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The temperature dependence of spin currents in insulators at the finite temperature near

zero Kelvin is theoretically studied. The spin currents are carried by Jordan-Wigner
fermions and magnons in one- and three- dimensional insulators. These spin currents
are generated by the external magnetic field gradient along the quantization axis and
also by the two-particle interaction gradient. In one-dimensional insulators, quantum

fluctuations are strong and the spin current carried by Jordan-Wigner fermions shows
the stronger dependence on temperatures than the one by magnons.
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1. Introduction

Recently a new branch of physics and nanotechnology called spintronics1,2 has
emerged and spin transport phenomena in condensed matter systems have been at-
tracting special interests because of applications to spintronics. This research field
has seen a rapid development over the last decades.3 The aim of spintronics is the
control and utilization of the spin as well as charge degrees of freedom of electrons.
Spintronics avoids the dissipation from Joule heating by replacing charge currents
with spin currents, and therefore to clarify the properties of spin currents is an
important theoretical issue from viewpoints of fundamental science and potential
applications.4,5

The spin current means a flow of the spin angular momentum, in general. It
also flows in insulators as well as in metals where conduction electrons carry a spin
current. In insulators there is no conduction electrons, but there exists an other
kind of carrier, namely, spin-waves.

Experimentally, a spin-wave spin current, a spin current carried by spin-waves
has already been established as a physical quantity. Y.Kajiwara et al.6 have reported
that a spin-wave spin current in an insulator can be generated and detected using

1
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direct and inverse spin-Hall effects.7 Moreover through the effects, it is possible to
convert an electric signal in a metal into a spin-wave spin current, and vice versa.
This spin-wave spin current has a novel feature that this current persists for much
greater distance than the conduction electron spin current, which disappears within
very short distance (see Table 1 ). This novel feature of the spin-wave spin current
is expected to lead to developments beyond silicon-based technologies.

Theoretically, Meier and Loss8 have studied the magnon transport in both ferro-
magnetic and antiferromagnetic materials. They have found that the spin conduc-
tance is quantized in the units of order (gµB)2/h in the antiferromagnetic isotropic
materials (g; the gyromagnetic ratio, µB; the Bohr magneton, h; Planck constant).
Fujimoto9 has studied a spin Hall effect of spin-waves in frustrated magnets. A
longitudinal magnetic field gradient induces a transverse spin current carried by
spin wave; Jx = σSHE

xy ∂B/∂y, σSHE
xy ∝ T 5 at the low-temperature, where Jx is the

spin Hall current, σSHE
xy is the Hall conductivity for the spin current and B is the

magnetic field along the quantization axis. Katsura et al.10,11,12 have reported the
intrinsic thermal Hall effect for magnons due to the anomalous velocity.

Though thus theoretical studies of spin currents in insulators have developed, it
should be emphasized that, besides magnons, there exists an other kind of carrier in
insulators, namely, the Jordan-Wigner (J-W) fermion. This carrier is peculiar to one-
dimensional spin systems. In order to clarify the properties of spin currents carried
by J-W fermions, we focus on the one-dimensional spin-1/2 XXZ model.13,14,15 The
model reads

HXXZ = Γ
∑

i

(Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆iS
z
i Sz

i+1), (1)

where Sα
l is α component of a spin-1/2 operator on l th site (α = x, y, z). The

constant parameter Γ is the exchange coupling constant, and ∆ is the anisotropic
interaction parameter. This model can be well mapped into spinless fermion systems
via the J-W transformation. When ∆ = 1 the XXZ model reduces to the Heisenberg
model, and when ∆ = 0 this model reduces to the XY model; HXY = Γ

∑
i(S

x
i Sx

i+1+
Sy

i Sy
i+1), which describes the disorder phase; 〈Sα

l 〉 = 0. After a transformation which
respects the spin commutation relations; Sx

i → (−1)iSx
i , Sy

i → (−1)iSy
i , Sz

i → Sz
i ,

the XXZ model changes the sign of parameters as Γ → −Γ, ∆ → ∆. Thus regardless
of the signs of the parameters, it is enough to consider the case Γ > 0. This paper
focuses on the properties of the spin current when the value of | ∆ | is smaller than
one.

Quite recently, theoretical studies for spin currents in one-dimensional spin
chains also have been rapidly progressing. Trauzettel et al.16 have calculated the
ac magnetization current and the power absorption of the XXZ model. Hoogdalem
et al.17 have considered rectification effects18,19 through bosonization techniques in
both ferromagnetic and antiferromagnetic systems.

