Lagrangian of quantum chromodynamics (QCD) is in-
trinsically difficult owing to the strongly coupled nature
of the theory at large distances. Lattice gauge theory (LGT)
calculations provide a unique and powerful tool for study-
ing QCD in the nonperturbative regime. Increasing com-
puter power has recently made LGT simulations at almost
physical quark masses possible [1,2]. The results indicate
that the transition from the confined, chirally broken phase
to the deconfined, chirally restored phase at T � 160 MeV
and vanishing baryon chemical potential,�B ¼ 0, is of the
crossover type [3].

For nonzero net baryon density, LGT calculations suffer
from the so-called ‘‘sign problem.’’ For finite quark chemi-
cal potential (and Nc ¼ 3), the statistical weight of the
Monte Carlo simulation becomes nonpositive definite due
to the complex fermion determinant. This issue has im-
peded the progress in LGT calculations at finite densities.

There have been several attempts to bypass the sign
problem [4]. One interesting approach involves using an
imaginary chemical potential, for which the fermion deter-
minant is real and, therefore, systematic LGT simulations
are possible [5]. There are two major ways for extracting
information on the real phase diagram from calculations at
imaginary chemical potential. One is to project the grand
partition function ZG computed at imaginary chemical
potential onto the canonical partition function

ZcðT; V; NqÞ ¼
Z 2�

0

dð��IÞ
2�

e�i��INqZGðT; V;�q ¼ i�IÞ:
(1)

In spite of the difficulties involved in the evaluation of the
oscillatory integral, there are lattice calculations aimed at
studying the phase diagram in the temperature-number
density plane by means of this approach [6,7]. An alter-
native way involves an analytic continuation from imagi-
nary to real values of the chemical potential. This method
has proven quite powerful for determining the critical line
at �q < �T=3 [8] and this approach has been applied in

LGT calculations [9–18], in resummed perturbation theory
[19], as well as in quasiparticle models [20]. Of course, the
analytic continuation requires knowledge of the analytic
structure of the thermodynamic functions. Therefore effec-
tive models that share the symmetries of QCD are useful
for testing such approaches, because a result obtained by
analytic continuation from imaginary chemical potential
can be confronted with the known solution at real chemical
potential.
A remarkable feature of QCD at imaginary chemical

potential is the Roberge-Weiss (RW) transition at �q=T ¼
�=3þ 2�k=3, where k is an integer [5]. The RW transition
involves a shift from one Zð3Þ sector to another in the
deconfined phase. This transition is a remnant of the Zð3Þ
symmetry of the pure gauge theory, which is explicitly
broken in the presence of fermions of finite mass. Note
that in this case the Polyakov loop is not an exact order
parameter. Using perturbation theory [5], Roberge and
Weiss showed that this phase transition is first-order. This
was confirmed in subsequent lattice simulations [8]. While
it was expected that the RW transition is a signature of the
deconfined phase [21], the transition line, which is parallel*kmorita@yukawa.kyoto-u.ac.jp
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to the temperature axis at �I=T ¼ �=3, terminates at a
temperature above the deconfinement transition tempera-
ture at vanishing chemical potential. Since the character-
istics of the end point and its implications for the phase
diagram at real � are still debated [16,17,22–26], it is
interesting to explore the phase structure at imaginary
chemical potential in an effective model. The aim of this
paper is to characterize the phase structure especially of the
confinement-deconfinement transition of QCD at imagi-
nary chemical potential in the framework of an effective
model which exhibits the relevant symmetries.

In this work, we use the Polyakov-loop-extended
Nambu-Jona-Lasinio (PNJL) model [27,28]. The NJL
model [29,30] describes many aspects of QCD related to
chiral symmetry [31]. This model, however, lacks confine-
ment. On the other hand, thermal models with internal
gauge symmetry have been studied. These models reveal
a RW transition [32,33] while chiral symmetry is not
realized. The PNJL model is an effective model of QCD,
which ameliorates some of the shortcomings of the NJL
model by introducing a coupling of the quark field to a
uniform background gauge field A0. It has been demon-
strated that the PNJL model reproduces the RW transition
[34]. The authors of Ref. [34] have studied the phase
structure of the PNJL model in detail (see also
[22,24,35–39]). These studies indicate that various im-
provements are necessary in order to reproduce the lattice
data. In this paper, applying the simplest interaction term
in the PNJL model as introduced in Ref. [34], we focus
on differences in the behavior of the order parameters
dependent on the parametrizations of the effective
Polyakov-loop potential. We characterize the phase struc-
ture qualitatively through a systematic comparison of the
results for different Polyakov-loop potentials and give
perspectives on the nature of the phase transitions at
imaginary chemical potential.

We introduce a new quantity, which characterizes the
confinement-deconfinement transition based on the char-
acteristic dependence of the chiral condensate on the
imaginary chemical potential. The relation of this parame-
ter to the so-called dual order parameter [40] is discussed.

The paper is organized as follows: in the next section, we
briefly review the basic properties of the QCD partition
function which are relevant for this study. The model is
introduced in Sec. III and results of the numerical calcu-
lation are presented in Sec. IV. In Sec. V we discuss the
parameters characterizing the confinement-deconfinement
transition, and finally in Sec. VI we summarize.

II. GENERAL PROPERTIES OF THE QCD
PARTITION FUNCTION AT IMAGINARY

CHEMICAL POTENTIAL

The partition function of the SUðNcÞ gauge theory

with fermions, is characterized by the number operator N̂¼R
d3xqyq, at imaginary chemical potential�¼�I=T¼��I.

