Evolutionary changes of the importance of olfaction in cetaceans based on the olfactory marker protein gene.

Kishida, Takushi; Thewissen, J G M

Gene (2012), 492(2): 349-353

© 2011 Elsevier B.V.; This is not the published version. Please cite only the published version.

This document is part of the Kyoto University Research Information Repository.
Title

Evolutionary changes of the importance of olfaction in cetaceans based on the *olfactory marker protein* gene

Author names and affiliations

Takushi Kishidaa (corresponding author) and J. G. M. Thewissenb

aDepartment of Zoology, Graduate School of Science, Kyoto University

Kitashirakawa Oiwake-cho, Sakyo, Kyoto 606-8502, Japan.

tel: +81 75 753 4074, fax: +81 75 753 4114

e-mail: takushi@zoo.zool.kyoto-u.ac.jp

bDepartment of Anatomy and Neurobiology, Northeast Ohio Medical University

4209 State Route 44, Rootstown, Ohio 44272, U. S. A.

e-mail: thewisse@neomed.edu
Abstract

Odontocetes and mysticetes are two extant suborders of cetaceans. It is reported that the former have no sense of olfaction, while the latter can smell in air. To explain the ecological reason why mysticetes still retain their sense of smell, two hypotheses have been proposed – the echolocation-priority hypothesis, which assumes that the acquisition of echolocation causes the reduction of the importance of olfaction, and the filter-feeder hypothesis, which assumes that olfactory ability is important for filter-feeders to locate their prey because clouds of plankton give off a peculiar odor. The olfactory marker protein (OMP) is almost exclusively expressed in vertebrate olfactory receptor neurons, and is considered to play important roles in olfactory systems. In this study, full-length open reading frames of OMP genes were identified in 6 cetacean species and we analyzed the nonsynonymous to synonymous substitution rate ratio based on the maximum likelihood method. The evolutionary changes of the selective pressures on OMP genes did fit better to the filter-feeder hypothesis than to the echolocation-priority hypothesis. In addition, no pseudogenization mutations are found in all five odontocetes OMP genes investigated in this study. It may suggest that OMP retain some function even in ‘anosmic’ odontocetes.

Keywords: aquatic adaptation; echolocation; Eocene whale; filter-feeder; OMP
1. Introduction

Olfactory marker protein (OMP) is a highly abundant small cytoplasmic protein encoded by an intronless OMP gene (Margolis, 1972; Danciger et al., 1989). Expression of the OMP gene is highly restricted to mature olfactory chemosensory neurons, and is considered to play an important role in the olfactory signal-transduction cascade across vertebrate species (Margolis, 1980; Danciger et al., 1989; Reisert et al., 2007). Several studies reported that OMP-knockout mice show considerably reduced ability to respond to odor stimuli (Buiakova et al., 1996; Youngentob and Margolis, 1999; Youngentob et al., 2001), but the biochemical function of OMP remains largely elusive.

Amniotes that have undergone a transition from the terrestrial to aquatic environment generally have reduced olfactory capacity (Kishida and Hikida, 2010), and aquatic cetaceans are known to have reduced their sense of olfaction (Dehnhard, 2002). Olfactory receptor (OR) genes are highly reduced in cetacean genomes, especially in odontocetes (Kishida et al., 2007; McGowen et al., 2008; Hayden et al., 2010). Furthermore, modern odontocetes have no nervous system structures that mediate olfaction, i.e., no olfactory bulb or olfactory tract (Oelschläger and Oelschläger, 2008), suggesting that odontocetes have lost their sense of olfaction altogether. In contrast to odontocetes, mysticetes were shown in a recent study to have fully-equipped olfactory nervous system structures and histologically complex olfactory bulbs, indicating that they can smell in air (Thewissen et al., 2011). To explain the ecological reason why olfaction is present in mysticetes but absent in
odontocetes, it has widely been considered that the acquisition of echolocation causes a reduction of the importance of olfaction (echolocation-priority hypothesis) (Cave, 1988; Hoch, 2000). However, mysticetes can smell in air, but not underwater (Thewissen et al., 2011), meaning that mysticete olfaction cannot be compensated for by the acquisition of echolocation, i.e., an underwater sonar system. Recently, another hypothesis has been proposed that olfaction is important for filter-feeders to locate their prey because clouds of plankton, especially krill, give off a peculiar odor on the surface of the sea (filter-feeder hypothesis) (Thewissen et al., 2011). Fig. 1 shows the evolutionary changes of the importance of olfaction each hypothesis predicts.