In this paper, we study the effects of external magnetic field gradients along the
quantization axis and two-particle interaction gradients on the spin current carried
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by J-W fermions in one-dimensional insulators; the quasiparticle description of one-
dimensional spin systems is valid in the finite temperature near zero Kelvin.20,21 The
magnetic field is equivalent to a chemical potential for J-W fermions and the gra-
dient plays a role similar to an electric field in electron systems.22 The two-particle
interaction arises from the anisotropic interaction in eq.(1) and the gradient also
generates the spin current. The main aim of this paper is to reveal the temperature
dependence of the spin current carried by J-W fermions and then compare it with
that of the magnon current in the finite temperature near zero Kelvin.

This paper is structured as follows. In the one-dimensional XXZ model, the spin
degrees of freedom can be mapped efficiently into fermion degrees of freedom via the
J-W transformation. Thus first, we define microscopically the spin current density
carried by J-W fermions. Second, we evaluate it through the standard procedure
of the Schwinger-Keldysh Green’s function. The effects of magnetic field gradients
and two-particle interaction gradients on the spin current are clarified in Sec.2.
Then the magnon current generated by the two-particle interaction (i.e. magnon-
magnon interaction) is also calculated in Sec.3. Last, the temperature dependence
of the spin current carried by Jordan-Wigner fermions is compared with that of
the magnon current in Sec.4. We discuss the cause for the stronger dependence of
the spin current carried by J-W fermions on temperatures than that of the magnon
current in the finite temperature near zero Kelvin.

Table 1. The features of spin currents; spin currents carried by conduction electrons (i.e. conduction electron

spin currents), by magnons (i.e. magnon currents) and by J-W fermions (i.e. J-W spin currents). The magnon
current, which is the quantized spin-wave spin current, persists for much greater distance than the conduction
electron spin current because the dissipation from Joule heating does not exist in insulators.

Features Conduction electron spin current Magnon currents (3-dim) J-W spin currents (1-dim)

• Systems Metals Insulators Insulators
• Spins Conduction electrons’ spins Localized spins Localized spins
• Statistics Fermions Bosons Fermions

• Decay length A few nano-meters A few centi-meters 6 \

2. Jordan-Wigner Spin Current

The Mermin-Wagner theorem states that continuous symmetries cannot be spon-
taneously broken at the finite temperature in one- and two-dimensional systems.
Therefore in such low-dimensional spin systems, the Holstein-Primakoff transfor-
mation is not useful. In other words, because the one-dimensional XXZ model has
SO(2) symmetry that the magnon description cannot be well applied. Thus in one-
dimensional spin systems, the spin degrees of freedom cannot be mapped efficiently
into boson degrees of freedom, but it can be well mapped into spinless fermion de-
grees of freedom via the J-W transformation. Then the XY model reduces to a free
fermion system.
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2.1. Definition

The J-W transformation maps the spin operators of the XXZ model onto fermionic
operators; S+

i = c†iΠ
i−1
j=1(1− 2nj), S−

i = ciΠi−1
j=1(1− 2nj), Sz

i = ni − 1/2, ni ≡ c†i ci.

Operators c†/c are J-W fermion creation/annihilation operators which satisfy the
fermionic commutation relation. The operator, n ≡ c†c, is the number operator
of the J-W fermion. This spinless fermion carries the spin angular momentum of
localized spins in one-dimensional systems. The z-component (i.e. Sz

i = ni − 1/2)
shows that a spin down can be viewed as an empty site and a spin up corresponds
to the presence of a fermion. After the J-W transformation and the canonical trans-
formation; ci → (−1)ici, HXXZ reads

HXXZ = −Γ
2

∑
i

(c†i ci+1 + c†i+1ci) + Γ
∑

i

∆i(ni −
1
2
)(ni+1 −

1
2
). (2)

Eq.(2) shows that only fermions between neighbors feel an interaction Γ∆ and
J-W fermions hop between neighboring site with a hopping matrix element Γ/2.
Therefore in the continuous limit, HXXZ reads H0+V∆ as an effective Hamiltoniana;

H0 =
∫

dxc†(x, t)(− 1
2m

d2

dx2
)c(x, t), (3)

V∆ =
∫

dxJ(x)c†(x, t)c†(x, t)c(x, t)c(x, t). (4)

Here the parameter m is the effective mass of a J-W fermion which is related to the
curvature of the dispersion relation, and the parameter J corresponds to −Γ∆ in
the discrete model.