ZGðT; V; �Þ ¼ Tr½e��Hþi�N̂�: (2)

The partition function can be expressed in terms of the
functional integral

ZGðT; V:�Þ ¼
Z

DqD �qDA�e
�SEð�;�Þ (3)

where SE is the Euclidean action

SE¼
Z �

0
d�

Z
d3x �qð� �D�mÞq�1

4
G2� i

�

�
qyq: (4)

In (3), the gauge and quark field obey periodic and anti-
periodic boundary conditions in the temporal interval
½0; ��, respectively. The particle-antiparticle symmetry
implies, that ZG is an even function of �, ZGðT; V;��Þ ¼
ZGðT; V; �Þ.
By performing the change of variables q ! ei��=�q, the

explicit dependence on imaginary chemical potential in the
action can be removed and converted into a modified
boundary condition [5,21]

qðx; �Þ ¼ �ei�qðx; 0Þ: (5)

Then the ZðNcÞ transformation

q ! Uq; A� ! UA�U
�1 � ði=gÞð@�UÞU�1 (6)

withUðx; �Þ ¼ expð2�ik=NcÞUðx; 0Þ leaves the action and
the functional measure invariant, but modifies the bound-
ary condition

qðx; �Þ ¼ �ei�eð2�i=NcÞkqðx; 0Þ; (7)

where k is an integer [5,21].A comparison ofEqs. (7) and (5)
reveals that the partition function is periodic with respect to
finite shifts of �

ZGðT; V; �Þ ¼ ZG

�
T; V; �þ 2�k

Nc

�
: (8)

This periodicity is a remnant of the ZðNcÞ symmetry, the
center symmetry of the SUðNcÞ gauge group. In the presence
of fermions, the ZðNcÞ symmetry is explicitly broken. In
other words, the partition function is invariant under
the transformation � ! �þ 2�k=Nc combined with the
ZðNcÞ transformation. This symmetry was dubbed
‘‘extended ZðNcÞ symmetry’’ in Ref. [34]. It is easy to see
that the thermodynamic potential � ¼ �T lnZG and the

chiral condensate � � h �qqi ¼ � 1
V

@�
@m0

, with m0 being the

current quark mass, have the same periodicity.
Roberge and Weiss noted the existence of the first-order

transition at � ¼ �=Nc þ 2�k=Nc in the deconfined phase
[5]. It was expected that the RW transition takes place at the
same temperature as the confinement-deconfinement tran-
sition temperature Td. Lattice simulations, however,
showed that the end point of the RW transition is at a
temperature TE, which is higher than Td. A schematic phase
diagram for imaginary chemical potential is shown in Fig. 1.
The nature of the chiral and confinement-deconfinement
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transition at finite� is not fully understood yet. First, there is
no a priori reason that these two transitions coincide. LGT
simulations, however, show that the two transitions take
place at approximately the same temperature [8,10,16].
Second, the order of the transition depends on the quark
mass and the number of flavors. For Nf ¼ 2 and Nc ¼ 3

(this case will be explored in this paper), Ref. [16]
shows that for m�=m� ’ 0:9 the chiral and confinement-

deconfinement transition at � ¼ 0:92ð�=3Þ is of the cross-
over type, implying that the transition at the RWend point is
second-order. On the other hand, Refs. [17,23] have dem-
onstrated that for light and heavy quark masses, the phase
transition at TE is first-order. In this case, the first-order RW
line continues along the dashed lines and terminates at a
critical end point which is located at a value of the imagi-
nary chemical potential range 0< �<�=Nc.

In this paper, we do not attempt to obtain a fit of
the PNJL model to lattice results at imaginary chemical
potential. Rather, we focus on exploring qualitative
features of the phase structure of the model and their
origin.

III. PNJL MODEL

A. Formulation

Studies of the phase diagram of strongly interacting
matter at imaginary chemical potential within effective
models, requires a model with the same symmetry struc-
ture as QCD. The most important symmetries which must
be accounted for are the extended Zð3Þ and the chiral
symmetries. In this article, we employ the Polyakov-
loop-extended Nambu-Jona-Lasinio (PNJL) model with
Nf ¼ 2 and Nc ¼ 3 [27,28].

The Lagrangian of the two-flavor PNJL model with a
four-quark interaction is given by

L ¼ �qði��D
� �m0ÞqþGs½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�

�Uð�½A�;��½A�;TÞ: (9)

In the covariant derivative D� ¼ @� � iA�, only the tem-
poral component A0 of the gluon field A� ¼ gAa

�	
a=2 is

included. The gluon field is treated as a classical back-
ground field, whose dynamics is encoded in the effective
potential U. The gluon field is expressed in terms of the
traced Polyakov loop and its conjugate

� ¼ 1

3
hTrcLi; �� ¼ 1

3
hTrcLyi; (10)

where the trace is taken over color space and

LðxÞ ¼ P exp

�
i
Z �

0
d�A4ðx; �Þ

�
: (11)

Here, A4 ¼ iA0 while P denotes the path ordering in
Euclidean time �. In the Polyakov gauge, the matrix L
reduces to the diagonal form L ¼ diagðei
1 ; ei
2 ;

e�ið
1þ
2ÞÞ [27]. Note that, in general, �� is not the com-
plex conjugate of �. At real chemical potential, both �
and �� are real, and at � � 0 their values differ [41].
At imaginary chemical potential, �� is the complex
conjugate of � and they have nonzero imaginary parts
[34]. Therefore, in the discussion below, we use the
notation

� ¼ j�jei
; (12)

�� ¼ j�je�i
 (13)

for imaginary �. The extended Zð3Þ symmetry leads to the
following properties of the Polyakov loop [34]:

���������
�
�þ 2�k

3

���������¼ j�ð�Þj; (14)

j�ð��Þj ¼ j�ð�Þj; (15)




�
�þ 2�k

3

�
¼ 
ð�Þ � 2�k

3
; (16)


ð��Þ ¼ �
ð�Þ: (17)

In the mean-field approximation, the thermodynamic
potential can be written in terms of quark quasiparticles
with a dynamical massM, momentum p ¼ jpj, and energy
Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
p

[27,34]
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FIG. 1 (color online). Schematic phase diagram on T � �
plane. The solid line denotes the first-order Roberge-Weiss
transition line which terminates at T ¼ TE, while the dashed
line shows the transition line of the chiral and confinement-
deconfinement transitions. The arrows labeled A–C indicate
paths probed in Sec. IV.
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�ðT;V;�Þ

¼�4V
Z d3p

ð2�Þ3
�
3ðEp�E0

pÞþ 1

�
ln½1þ3ð�þ��e��E�

p Þ

�e��E�
p þe�3�E�

p �þ 1

�
ln½1þ3ð��þ�e��Eþ

p Þe��Eþ
p

þe�3�Eþ
p �
�
þðGs�

2þUÞV: (18)

The term in the first line represents the ultraviolet divergent
vacuum fluctuations. As usual, we introduce a three-
momentum cutoff � in the momentum integration to regu-
larize the vacuum contribution. We subtract the vacuum

term with the single-quark energy E0
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

q
, so that

the vacuum contribution vanishes when the chiral symme-
try is restored, as in Ref. [41]. Moreover, we use a short-
hand notation, where the imaginary chemical potential is
subsumed in E�

p ¼ Ep � i�=�. The dynamical mass M is

related to the current quark mass and the chiral condensate
� ¼ h �qqi by M ¼ m0 � 2Gs�. The term Gs�

2 in the last
line is due to the meson potential in the Lagrangian (9).