No cetacean OMP genes have been reported to date. However, as described above, odontocetes have no tissues in which the OMP gene is known to be expressed, and it is an interesting question whether the OMP gene still has function in odontocetes or not. In addition, the evolutionary pathways of OMP genes may reflect the evolutionary changes of the importance of olfaction. In this study, full-length open reading frames (ORFs) of OMP genes were identified in 6 cetacean species (5 odontocetes and a mysticete) and we analyzed the nonsynonymous to synonymous substitution rate ratio \(\omega (d_{a}/d_{s}) \) based on the maximum likelihood (ML) method.

2. Materials and Methods
2.1. Amplification and sequencing of whale OMP genes

Muscle tissues of Baird’s beaked whale *Berardius bairdii* and short-finned pilot whale *Globicephala macrorhynchus* were purchased from a fish market in Japan, and genomic DNA was extracted following the protocol described by Kishida et al. (2007). Genomic DNA samples of dwarf sperm whale *Kogia sima*, Dall’s porpoise *Phocoenoides dalli* and minke whale *Balaenoptera acutorostrata*, which were prepared in Kishida et al. (2007), were used in this study. A set of primers, OMP_full_5 (5’-ACGGTGGAGGCGACAGCAA-3’) and OMP_full_3 (5’-AGGGTAGCAGCAGGCCAGCACGA-3’), was employed in PCR reactions to amplify the full-length sequences of the ORF of OMP genes. Sequences of the PCR products were determined directly on an ABI3130 automated sequencer using BigDye terminator v3.1 (Applied Biosystems). The procedures we followed to design the OMP_full_5 and OMP_full_3 primers are provided as supplementary Methods. Minke whale, dwarf sperm whale, beaked whale, porpoise and pilot whale OMP sequences are available in the DDBJ/EMBL/GenBank databases under the following accession numbers, respectively: AB626889, AB626890, AB626891, AB626892 and AB642168.

2.2. OMP genes of bottlenose dolphin and terrestrial mammals

OMP gene sequences of human *Homo sapiens* (GenBank ID: BC069115), mouse *Mus musculus* (GenBank ID: U02557), dog *Canis lupus* (GenBank ID: XM_844636) and cow *Bos taurus* (GenBank ID: XM_865027) were retrieved from the GenBank database. The draft genome assembly
of the bottlenose dolphin *Tursiops truncatus* was downloaded from the Ensembl genome browser release58 (http://www.ensembl.org/). The dolphin *OMP* gene sequence was searched for using the FASTA3.5 program (Pearson and Lipman, 1988) and the cow *OMP* gene was used as a query. The positions of the initiation and termination codons were judged by comparison with the human, mouse, dog and cow *OMP* gene sequences.

2.3. Sequence analyses

The *OMP* genes thus obtained were aligned manually (Fig. 2). The nonsynonymous to synonymous substitution rate ratio ω provides an indication of the changes of selective pressures as follows: higher ω ratios indicate relaxation of purifying selection, and $\omega>1$ suggests positive selection (Yang, 2006). The CODEML program in the PAML4.4 package (Yang, 2007) was used to analyze changes of selective pressure based on widely-accepted phylogenetic relationships (human, mouse, (dog, (cow, (minke whale, (beaked whale, porpoise))))). Several models shown in Table 1 were compared. In all models, the transition/transversion rates were not fixed and the F3×4 model was used for codon usage biases. Likelihood ratio tests were performed to compare between models, and the significance of differences was evaluated by calculating twice the log-likelihood difference assuming that it follows a χ^2 distribution, with the number of degrees of freedom equal to the difference in the numbers of free parameters between models. The method of Zhang et al. (1997), in which the numbers of nonsynonymous and synonymous substitution sites in a particular branch were compared
directly with those of nonsynonymous and synonymous sites which were not changed, was applied to examine the significant existence of positive/purifying selection. In this method, the numbers of nonsynonymous sites and substitutions, and synonymous sites and substitutions were estimated by the method of Nei and Gojobori (1986) based on the ancestral nucleotide sequences inferred by the Bayesian method (Yang et al., 1995). Numbers of nonsynonymous and synonymous sites were also estimated by the ML method (Goldman and Yang, 1994). We also modified the method of Zhang et al. (1997) to examine whether selective pressure on a particular branch can be considered as homogeneous in comparison with that on a compared branch. In this method, the numbers of nonsynonymous and synonymous substitutions were compared directly between these two branches (test of homogeneity of nonsynonymous/synonymous change ratios).