Moreover, there are magnetic impurities in real materials. Magnetic impurity
scatterings make the lifetime of quasiparticles τ , which is inversely proportional to
the imaginary part of the self-energy, finite. Here it should be emphasized that the
lifetime of quasiparticles in insulators is generally far longer than that of conduc-
tion electrons in metals because the dissipation from Joule heating does not exist in
insulators; the lifetime of conduction electrons in metals is mainly caused by lattice
defects, nonmagnetic impurities and magnetic impurities et al. through Coulomb
interactions. Because quasiparticles in insulators have no charge degrees of freedom
that the influence of impurities is far smaller than that in metals; magnetic impuri-
ties, at most, might cause impurity scatterings. Furthermore in real materials, the
rate of impurities such as lattice defects and nonmagnetic impurities is, in general,
far larger than that of magnetic impurities. Therefore the imaginary part of the
self-energy due to magnetic impurity scatterings can be assumed to be so small
that the dispersion relation does not change (i.e. ωk ∝ k2), and we omit the vertex
correction (i.e. the diffusive spin current23). Let us mention that in eq.(3) we have
defined the effective mass of a J-W fermion, m, which includes the contribution of
the self-energy due to magnetic impurity scatterings.

aThrough this paper, we take ~ = 1 for convenience.
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Thus we introduce the lifetime as a phenomenological parameter and assume
that it is independent of temperatures. In order to take account of magnetic im-
purity scatterings, we adopt retarded and advanced Green’s functions, Gr

k,ω =
[ω − ωk + i/(2τ)]−1 = (Ga

k,ω)∗ where ωk = k2/(2m), on perturbative expansion
in Subsec.2.2 and Subsec.2.3. Through these procedure,24 the effects of magnetic
impurity scatterings, which are the essential dynamics in real materials, are phe-
nomenologically included into our calculation.

The density of J-W fermions , ρJW, of the system is defined as the expectation
value of the number operator of J-W fermions as

ρJW(x, t) ≡ 〈c†(x, t)c(x, t)〉. (5)

Through Heisenberg’s equation of motion, the spin current density carried by J-W
fermions, i.e. the J-W spin current, jJW, is defined as

∂tρJW + ∂xjJW = 0, (6)

jJW ≡ 1
m

Re[i〈(∂xc†)c〉]. (7)

2.2. Evaluation: magnetic field along the quantization axis

In this subsection, we consider the J = 0 case and evaluate the J-W spin current
generated by magnetic field gradients along the quantization axis. We treat VB;
VB = −

∫
dxB(x)Sz = −

∫
dxB(x)[c†(x, t)c(x, t) − 1/2], as a perturbative term to

evaluate the first-order contribution in B without vertex corrections.
Through the standard procedure of the Schwinger-Keldysh (or contour-ordered)

Green’s function,25,26,27 the Langreth method,24,28,29 the J-W spin current jB
JW is

evaluated as

jB
JW = 1

2πmL2 Im
∑

kq(k + q/2)e−iqxB−q

∫
dω

·(G>
k+q/2,ωG<

k−q/2,ω − Gt
k+q/2,ωGt

k−q/2,ω) + O(B2). (8)

The variable L is the chain length and the variables Gt, G>, and G< are the time-
ordered, greater, and lesser Green’s functions, respectively. Fermionic greater and
lesser Green’s functions are defined as G>(t1, t2) ≡ −i〈c(t1)c†(t2)〉, G<(t1, t2) ≡
i〈c†(t2)c(t1)〉. They satisfy the relations: Gt

k,ω = Ga
k,ω +G>

k,ω, G>
k,ω −G<

k,ω = Gr
k,ω −

Ga
k,ω. Thus the current is rewritten as

jB
JW = − 1

2πmL2 Im
∑

kq(k + q
2 )e−iqxB−q

∫
dω

·(Ga
k+q/2,ωGa

k−q/2,ω + Ga
k+q/2,ωG>

k−q/2,ω + G>
k+q/2,ωGr

k−q/2,ω). (9)