So far, two types of the Polyakov-loop effective poten-
tial U have been widely used. The polynomial potential
has as a general Zð3Þ symmetric form [28,42]

Upoly

T4
¼ �b2ðTÞ

2
���� b3

6
½�3 þ ð��Þ3� þ b4

4
ð���Þ2

(19)

with

b2ðTÞ ¼ a0 þ a1
T0

T
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (20)

The coefficients are determined by fitting the equation of
state and the expectation value of the Polyakov loop to
lattice data of pure gauge theory [43,44] in Ref. [28]. In
the other widely used variant, a logarithmic potential
motivated by the strong coupling expansion is imple-
mented [27,45]

Ulog

T4
¼�aðTÞ

2
���þbðTÞlogf1�6���þ4½�3þð��Þ3�

�3ð���Þ2g (21)

where

aðTÞ¼ a0þa1
T0

T
þa2

�
T0

T

�
2
; bðTÞ¼b3

�
T0

T

�
3
: (22)

The above parameterization for the temperature depen-
dence was introduced in [45] and the constants are deter-
mined by fitting lattice data of pure SU(3) theory. In
Ref. [27], a similar functional form in � but with parame-
terization of the temperature dependence was introduced.
In this potential, however, one of the parameters is fixed to
reproduce a simultaneous crossover transition for the chiral
and deconfinement transitions rather than the first order

transition in the pure gauge theory. We refer to [46] for
discussion. This difference makes it difficult to perform a
systematic comparison of the effect of quarks near the
deconfinement transition. If we refit the parameters to
reproduce the pure SU(3) lattice data, we expect to have
similar results to those from the logarithmic potential (21)
since the target space and the transition temperature are the
same. In this paper, we focus on the two potentials
Eqs. (19) and (21) which equally reproduce the Polyakov
loop and thermodynamics as well as the first-order
confinement-deconfinement phase transition. We use the
parameters determined in Refs. [28,45]. For convenience,
they are summarized in Tables I and II.
The order parameters, chiral condensate � (or dynami-

cal mass M), modulus of the Polyakov loop j�j, and the
phase of the Polyakov loop 
 are determined numerically
by solving the coupled equations of motion

@�ðT; V; �;M; j�j; 
Þ
@Xi

¼ 0; Xi ¼ M; j�j; 
: (23)

The phase diagram in the T � � plane of the polynomial
potential model (19) has been studied in Refs. [34,35].
In this model, a first-order Roberge-Weiss transition at
� ¼ �=3� 2�k=3, a second-order chiral transition in the
chiral limit and a crossover one at finite quark masses as
well as a crossover confinement-deconfinement transition
were found. However, these features depend on the choice
of the Polyakov-loop effective potential and further quark
interaction terms are required to reproduce lattice results
quantitatively [24,35].
In this paper, we restrict ourselves to the simplest quark-

quark interaction form, as shown in Eq. (9) and focus on
the behavior of the order parameters in the T � � plane for
the polynomial and logarithmic Polyakov loop potentials.

B. Some analytic insights

Before proceeding to the full numerical computation, it
is useful to explore the general properties of the thermody-
namic potential (18) analytically in a few limiting cases.
The momentum integration in Eq. (18) can be carried out
analytically if we first expand the logarithmic terms in the
integrand in powers of e��Ep 	 1. We thus find, keeping
terms up to order ðe��EpÞ3,

TABLE II. Parameters in the logarithmic potential (21).

T0[MeV] a0 a1 a2 b3

270 3.51 �2:47 15.22 �1:75

TABLE I. Parameters in the polynomial potential (19).

T0[MeV] a0 a1 a2 a3 b3 b4

270 6.75 �1:95 2.625 �7:44 0.75 7.5
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� ’ ðGs�
2 þUÞV ��0 � 2V

��2

�
3ð�ei� þ��e�i�Þ

Z �

0
dpp2e��Ep þ 3

2
fe2i�ð2�� � 3�2Þ þ e�2i�ð2�� 3��2Þg

�
Z �

0
dpp2e�2�Ep þ f2ð1� 9���Þ cos3�þ 9e3i��3 þ 9e�3i���3g

Z �

0
dpp2e�3�Ep

�
: (24)

Here, �0 is the temperature independent vacuum term.
While it is necessary to introduce a finite cutoff for this
term, due to the nonrenormalizability of the PNJL model,
taking � ! 1 in the thermal part does not affect the
qualitative features discussed below. Thus the momentum
integration of the thermal part can be carried out explicitly,
resulting in modified Bessel functions Kn.

We first consider the low temperature limit � ¼
�� ¼ 0 in order to explore the effect of the Polyakov
loop in the confined phase. In this case, the Polyakov
loop effective potential, U, vanishes. Furthermore, the
gap equation for the dynamical mass M, obtained from
Eq. (24), @�=@M ¼ 0, reduces to

M ’ m0 þ 6Gs

�2
½M3fð�=MÞ �m3

0fð�=m0Þ�

� 8GsM
2T cos3�

�2
K1ð3M=TÞ; (25)

where

fðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
� lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ: (26)

Note that, for 3M=T 
 1,

K1ð3M=TÞ �
ffiffiffiffiffiffiffiffi
�T

6M

s
e�3M=T: (27)

The gap equation, Eq. (25), implies that the� dependence
of the dynamical mass is completely determined by cos3�
term. Consequently, M is a periodic function of � with the
period 2�=3, as expected. For small temperatures, quark

degrees of freedom are strongly suppressed, �e�3M=T ,
since, for a vanishing Polyakov loop, only three-quark
clusters survive. The chiral phase transition takes place
when the thermal contribution in the gap equation is
of the same order as the vacuum term. If the condition
� ¼ �� ¼ 0 is strictly enforced, the chiral transition is
shifted to very high temperatures. Because the thermal
excitation of quarks in this limit is possible only in three-
quark clusters, the resulting thermodynamics is qualita-
tively similar to that of the nucleonic NJL model, which
also yields a very high chiral transition temperature [47].