3. Results

The length of OMP is highly conserved among mammalian species with the exception of three odontocetes (dwarf sperm whales, pilot whales and bottlenose dolphins). Sperm whales lack 4 amino acids (12 bp) located at the end of the first α-helix, and delphinid whales (pilot whales and dolphins) lack 5 amino acids (15 bp) located at the third β-strand (Fig. 2). Sperm whale, pilot whale and dolphin OMP sequences were excluded from ML analyses because these gaps reduce the computational regions from this short-length gene. The ω ratios, estimated based on the free-ratio
model (allowing ω ratios to vary along different branches), are shown in Fig. 3(A). Interestingly, the ω ratios were much higher not only in the odontocete branches, but also in an ancestral branch named ‘Eocene whale branch’ [a tree branch which represents the lineage that includes the common ancestors of mysticetes and odontocetes. Most of this branch has been in the Eocene Epoch (Fig. 1)], in comparison with those in the mysticete branch and the terrestrial mammal branches. This trend is also apparent even if sperm whale, pilot whale and dolphin OMP sequences are added to the analysis (supplementary Fig. S1). To test whether ω ratios in these branches are significantly higher compared to those in other branches or not, several models were compared, as shown in Table 1 and Table 2. The one-ratio model (model 2; assuming that all branches have evolved under the same ω ratio) was rejected when compared to the free-ratio model (model 1), indicating that these mammalian OMP genes have not been subject to similar selective pressures. Four two-ratio models (models 3, 4, 5 and 6; allowing two ω ratios) showed significantly better fit to the data than did the one-ratio model, suggesting that purifying selection on OMP genes became relaxed around the evolutionary appearance of the cetacean lineages. Two three-ratio models (models 7 and 8; allowing three ω ratios) showed significantly better fit to the data than did the three two-ratio models (models 3, 4 and 5), while model 6 was as well fitted as the three-ratio models and the free-ratio model. Especially, comparison between model 4 and model 7 suggested that the pressure of purifying selection on the OMP gene had been relaxed in the Eocene whale branch, and comparison between model 3 and model 8 suggested that the OMP gene has been under strong purifying selection in the mysticete
branch. The test of homogeneity of nonsynonymous/synonymous change ratios also shows that there has been stronger pressure of purifying selection in the mysticete branch compared to the odontocete branches and the Eocene whale branch (Fig. 3(B)). These results revealed that ω ratios were significantly higher in the Eocene whale branch and the odontocete branches compared to the mysticete branch and other mammalian branches.

4. Discussion

4.1. Evolutionary changes of the importance of olfaction in cetaceans

Selective pressures of purifying selection on the OMP genes were strong in the mysticete branch and the terrestrial mammal branches but relaxed in the odontocete branches, in agreement with the presence of olfaction in the former, but loss in the latter. Selective pressure of purifying selection on the OMP gene in the mysticete branch was significantly stronger compared to that in the Eocene whale branch, but there were no significant differences between that in the odontocete branch and that in the Eocene whale branch. Considering these results together, we conclude that the evolutionary changes of the selective pressures on OMP genes showed better fit to the filter-feeder hypothesis than to the echolocation-priority hypothesis. Our data suggest that the difference of the olfactory abilities between mysticetes and odontocetes cannot be explained by the echolocation-priority hypothesis, or at least by the echolocation-priority hypothesis alone, and that
the change of feeding behavior in the mystecete lineage is a possible factor to explain it.

Olfaction is mediated by cranial nerve I. The fibers of this nerve pass through the cribriform plate of the ethmoid bone, and the presence/absence of cribriform plate can be an indicator for the presence/absence of olfaction (Philström, 2008). The presence of a cribriform plate, which is absent in the modern odontocetes, has been documented in Eocene whales including fully aquatic basilosaurids (Uhen, 2004). It means that, although the pressure of purifying selection on the OMP gene in the Eocene whale branch had been relaxed, the ancestral cetaceans retained a sense of smell. However, there are several lines of evidence reported that cetaceans had reduced their sense of smell gradually during the Eocene Epoch. For example, the anterior palatine foramen has been documented in the amphibious pakicetids (Thewissen and Hussain, 1998), but it was absent in the amphibious remingtonocetids (Thewissen and Bajpai, 2009; Bajpai et al., 2011) and the fully aquatic basilosaurids (Uhen, 2004). We speculate that, in Eocene evolution of cetaceans, olfaction had not been lost from the aquatic ancestors completely, but it may have decreased in importance.