The retarded Green’s function, Gr, is given by Gr
k,ω = [ω−ωk +i/(2τ)]−1 = (Ga

k,ω)∗

and τ is the lifetime of a J-W fermion. The energy ωk is ωk = Fk2, F ≡ (2m)−1.
Then the function Gr reads Gr

k−q/2,ω = Gr
k,ω +(Gr

k,ω)2(−Fkq +Fq2/4)+O((kq)2).
This approximation demands that the magnetic field varies slowly and moderately
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in space (compared to the J-W fermion mean-free path), and the value of ∂xB is a
constant. Then eq.(9) reads

jB
JW = − 4Fτ

L2 Im
∑

kq(k + q
2 )e−iqxiB−q

·
{

[4τ(1 − nk) + iβeβ(Fk2−µ)nk
2]Fkq

−[4τ(1 − nk) − iβeβ(Fk2−µ)nk
2]Fkq

}
(10)

= 8Fτ
L2 Re

∑
k βF eβ(Fk2−µ)k2nk

2∂xB, (11)

where nk is the Fermi distribution function, µ is the chemical potential, β ≡ 1/(kBT )
and kB is the Boltzmann constant. We have used the approximation; nk+q/2 ≈ nk−
βF eβ(Fk2−µ)n2

kkq. By the Sommerfeld expansion (T ¿ TF, TF ; the Fermi temper-
atureb), the chemical potential is evaluated as µ(T ) = εF +(πkBT )2/(6εF)+O(T 4),
and the summation over k as

∑
k βF eβ(Fk2−µ)k2n2

k ≈ [L/(2π)](ln2+π2/24)
√

µ/F ,
where εF is the Fermi energy.

Finally, the J-W spin current generated by the magnetic field gradient along the
quantization axis in the finite temperature near zero Kelvin reads

jB
JW =

4
√

Fτ

πL
(ln2 +

π2

24
)

√
εF +

(πkBT )2

6εF
∂xB. (12)

2.3. Evaluation: two-particle interaction

In this subsection, we treat the B = 0 case and evaluate the J-W
spin current generated by the two-particle interaction gradient. The two-
particle interaction arises from the anisotropic exchange interaction V∆; V∆ =∫

dxJ(x)c†(x, t)c†(x, t)c(x, t)c(x, t), and we treat it as a perturbative term to eval-
uate the first-order contribution in J without vertex corrections.

Through the same procedure with the last subsection, the J-W spin current
generated by the two-particle interaction V∆ is evaluated as

j∆
JW = − F

π2L3 Im
∑

kq(k + q
2 )e−iqxJ−qi

∑
p̃

∫
dω′G<

p̃,ω′

∫
dω

·(Ga
k+q/2,ωGa

k−q/2,ω + Ga
k+q/2,ωG>

k−q/2,ω + G>
k+q/2,ωGa

k−q/2,ω

+G>
k+q/2,ωG>

k−q/2,ω − G>
k+q/2,ωG<

k−q/2,ω) + O(J2). (13)

We have used the relation that the number operator, 〈c†(t)c(t)〉, is the same as
the equal-time lesser Green’s function24,29; 〈c†(t)c(t)〉 = −iG<(t, t). Because each
Green’s function is not independent; Gr −Ga = G> −G<, that eq.(13) is rewritten
as

j∆
JW = − F

π2L3 Im
∑

kq(k + q
2 )e−iqxJ−qi

∑
p̃

∫
dω′G<

p̃,ω′

∫
dω

·(Ga
k+q/2,ωGa

k−q/2,ω + Ga
k+q/2,ωG>

k−q/2,ω + G>
k+q/2,ωGr

k−q/2,ω). (14)

bThe Fermi temperature of this system(insulator) is estimated as a few hundred Kelvin.
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Also in this case, we assume that the two-particle interaction varies slowly and
moderately in space (compared to the J-W fermion mean-free path), and the value
of ∂xJ is a constant. Therefore the retarded green’s function can be approximated;
Gr

k−q/2,ω = Gr
k,ω + (Gr

k,ω)2(−Fkq + Fq2/4) + O((kq)2). Then eq.(14) reads

j∆
JW = −16Fτ

L3
Re

∑
k

βF eβ(Fk2−µ)k2n2
k

∑
p̃

np̃∂xJ. (15)

The summation over p̃ is evaluated as
∑

p̃ np̃ ≈ [L/(2π
√

F )][2
√

µ −
(πkBT )2/(12µ3/2)]. Finally, the J-W spin current generated by the two-particle
interaction in the finite temperature near zero Kelvin reads

j∆
JW = − 4τ

π2L
(ln2 +

π2

24
)