In the (naive) high-temperature limit, � ¼ �� ! 1, the
gap equation reduces to that of the ordinary NJL model,

M ¼ m0 þ 6Gs

�2
½M3fð�=MÞ �m3

0fð�=m0Þ�

� 24GsM
2T cos�

�2
K1ðM=TÞ: (28)

Now, the � dependence of the dynamical mass is determined
by cos� and the thermal factor is proportional to K1ðM=TÞ,

appropriate for the thermal excitation of single quarks. In
this case, the dynamical mass has lost the original periodic-
ity of the partition function (8), which is respected in the
low-temperature limit (25).
At � ¼ �=2, the thermal contribution in (28) vanishes

and consequently the dynamical mass equals its vacuum
value, irrespective of temperature. Hence, in this approxi-
mation the phase boundary is shifted to higher tempera-
tures as the imaginary chemical potential is increased, and
eventually approaches T ¼ 1 in the limit � ! �=2. In
general, the thermal contribution is of the form
�P

nLn cosn�K1ðnM=TÞ with Ln > 0. Because of the
higher order terms, the transition temperature remains
finite, but the positive curvature of the phase boundary
persists. 1 On the other hand, for real chemical potentials
the leading thermal contribution is proportional to
T cosh��. Since coshx is an increasing function of x,
this implies that the chiral transition temperature decreases
as the real chemical potential grows.
In the high-temperature limit, as implemented above, the

original periodicity of the partition function is lost because
the phase of the Polyakov loop is neglected. In fact, at
imaginary chemical potential, the high temperature limit of
the PNJL model is in general not the NJL model. The
Roberge-Weiss transition, characterized by discontinuous
jumps of the phase
, preserves the periodicity 2�=3 in the
deconfinement phase.

IV. BEHAVIOR OF THE ORDER PARAMETERS
AT IMAGINARY CHEMICAL POTENTIAL

We now discuss the characteristics of the order parame-
ters obtained by solving the full gap equation Eq. (23).
Besides the Polyakov loop potentials given in the previous
section, the model has three parameters in the fermion
sector. We use

Gs ¼ 5:498 GeV�2; (29)

� ¼ 0:6315 GeV; (30)

which reproduce the vacuum pion mass and pion decay
constant at zero temperature and density, when the current
quark mass is fixed to the value m0 ¼ 5:5 MeV [31].
In what follows, we compare the results obtained for a

finite pion mass with those corresponding to the chiral
limit, m0 ¼ 0. In the latter case, the model belongs to the
universality class of the three-dimensionalOð4Þ spin model

1Owing to the reflection symmetry and periodicity, it is
sufficient to consider the interval 0 � � � �=3.

PROBING DECONFINEMENT IN A CHIRAL EFFECTIVE . . . PHYSICAL REVIEW D 84, 076009 (2011)

076009-5



and exhibits a second-order phase transition at finite tem-
perature and small values of the real chemical potential.

With the parameter set given above, we find the chiral
condensate and the Polyakov loop shown in Fig. 2. The
dependence of the order parameters on the temperature
shows that in the chiral limit, the chiral transition is indeed
second order, while the confinement-deconfinement tran-
sition is of the crossover type. For finite quark mass,
m0 ¼ 5:5 MeV, shown in the lower panel, the chiral order
parameter and the Polyakov loop both exhibit smooth
crossover transitions. Thus, the explicit symmetry breaking
induces a qualitative change of the chiral condensate, while
for the Polyakov loop this dependence is negligible.
Furthermore, a comparison of the two parametrizations
of the Polyakov-loop effective potential shows that the
transition is smoother for the polynomial potential than
for the logarithmic one.

A. Behavior across � ¼ �=3

We now consider the order parameter as a function of �
close to � ¼ �=3. In Fig. 3, we show the phase of the
Polyakov loop 
 as a function of � in the chiral limit. We
do not show results for nonzero quark mass, since the
results are indistinguishable from those shown in Fig. 3.

At low temperatures (arrow A in Fig. 1), the phase of the
Polyakov loop changes smoothly from 0 at � ¼ 0 to��=3

at � ¼ �=3. Subsequently, the phase continues to decrease
and finally approaches to�2�=3 at � ¼ 2�=3, as required
by the symmetry, Eq. (16). This behavior is independent
of the choice of U. At temperatures beyond TE, the
transition is first order (arrow C in Fig. 1). For instance, at
T ¼ 280 MeV the phase jumps from 
 ¼ 0 to �2�=3 at
� ¼ �=3. This is the Roberge-Weiss transition [5], where
the phase of the Polyakov loop jumps from one Zð3Þ sector
to another. The RW transition is common to both parame-
trizations ofU. This is natural, since the RW transition is a
consequence of theZð3Þ symmetry of the pure gauge theory,
which is incorporated in both potentials. The detailed be-
havior around TE is, however, different between the two
potentials. Thus, at T ¼ 250 MeV for the logarithmic po-
tential, which is below the end point of the RW transition
(TE ’ 255 MeV), the phase is discontinuous at � � �=3.
This implies that the phase boundary, which is crossed by
arrow B in Fig. 1, is first-order at this temperature. By
contrast, in the polynomial case the phase is a smooth
function of � at any temperature below the RW end point
(TE ’ 275 MeV). As we discuss below, this reflects the
different order of the RWend point for the two potentials.
We note that the logarithmic potential is defined in a

limited domain, characterized by positivity of the argu-
ment of the logarithm, while for the polynomial potential
there is no such restriction. In fact, for high temperatures
(e.g. T ¼ 280 MeV) the Polyakov loop, plotted for the
polynomial potential as a function of � in the complex �
plane, leaves the so-called target space, defined by requir-
ing that the logarithmic potential is real [48].
In Fig. 4, we show the modulus of the Polyakov-loop j�j

as a function of�. At high temperatures, theRW transition is
manifested by a cusp at � ¼ �=3, while at lower
temperatures j�j varies smoothly for both parametrizations
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of the Polyakov-loop potential. However, at intermedi-
ate temperatures, the two potentials yield qualitatively dif-
ferent results, as illustrated by the discontinuities in j�j
obtained for the logarithmic potential near � ¼ �=3 at
T ¼ 250 MeV. For the polynomial potential we find a
continuous confinement-deconfinement transition at imagi-
nary chemical potential, while for the logarithmic potential
the transition is first-order at intermediate temperatures.We
return to this point in the following subsection.Herewe note
only that the first-order transition is reflected also in a
sudden change of the phase at T ¼ 250 MeV, as shown
in Fig. 3.