4.2. Odontocete OMP genes

Generally, genes are prone to pseudogenization if they have no function in their organisms. For example, the TRPC2 genes, which are essential to vomeronasal olfaction, have become pseudogenes in cetacean species (Yu et al., 2010) because extant cetaceans have lost vomeronasal organs (Philström, 2008), and the tooth gene enamelysin was pseudogenized in the tooth-less mysticetes
(Meredith et al., 2011). However, no pseudogenization mutations (frameshift mutations and/or nonsense mutations) are found in any odontocete OMP genes investigated in this study. The dwarf sperm whale has lost 12bp and the delphinid whales have lost 15bp, but both of these numbers are multiples of three and therefore these losses do not cause frameshifts. Are OMP genes still functional in odontocetes? There is no significant evidence of positive or purifying selection in any branches among the odontocete branches and the Eocene whale branch based on the method of Zhang et al. (1997) (supplementary Table S1), meaning that we cannot answer this question yet. Baker et al. (1989) reported that though the OMP is almost exclusively expressed in mature olfactory receptor neurons, it is also expressed in small groups of neurons in the central nervous system. It may be possible that odontocete OMP is required in these areas. Further studies are required to answer this question, and to reveal the biochemical function of OMP.

Acknowledgements

We are grateful to Y. Shintaku and T. Hikida for valuable comments; E. Kawaguchi and E. Nakajima for technical supports. This work was supported by Global COE program (A06) of Kyoto University, and by MEXT KAKENHI (22770082) to TK.

References

Remingtonocetus (Cetacea, Mammalia) from Kutch, India. J. Paleontol. 85, 703-718.

Uhen, M.D., 2004. Form, function, and anatomy of *Dorudon atrox* (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. University of Michigan Papers on

A. Echolocation-priority hypothesis

B. Filter-feeder hypothesis
A

human

mouse

dog

cow

minke whale

beaked whale

Dall’s porpoise

Eocene whale branch

B

Test of homogeneity of nonsynonymous/synonymous change ratios

<table>
<thead>
<tr>
<th></th>
<th>numbers of substitutions</th>
<th></th>
<th></th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nonsynonymous</td>
<td>synonymous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mysticete branch</td>
<td>2</td>
<td>4</td>
<td></td>
<td>0.038*</td>
</tr>
<tr>
<td>odontocete branches</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mysticete branch</td>
<td>2</td>
<td>4</td>
<td></td>
<td>0.008**</td>
</tr>
<tr>
<td>Eocene whale branch</td>
<td>10</td>
<td>0</td>
<td></td>
<td>0.203</td>
</tr>
<tr>
<td>odontocete branches</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene whale branch</td>
<td>10</td>
<td>0</td>
<td></td>
<td>0.203</td>
</tr>
</tbody>
</table>

* significant (P < 0.05)
** extremely significant (P < 0.01)
The predicted evolutionary changes of the importance of olfaction based on the echolocation-priority hypothesis (A) / the filter-feeder hypothesis (B). Thinner branches indicate less importance of olfaction. Geological scale bar is provided above, and the periods of the evolutionary events follow Uhen (2007). The echolocation-priority hypothesis predicts that the importance of olfaction has been reduced in the odontocete branch since the acquisition of echolocation, while olfaction is as important for mysticetes as for their aquatic ancestors. On the other hand, the filter-feeder hypothesis predicts that the olfaction is as useless for odontocetes as for their aquatic ancestors, while the importance of olfaction has been increased in the mysticete branch since they have become filter-feeders.

Aligned amino acid sequences of OMP genes of 10 mammals investigated in this study. Gap sites are represented by “-”, and termination sites are represented by “.”. The secondary structure of OMP follows Smith et al. (2002), and the positions of two α-helices, 8 β-strands and an EphB2-receptor-like loop are shown at the bottom of the alignment.