{
2
[
εF +

(πkBT )2

6εF

]
− (πkBT )2

12
[
εF + (πkBT )2

6εF

]}
∂xJ. (16)

3. Magnon Current

According to the Mermin-Wagner theorem, three-dimensional spin systems are the
most suitable set-ups for the study of magnon transports. Therefore in order to
clarify the thermal properties of magnon currents, we focus on three dimensional
ferromagnetic insulators at the low-temperature near zero Kelvin, which has no
conduction electrons. The spin degree of freedom reduces to the magnon degree of
freedom via the Holstein-Primakoff transformation; the transverse components of
the exchange interactions give rise to hopping of the magnons, while the longitudinal
component give rise to the interaction.

External magnetic fields, of course, generate magnon currents also in this case;
the magnetic field along the quantization axis is equivalent to a chemical potential
for magnons as well as J-W fermions, and the gradient generates magnon cur-
rents. Moreover time-dependent transverse magnetic fields cause quantum fluctua-
tions and generate a magnon current through pumping effects.30 Here, however, we
consider three dimensional ferromagnetic insulators without any external magnetic
fields.

3.1. Definition

The low-energy effective Hamiltonian31 for magnons in three-dimensional insulators
reads Hm = H0(m) + Vm;

H0(m) =
∫

d3xa†(x, t)
(
− ∇2

2mmag

)
a(x, t), (17)

Vm =
∫

d3xJ(m)(x)a†(x, t)a†(x, t)a(x, t)a(x, t). (18)
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Here mmag is the effective mass of a magnon, and Vm represents the magnon-magnon
interaction. Operators a†/a are magnon creation/annihilation operators which sat-
isfy the bosonic commutation relation. In the low-temperature, only the two-particle
interaction J(m) is important.32,33

The magnetic impurity scattering is, of course, an inevitable dynamics in real
materials even when the system is under low-temperature. It makes the lifetime
of magnons, τm, finite. Therefore by the same procedure with Subsec.2.1, we phe-
nomenologically include the effects of magnetic impurity scatterings, which are the
inevitable dynamics in real materials, into our calculation. Also in this case, we
have assumed that the imaginary part of the self-energy due to magnetic impurity
scatterings is so small that the dispersion relation does not change, and we omit
the vertex correction (i.e. the diffusive spin current). Furthermore, we assume that
the lifetime of magnons is independent of temperatures.

The magnon density, ρm, of the system is defined as the expectation value of
the number operator of magnons

ρm(x, t) ≡ 〈a†(x, t)a(x, t)〉. (19)

Through Heisenberg’s equation of motion, the magnon current (density), jm, is
defined as

∂ρm

∂t
+ ∇ · jm = 0. (20)

Then the magnon current reads

jν
m(x, t) =

1
mmag

Re[i〈(∂νa†(x, t))a(x, t)〉], (21)

where ν is a direction for a magnon current to flow (ν = x, y, z).

3.2. Evaluation

From now on, we treat the magnon-magnon interaction term, Vm, as a perturba-
tive one to evaluate the first-order contribution in J(m) without vertex corrections.
Through the same procedure with the last section, the Langreth method,24,28,29 the
magnon current is evaluated as

jν
m = − 4

mmag
( 2π

V )3Re
∑

k,q(kν + qν

2 )e−iq·xJ(m)−q

∑
p̃

∫
dω′

2π G̃<
p̃,ω′

∫
dω
2π

·(G̃a
k+q/2,ωG̃a

k−q/2,ω + G̃a
k+q/2,ωG̃>

k−q/2,ω + G̃>
k+q/2,ωG̃r

k−q/2,ω) + O(J2
(m)).(22)

Here V is a volume of the system. Bosonic greater and lesser Green’s functions
are defined as G̃>(t1, t2) ≡ −i〈a(t1)a†(t2)〉, G̃<(t1, t2) ≡ −i〈a†(t2)a(t1)〉; the sign of
the lesser green’s function is different from the fermionic case. The retarded Green’s
function is G̃r

k,ω = [ω−ω̃k+i/(2τm)]−1 = (G̃a
k,ω)∗, where the energy ω̃k is ω̃k = Dk2,

D ≡ 1/(2mmag) and τm is the lifetime of magnons. The lifetime represents the
damping of spins (τm is inversely proportional to the Gilbert damping parameter,
α). Then the retarded Green’s function satisfies G̃r

k+q/2,ω = G̃r
k,ω + (G̃r

k,ω)2(Dk ·
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q + q2/4) + O((k · q)2). This approximation demands that the magnon-magnon
interaction varies slowly and moderately (compared to the magnon mean-free path),
and the value of ∂νJ(m) is a constant.