Within the PNJL model, the transition from one Zð3Þ
sector to another can be understood in the following way.
In the high-temperature limit, the dominant contribution to
the thermodynamic potential is given by the single-quark
excitation term in Eq. (24) (the first term in the square
bracket), which yields a contribution to ���cosð�þ
Þ.
The only additional 
-dependent term in � is the
Polyakov-loop potential U. At high temperature, U has
the three local minima at 
 ¼ 0 and �2�=3. For each
value of �, the physical vacuum is obtained by finding the
absolute minimum of the two terms. As illustrated in
Fig. 5, the physical vacuum changes from one minimum
to the next as � crosses �=3þ 2�k=3. While both poten-
tials have the periodicity �� ¼ 2�, when 
 is artificially
fixed in one Zð3Þ sector, the complete thermodynamic
potential acquires the periodicity �� ¼ 2�=3 owing to
the 
 dependence of U.

Similarly, the chiral condensate � is also continuous
near � ¼ �=3 at temperatures lower than TE, irrespective
of the quark mass and the potential, as shown in Fig. 6.
At temperatures higher than TE, it develops a cusp for
both parametrizations, a manifestation of the RW transi-
tion. Furthermore, at temperatures above T�ð� ¼ �=3Þ,
� vanishes for any value of � in the chiral limit, as shown
for T ¼ 340 MeV. For a finite quark mass, the cusp
persists to temperatures much higher than T� but finally
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disappears, as shown in Fig. 6 for m0 ¼ 5:5 MeV and
T ¼ 500 MeV.

In the chiral limit, for temperatures in the interval be-
tween T�ð� ¼ 0Þ and T�ð� ¼ �=3Þ, there is a second-order
chiral transition at nonzero �, as shown in Fig. 6, (see also
arrow B in Fig. 1). For finite quark masses, this transition is
of the crossover type, as illustrated in the lower panel of
Fig. 6 for m0 ¼ 5:5 MeV. Also, the temperature depen-
dence of � is clearly different for the two potentials. In
particular, there is a discontinuity in � near � ¼ �=3 at
T ¼ 250 MeV for the logarithmic potential. The values of
temperature and imaginary chemical potential correspond-
ing to the discontinuity are identical to the ones obtained
for the Polyakov loop.

B. First-order phase transition at T < TE

In this section, we focus on the first-order transition
found in a limited temperature range below the Roberge-
Weiss transition for the logarithmic potential. In Fig. 7, we
illustrate this result at T ¼ 250 MeV. In each panel, two
lines are shown: one is the solution of the gap equations
approaching the transition from small �, while the other is
obtained by approaching from the opposite side.

The existence of two solutions in a certain range of �
shows that there are two local minima in the thermody-
namic potential. The first-order phase transition takes place
at the value of �, where the thermodynamic potential in the
two local minima is degenerate. At T ¼ 250 MeV, this
happens at � ¼ 0:911ð�=3Þ. The lines terminate where
the corresponding minimum disappears. Thus, the system
exhibits hysteresis, a characteristic of a first-order phase
transition.
Although this transition is related to the confinement-

deconfinement transition, the discontinuity is reflected also
in the chiral condensate �, owing to the coupling between
the Polyakov loop and the chiral order parameter.

C. The RW end point

The existence of the first-order transition, discussed in
the previous section, is closely related to the characteristics
of the RW end point. In Fig. 8, we show the temperature
dependence of the Polyakov loop along the line � ¼ �=3
(cf. Fig. 1) for the two potentials in the chiral limit. The
nature of the RW end point, as characterized e.g. by the
phase of the Polyakov loop, differs between the two po-
tentials. While the polynomial potential yields a continu-
ous transition, the logarithmic one exhibits a discontinuity
in the phase and magnitude of the Polyakov loop.
Above the RW end point (T ¼ TE), the phase of the

Polyakov loop can take two values on the � ¼ �=3 line,
corresponding to different Zð3Þ sectors (cf. Fig. 5). Thus, in
the case of the polynomial potential, the phase bifurcates
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smoothly at the RW end point, while for the logarithmic
potential, the phase changes discontinuously at this point.
In the former case, the RW end point is a second-order
point, while in the latter it is a triple point. We note,
however, that a different parameterization for the logarith-
mic potential [27] also yields a second-order RW end
point [22].

Consequently, the characterization of the RW end point
depends on the parametrization of the Polyakov-loop po-
tential, but, within the framework considered here, it is
independent of the value for the quark mass for the loga-
rithmic potential. On the other hand, in LGT calculations it
is found that the nature of the RW end point depends
crucially on the quark mass; for both two- and three-flavor
QCD, it is a second-order end point at intermediate quark
masses and a triple point for large and small masses
[17,25]. In Ref. [24], it is argued that in order to reproduce
the quark mass dependence of the RW transition, a �
dependent fermion coupling, motivated by functional re-
normalization group analyses [49,50], is required. This
indicates that in QCD the interplay between chiral sym-
metry breaking and confinement is more complicated than
in the present model.

Finally, in Fig. 9 we summarize the results on the phase
diagram in the T � � plane for the two Polyakov-loop
potentials. The (pseudo-)critical temperature for the

deconfinement transition corresponds to a maximum of
the temperature derivative of the modulus of the
Polyakov-loop dj�j=dT. The critical end point (CEP),
obtained for the logarithmic potential at 0< �< �=3, is
a consequence of the triple point at T ¼ TE and � ¼ �=3.
In comparison of the two potentials, we have seen that

the phase transitions at imaginary chemical potential are
shifted to higher temperatures compared to those at real
chemical potential. This implies that dynamical quark
mass becomes heavier at fixed temperature (see Fig. 6),
thus the Polyakov-loop potential U, which is independent
of �, makes a dominant contribution to the thermodynamic
potential. Furthermore, at imaginary chemical potential,
the target space of the Polyakov loop is probed through the
change of the phase 
. Therefore, a comparison of the
resulting phase diagram at the imaginary chemical poten-
tial region with that obtained in LGT calculations, yields
important constraints on the effective Polyakov-loop
potential.