A. The nonsynonymous to synonymous rate ratios (ω) in each branch, calculated based on the free-ratio model. The estimated numbers of nonsynonymous substitutions / synonymous
substitutions, calculated by the method of Nei and Gojobori (1986), are also shown under each branch based on the ancestral nucleotide sequences inferred by the Bayesian method (Yang et al., 1995). Bold lines, a single dashed line and a double dashed line represent the odontocete branches, the mysticete branch and a branch named “Eocene whale branch”, respectively.

B. Tests of homogeneity of nonsynonymous/synonymous change ratios. P-values were calculated using Fisher’s exact test.
<table>
<thead>
<tr>
<th>Model Description</th>
<th>Parameters</th>
<th>p</th>
<th>κ</th>
<th>l</th>
<th>ω_0</th>
<th>ω_1</th>
<th>ω_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. free-ratio</td>
<td></td>
<td>23</td>
<td>4.08</td>
<td>-1352.644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. one-ratio</td>
<td></td>
<td>13</td>
<td>3.88</td>
<td>-1371.036</td>
<td>0.0804</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. two-ratio ((\omega_1): cetaceans), (\omega_0): other branches)</td>
<td></td>
<td>14</td>
<td>4.06</td>
<td>-1359.409</td>
<td>0.0482</td>
<td>0.3844</td>
<td></td>
</tr>
<tr>
<td>4. two-ratio ((\omega_1): odontocetes, (\omega_0): other branches)</td>
<td></td>
<td>14</td>
<td>4.00</td>
<td>-1362.136</td>
<td>0.0593</td>
<td>0.5314</td>
<td></td>
</tr>
<tr>
<td>5. two-ratio ((\omega_1): Eocene whale, (\omega_0): other branches)</td>
<td></td>
<td>14</td>
<td>3.95</td>
<td>-1367.058</td>
<td>0.0695</td>
<td>(\infty)</td>
<td></td>
</tr>
<tr>
<td>6. two-ratio ((\omega_1): odontocetes + Eocene whale, (\omega_0): other branches)</td>
<td></td>
<td>14</td>
<td>4.05</td>
<td>-1356.981</td>
<td>0.0489</td>
<td>0.6413</td>
<td></td>
</tr>
<tr>
<td>7. three-ratio ((\omega_2): Eocene whale, (\omega_1): odontocetes, (\omega_0): other branches)</td>
<td></td>
<td>15</td>
<td>4.07</td>
<td>-1356.431</td>
<td>0.0482</td>
<td>0.5321</td>
<td>(\infty)</td>
</tr>
<tr>
<td>8. three-ratio ((\omega_2): mysticete, (\omega_1): odontocetes + Eocene whale, (\omega_0): other branches)</td>
<td></td>
<td>15</td>
<td>4.06</td>
<td>-1356.937</td>
<td>0.0483</td>
<td>0.6411</td>
<td>0.0637</td>
</tr>
</tbody>
</table>

\(\kappa\); transition/transversion rate ratio.

\(l\); log likelihood value.

a cetaceans = odontocete branches + mysticete branch + Eocene whale branch

\(p\); number of parameters.
Table 2. Likelihood ratio tests between different models

<table>
<thead>
<tr>
<th>tested model<sup>a</sup></th>
<th>compared model<sup>a</sup></th>
<th>$2\Delta l$</th>
<th>d.f.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>36.784</td>
<td>10</td>
<td>6.2×10^{-5} **</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>23.254</td>
<td>1</td>
<td>1.4×10^{-6} **</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>17.800</td>
<td>1</td>
<td>2.5×10^{-5} **</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7.956</td>
<td>1</td>
<td>0.0048 **</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>28.110</td>
<td>1</td>
<td>1.1×10^{-7} **</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5.956</td>
<td>1</td>
<td>0.015 *</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>11.410</td>
<td>1</td>
<td>7.3×10^{-4} **</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>21.254</td>
<td>1</td>
<td>4.0×10^{-6} **</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.100</td>
<td>1</td>
<td>0.29</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4.944</td>
<td>1</td>
<td>0.026 *</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>10.398</td>
<td>1</td>
<td>0.0013 **</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>20.242</td>
<td>1</td>
<td>6.8×10^{-6} **</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.088</td>
<td>1</td>
<td>0.77</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>8.674</td>
<td>9</td>
<td>0.47</td>
</tr>
</tbody>
</table>

^a model numbers follow those in Table 1
* significant ($P < 0.05$)
** extremely significant ($P < 0.01$)