Thus eq.(22) is rewritten as

jν
m = 8D2τm

V 2 Re
∑

k,q(kν + qν

2 )e−iq·xJ(m)−q i ζ( 3
2 )Γ( 3

2 )(kBT
D )3/2

·
{

[β(e−βDk2
+ 2e−2βDk2

) + 4iτm(1 + ñk)]k · q

+[β(e−βDk2
+ 2e−2βDk2

) − 4iτm(1 + ñk)]k · q
}

(23)

= 16τm
3V 2 ζ( 3

2 )Γ( 3
2 )
√

DkBT Re
∑

k k2(e−βDk2
+ 2e−2βDk2

)
∑

q iqνe−iq·xJ(m)−q.(24)

Here ñk is the Bose distribution function, ζ is the Riemann zeta function, ζ(3/2) =
2.612, and Γ is the Euler gamma function, Γ(3/2) =

√
π/2. Because we consider the

the low-temperature regime near zero Kelvin, we have approximated as ñk+q/2 ≈
ñk − βDe−βDk2

(1− e−βDk2
)−2k · q ≈ ñk − βD(e−βDk2

+ 2e−2βDk2
)k · q. Moreover

we have used the isotropy condition in the direction for k;
∑

k kνk ·q =
∑

k k2qν/3.
Finally in the low-temperature near zero Kelvin, the magnon current generated

by the magnon-magnon interaction gradient reads

jν
m = −Dτm

V
(1 +

1
23/2

)ζ(
3
2
)Γ(

3
2
)
( kBT

D
√

π

)3

∂νJ(m). (25)

Table 2. The temperature dependence of J-W spin currents and magnon ones generated by the
magnetic field gradient and by the two-particle interaction gradient. The constant γ is defined as

γ ≡ 6[εF/(πkB)]2. J-W spin currents exhibit the stronger dependence on temperatures than magnon
ones in the finite temperature near zero Kelvin (i.e. 0 < T < 1 [K]).

Temperature dependence J-W spin currents (1-dim) Magnon currents (3-dim)

• Magnetic field; ∂νB ∝
p

γ + T 2 ∝ T 3/2 (Ref.6)

• Two-particle interaction; ∂xJ , (∂νJ(m)) ∝ [γ + T 2 − T 2/(4 + 4T 2/γ)] ∝ T 3

4. Temperature Dependence near Zero Kelvin

The Mermin-Wagner theorem gives crucial differences between low-dimensional spin
systems and three-dimensional ones. It prohibits the spontaneous breaking of the
continuous symmetry of the low-dimensional XXZ model, i.e. SO(2) symmetry,
in the finite temperature. In other words, in low-dimensional systems quantum
fluctuations are so strong as to destroy magnetic orders. Then the thermal properties
of each spin current in insulators, the J-W spin current and the magnon one, are
drastically different from each other in the finite temperature near zero Kelvin
(i.e. 0 < T < 1 [K]); as shown in Table 2, the J-W spin current exhibits the
stronger dependence on temperatures than the magnon current, i.e. the exponents of
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temperatures in J-W spin currents are smaller than those in magnon currents. Thus,
the influence of quantum and thermal fluctuations in one-dimensional insulators is
larger than that in three-dimensional ones. The Table 2 also shows that the current
generated by the two-particle interaction gradient shows the weaker dependence on
temperatures than the one by the magnetic field gradient along the quantization
axis.

5. Summary and Discussion

We have theoretically studied the temperature dependence of the spin current in
one- and three-dimensional insulators. In one-dimensional insulators, the spin cur-
rent is carried by Jordan-Wigner fermions. In this system, quantum fluctuations are
strong and the J-W spin current shows the stronger dependence on temperatures
than the magnon one in the finite temperature near zero Kelvin.

Experimentally though the direct measurement of spin currents is impossible
at this stage, the spin currents we have discussed would be identified by observing
the temperature dependence of the spin currents through inverse spin-Hall effects.
Theoretically, the microscopic calculation of the lifetime caused by magnetic impu-
rity scatterings and also by phonon ones et al., and the diffusive spin current with
vertex corrections is an significant theoretical issue.
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