D. Critical end point of confinement-deconfinement
transition

In Ref. [51], it was found that as the pion mass in the
quark-meson model is reduced from its physical value, an
additional critical end point appears on the phase boundary
at small (real) values of the chemical potential. Since the
coupling to the Polyakov loop is not accounted for in [51],
the additional CEP is associated with the chiral phase
transition. 2 In this section, we explore the dependence of
the confinement-deconfinement CEP, which appears at
imaginary � for the logarithmic potential, on the model
parameters. We find that the location of this CEP depends
on the four fermion coupling constant Gs.
In Fig. 10, we show the phase diagram of the model in

the chiral limit for different values of Gs. We include both
real and imaginary values of � by showing the phase
boundaries in T ��2 plane. The upper panels show cases
where Gs is smaller, while the lower ones show cases
where it is larger than or equal to the reference value
(29). Lines appearing for �2 <�ð�T=3Þ2 (the boundary
is indicated by the dotted line) are images of those in the
region �ð�T=3Þ2 � �2 � 0; the mapping is defined by
the periodicity of the partition function.
We identify the (pseudo)critical temperature by finding

the maximum of the derivative of the corresponding order
parameter with respect to temperature. For real values of
the chemical potential, the Polyakov loop and its conjugate
are real but take on different values [41]. Here, we use
d�=dT for the definition of the deconfinement transition.
A different definition, based e.g. on the Polyakov-loop
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2The fact that the model calculation of Ref. [51] yields a first-
order chiral transition at both small and large values of � in the
chiral limit, is presumably due to the neglect of the fermion
vacuum loop [52].
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susceptibility [41], would lead to a slightly different
value of the pseudocritical temperature of the crossover
transition.

For the first-order transition at large�2, one finds double
peaks in d�=dT (cf. Fig. 10). Here, we identify the posi-
tion of the transition with the maximum which smoothly
extrapolates to the deconfinement transition at vanishing
chemical potential and to the chiral transition at T ¼ 0,
where the peak structure is simple. We note that any
ambiguity in the location of the phase boundary does not
affect the discussion below.

Qualitatively the features of the phase diagram can be
classified as follows: The NJL sector has a critical coupling
Gcr

s ¼ �2=ð2Nc�
2Þ for the gap equation to have a non-

trivial solution [31]. This implies that, with the present
three-momentum cutoff, there is no spontaneous break-
down of chiral symmetry for Gs < 4:125 GeV�2.
Therefore, in the upper-left panel (Gs ¼ 3:5 GeV�2), the
system is everywhere in the chirally symmetric phase.
In this case, the RW end point is still a triple point,
and the CEP of the deconfinement transition is close by,
at � ¼ 0:95�=3.

For Gs > Gcr
s , there is a chiral transition at vanishing

chemical potential. As seen in the upper-center panel, there
is a precursor at imaginary chemical potential for Gs

slightly smaller than Gcr
s . The chiral symmetry is sponta-

neously broken in a small region at intermediate tempera-
tures adjoining the �2 ¼ �ð�T=3Þ2 line. This behavior
can be understood along the lines presented in Sec. III B.
Although the Boltzmann approximation, Eq. (24), might

not be a good approximation since the system is in the
chirally symmetric phase even at low temperatures, the
Polyakov loop is small so that the thermal contribution is
dominated by the cos3� term as in Eq. (25). Since this term
is positive in the �=6< �<�=2, it adds to the vacuum
term and a nontrivial solution appears at finite temperature
where the system enters the broken phase.
As the temperature is increased further, however, the

Polyakov loop is nonzero and the one- and two- quark
excitations contribute to the gap equation, driving the
system back into the symmetric phase. Consequently,
near the RW end point, the chiral and deconfinement
transitions occur simultaneously and the chiral transition
is also of first order. Note that the lower end point
of the chiral transition follows the �2 ¼ �ð�T=3Þ2 line
and arrives at the origin when Gs ¼ Gcr

s . For Gs beyond
this value, the chiral transition line enters the �2 > 0
half-plane.
As Gs is increased beyond Gs ¼ Gcr

s , the location of the
deconfinement CEP moves to larger�2 and finally reaches
real values of the chemical potential at Gs ’ 6:5 GeV�2.
At the same time, the chiral transition line moves to larger
T and �2. The behavior of the CEP can be directly related
to changes of the chiral transition with increasing Gs.
Increasing Gs leads to a larger dynamical massM ¼ m0 �
2Gs� in the chirally broken phase. Moreover, j�j increases
with Gs since a stronger scalar coupling leads to larger
quark condensate. This raises both the dynamical mass and
the chiral transition temperature. On the other hand, a
modified Gs does not alter the Polyakov-loop sector of
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the model. Consequently, near the deconfinement transi-
tion, the dynamical mass of the quarks increase with Gs

and the system approaches a pure gauge theory owing to
the thermal suppression of quark degrees of freedom. Thus,
as shown in Fig. 11, the first-order phase transition of the
pure gauge theory is recovered at Gs ¼ 6:3 GeV�2, only
15% above the reference value (29).

One may wonder why this mechanism is not effective for
the polynomial potential, since it also exhibits a first-order
phase transition in the absence of fermions. In fact, we find
that the polynomial potential does show the same behavior,
but at much larger values of the scalar coupling. The RW
end point, which is second-order at Gs ¼ 5:498 GeV�2, is
first-order starting atGs ¼ 12:4 GeV�2, and the deconfine-
ment CEP reaches �2 ¼ 0 at Gs ¼ 25 GeV�2, 4.5 times
larger than the reference value.

The origin of this quantitative difference between the
polynomial and logarithmic potentials is due to the much
weaker first-order phase transition (smaller discontinuity
in �) exhibited by the polynomial potential in the heavy
quark limit. At Gs ¼ 25 GeV�2, we find a dynamical
quark mass of about 2.5 GeV. Thus, for a quark mass less
than 2.5 GeV the first-order transition is smoothened to a
crossover transition. By contrast, for the logarithmic po-
tential this happens at a much smaller dynamical quark
mass of 0.4 GeV, owing to the much stronger underlying
first-order transition.

We note that a first-order confinement-deconfinement
transition emerges at real chemical potential also in the large
Nc limit of the PNJL model [53], as explored in the context
of the recently proposed quarkyonic phase [54]. Indeed,
the effect of strengtheningGs is similar to that of increasing
Nc since Gs and Nc appear in the factor GsNc in the gap
equation for the dynamical mass (see Eq. (16) in Ref. [53]).
While we suppress the quark contribution to the thermody-
namics by increasing the dynamical mass by means of Gs,
a large value ofNc is accompanied by a 1=Nc suppression of
the quark contribution. Both procedures yield a gluon

dominated system and thus give a first-order confinement-
deconfinement transition.
Note, however, that the two procedures differ in detail.

Increasing Gs at fixed Nc preserves the Polyakov-loop
potential but modifies the quark mass, while in the large
Nc limit at fixed GsNc the quark mass remains unchanged
but the Polyakov-loop potential is modified. This means
that when we increase Gs at fixed Nc we change the
characteristic scale of the chiral symmetry breaking.
Although this does not correspond to the physical situation,
since QCD has a unique scale, �QCD, our result could be

useful for exploring the interplay between the chiral phase
transition and deconfinement.

V. DUAL PARAMETER FOR THE
CONFINEMENT-DECONFINEMENT

TRANSITION

In this section, we consider dual parameters which
capture the characteristic feature of the confinement-
deconfinement transition discussed above. Recently, a
dual parameter has been introduced by considering a gen-
eralized boundary condition for fermions

qðx; �Þ ¼ ei’qðx; 0Þ: (31)

Here, ’ is the so-called twisted angle. The dual quark con-

densate �ðnÞ is defined as the n-th Fourier coefficient of the
chiral condensate as a function of the twisted angle [40]

�ðnÞðTÞ ¼ �
Z 2�

0

d’

2�
e�in’�ðT;’Þ: (32)

The chiral condensate �ðT;’Þ is defined in terms of ’
by [40]

�ð’Þ ¼ � 1

V
hTr½ðm0 þD’Þ�1�iG: (33)

InRef. [40], this quantitywas introduced based on the lattice
regularization. The ’ dependence of Tr½ðm0 þD’Þ�1� can
be written down explicitly by using the link variable. It
reduces to the ordinary chiral order parameter in the limit
ofm ! 0 andV ! 1. An implementation in the continuum
theory has been done in the framework of Dyson-Schwinger
equation [55]. Themost interesting quantity is that ofn ¼ 1,
which is called dressed Polyakov loop. Because of the
relation to the ordinary Polyakov loop, it can be regarded
as an order parameter of the confinement-deconfinement
transition.
From the fermionic boundary conditions (31), one im-

mediately finds that this is equivalent to introducing
the imaginary chemical potential [Eq. (5)]. The only
difference is that ’ ¼ �� corresponds to the usual anti-
periodic boundary condition in the twisted angle while
� ¼ 0 does so in the imaginary chemical potential. In
this case, the relation between ’ and � is given by just a
shift of ��,

’ ¼ �� � ðmod 2�=NcÞ: (34)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 4.5  5  5.5  6  6.5
 0.22

 0.24

 0.26

 0.28
µ c2  [

G
eV

2 ]

T
d
 [

G
eV

]

Gs [GeV-2]

µc
2 (left)

Td (right)

FIG. 11 (color online). Location of the CEP as a function of
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Furthermore, one notes that the definition of dual conden-
sate (32) is formally similar to the projection on the ca-
nonical partition function (1).

However, the LGT calculations demonstrate that �ð’Þ
exhibits quite different behavior from that for imaginary
chemical potential [56]. �ð’Þ shows a periodicity of 2�
in ’, not 2�=3 which is required by the RW periodicity.
The origin of this difference is the expectation value of the
operator h� � �iG in Eq. (33). The subscript G denotes the
path integral over the gauge field with a fermion determi-
nant which obeys the ordinary boundary condition. The
change of the boundary condition (31) applies only to the
Dirac operator. In the case of the imaginary chemical
potential, different � yields a different fermion determi-
nant, while in the case of the twisted angle the background
field does not change with the boundary condition.
Therefore, the ’ dependence of the chiral condensate
differ from � dependence. In the PNJL model, the authors
of Ref. [57] use the value of the Polyakov loop calculated
at � ¼ 0 to obtain the chiral condensate �ð’Þ. This pre-
scription corresponds to varying only the fermionic bound-
ary condition without changing gluonic background. We
will follow the same prescription below. Since the period-
icity 2�=3 in the imaginary chemical potential is preserved
by the RW transition, which is an effect of the Polyakov
loop in the context of PNJL model, the relation (34) holds
for the normal NJL model calculation which does not
couple to Zð3Þ field. In spite of the absence of confinement
in the NJL model, one sees that behavior of the dual chiral
condensate is quite similar to the one obtained from lattice
QCD and the PNJL model [58].

Figure 12 shows the chiral condensate as a function of
the twisted angle ’, obtained by the same method as used
in Ref. [57]. The periodicity is no longer 2�=3. One also
notes that there is broken phase in the region far from
’ ¼ �, even at high temperatures. This is in contrast to
the case of the imaginary chemical potential shown in
Fig. 6 but similar to what was expected from the gap

equation of the NJL model, Eq. (28). Indeed, at ’ ¼ �=2
and 3�=2, which correspond to � ¼ ��=2, the thermal
term vanishes in Eq. (28), resulting in the almost
temperature-independent chiral condensate. On the other
hand, there are no qualitative differences between the
logarithmic potential and the polynomial one. The reason
is that the Polyakov loop enters in the gap equation only as
a constant determined at ’ ¼ � at each temperature.
Let us introduce a new dual parameter by using � instead

of ’ such that it captures the characteristics in the � space.
We define

�ðnÞ
� ðTÞ � 3

2�

Z �=3

��=3
d�e�in��ðT; �Þ: (35)

The integration region is changed to ½��=3: �=3� owing to
the periodicity 2�=3. As discussed in Sec. III B, the physical
meaning of the periodicity is different in the confinement
and deconfinement phases. In the confinement phase, the
periodicity 2�=3 is due to the term cos3� which character-
izes the confinement of the quarks. On the other hand, the
deconfinement phase is characterized by cos� with
a discontinuity at � ¼ �=3þ 2�k=3 caused by the Zð3Þ
transition which thus preserves the periodicity 2�=3.

Therefore, we expect that �ð1Þ
� and �ð3Þ

� exhibit a character-

istic behavior at the confinement-deconfinement transition.
In Figs. 13 and 14, we compare the three parameters

of the confinement-deconfinement transition and their
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FIG. 12 (color online). Chiral condensate � ¼ h �qqi as a func-
tion of the twisted angle ’.
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FIG. 13 (color online). Characteristic parameters (upper) and
their derivatives with respect to temperature (lower) for the
confinement-deconfinement transition in the chiral limit for the
logarithmic potential.
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derivatives with respect to temperature as functions of
temperature. We normalized the dressed Polyakov loop
and the modified dual parameter (35) so that they tend to
0 at low temperature and to unity at high temperature by
�normðTÞ � ½�ðTÞ � �ðT1Þ�=½�ðT2Þ ��ðT1Þ� where we
used T1 ¼ 50 MeV and T2 ¼ 1 GeV.3 The same normal-

ization is applied to the derivatives. Note that �ðnÞ
� before

normalization vanishes at temperature higher than the chi-
ral transition temperature at � ¼ �=3 in the chiral limit
since �ðT; �Þ does so, as seen in Fig. 6. After the normal-
ization, it smoothly approaches unity as one sees in
Figs. 13–16.

One observes that both dual parameters exhibit a behav-
ior similar to the Polyakov loop. The dressed Polyakov loop
is almost parallel to the Polyakov loop in the temperature
region covered in the figure. On the other hand, the modified

dual parameter �ð1Þ
� approaches quickly its limiting value.

The behavior around the transition temperatures reflect the
difference between the two potentials. In the case of the
logarithmic potential, one sees different structures for each
derivative of the order parameters. While the derivative of
the Polyakov loop dj�j=dT shows only one peak corre-
sponding to the pseudocritical temperature, the dressed
Polyakov loop d�1=dT exhibits a two-peak structure. One
agrees with that of d�=dT and the other corresponds to the

chiral transition (see Fig. 2). The derivative of the modified

dual parameter d�ð1Þ
� =dT also shows a peak for the chiral

transition. However, the deconfinement transition appears
only as a shoulder. The polynomial potential shows a
broader peak in d�=dT reflecting the weaker nature of
transition. However, maxima in the dual order parameters
associated with the crossover transition do not appear.
Inclusion of a small quark mass, m0 ¼ 5:5 MeV

slightly modifies the behavior of the characteristic
parameters, as expected from the difference in �.
Figs. 15 and 16 show the three parameters and their
derivatives for m0 ¼ 5:5 MeV. While at finite quark
mass there is little difference in the behavior of the pa-
rameters compared to the m0 ¼ 0 case, distinct peak
structures show up in their derivatives. For the logarithmic
potential, the peak associated with the chiral transition
seen in the chiral limit does not exist in either of the
dual parameters. The remnant of the chiral transition
appears only in the modified dual parameter as a dip.
On the other hand, polynomial potential exhibits much
broader peaks, which correspond to deconfinement
in dj�j=dT and to the chiral transition in the dual
parameters.
Figure 17 shows the dual parameter (32) and (35) for

n ¼ 3. In all the cases, they start by growing, then exhibit a
peak structure and then decrease. This is common for both

�ð3Þ and �ð3Þ
� . This behavior of �ð3Þ

� can be understood by

analyzing �ðT; �Þ, which is shown in Fig. 6. At low T,
it oscillates according to cos3� with an amplitude given
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FIG. 14 (color online). Same as Fig. 13, but for the polynomial
potential.
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FIG. 15 (color online). Same as Fig. 13, but form0 ¼ 5:5 MeV.

3Note that �ð1Þ
� ðT ¼ 0Þ does not vanish since the integration is

from ��=3 to �=3, not from �� to �.
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by the thermal factor. Then�ð3Þ
� , which is proportional to the

amplitude, increases with T. AtT > T�,�ð�; TÞ vanishes in
the interval � ¼ ½0: �c� thus only the region ½�c: �=3�
contributes to the integral. Therefore, �ð3Þ

� has a peak

at T ¼ T� and then decreases. This is not related to

the deconfinement phenomenon and is common for �ð3Þ

and �ð3Þ
� .

If one focuses on the difference between the logarith-
mic and the polynomial potential, however, one finds a
remnant of the deconfinement-confinement transition

in the behavior of �ð3Þ
� . As we have seen in Fig. 7,

�ðT; �Þ has a discontinuity induced by the first-order
confinement-deconfinement transition. It is reflected to

the nonmonotonic behavior of �ð3Þ
� between T ¼ 0:24

and T ¼ 0:26 GeV in the case of the logarithmic potential.
Indeed, the shoulder seen at T ¼ 0:24 GeV corresponds to
the temperature of the CEP, at which �ð�; TÞ has a dis-
continuity, and the second inflection point reflects the RW
end point which is the triple point in this case. This

indicates that the newly introduced dual parameter �ð3Þ
� is

sensitive to the confinement-deconfinement transition at
imaginary chemical potential.

VI. SUMMARY

We have studied the confinement-deconfinement transi-
tion in the PNJL model at imaginary chemical potential
with the simplest interaction. We discussed the origin of
the characteristic periodicity 2�=3 of the order parameters.
It is characterized by cos3� in the confined phase while it is
due to cos� with the RW transition at � ¼ �=3þ 2�k=3
induced by the change of the phase of the Polyakov loop.
We also explored the results from different Polyakov-loop
potentials. We found that the property of the confinement-
deconfinement transition depends on the choice of the
potential in spite of the fact that both potentials exhibit
the first-order phase transition in the absence of quarks.
Substantial differences are seen in both the RW end point
and the behavior of the Polyakov loop at finite �. In the
case of the logarithmic potential, we find that the
confinement-deconfinement transition becomes first-order
near � ¼ �=3 and there is a critical end point of the
transition at imaginary chemical potential. We also find
that the location of the CEP moves with the four fermion
coupling Gs and it reaches real value of the chemical
potential by increasing Gs. This behavior can be under-
stood by the suppression of the quark contribution since
increasing Gs implies larger h �qqi which quantifies the
dynamical quark mass. At large coupling, the existence
of the CEP is independent of the choice of the potential.
However, the polynomial potential requires a larger Gs

because it exhibits a much weaker first-order transition.
Consequently, it seems that the order of the deconfinement
transition is determined by the size of the gap �� in the
Polyakov-loop potential and the quark condensate h �qqi.
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The first-order phase transition influences the behavior
of the chiral condensate as a sudden jump at the critical
imaginary chemical potential. We proposed a modified
dual parameters using the imaginary chemical potential
based on the analogy to the twisted angle in the dual order
parameters. Comparing the n ¼ 1 case with the Polyakov
loop and the dressed Polyakov loop, we found that each
parameter has different sensitivity to the phase transitions.
We showed that the n ¼ 3 case has a characteristic behav-
ior owing to the first-order confinement-deconfinement
transition at intermediate �. We expect that our study is
relevant for understanding the QCD phase diagram.
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