<table>
<thead>
<tr>
<th>Title</th>
<th>Activation-Induced Cytidine Deaminase Expression in CD4(+)T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Qin, Hongyan; Suzuki, Keiichiro; Nakata, Mikiyo; Chikuma, Shunsuke; Izumi, Nakako; Thi Huong, Le; Maruya, Mikako; Fagarasan, Sidonia; Busslinger, Meinrad; Honjo, Tasuku; Nagaoka, Hitoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>PloS one (2011), 6(12)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/152386</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 Qin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Activation-Induced Cytidine Deaminase Expression in CD4+ T Cells is Associated with a Unique IL-10-Producing Subset that Increases with Age

Hongyan Qin1a, Keiichiro Suzuki2, Mikiyoshi Nakata1, Shunsuke Chikuma3, Nakako Izumi1ab, Le Thi Huong1, Mikako Maruya2, Sidonia Fagarasan2, Meinrad Busslinger3, Tasuku Honjo1+, Hitoshi Nagaoka1a+c

1 Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan. 2 Laboratory for Mucosal Immunity, RIKEN, Yokohama, Japan. 3 Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria

Abstract

Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4+ T cells that had expressed Aicda (exAID) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4+ and B220+ cell populations. ExAID B cells remained IgM+, suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis.

Introduction

Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation (SHM) and class switch recombination (CSR), which diversify the immunoglobulin gene in activated peripheral B cells [1,2]. SHM introduces point mutations in the V region exons, thus contributing to the antibody affinity maturation associated with cell selection. CSR is a region-specific DNA recombination that occurs between two switch regions located 5′ to each heavy chain constant (CH) region gene. This recombination replaces the Vμ-proximal CH region gene with a downstream CH gene by looping out the intervening sequence, thereby generating isotype-switched antibodies without changing the antigen specificity [3].

Both CSR and SHM are initiated by AID that induces the target DNA cleavages [4,5]. In addition to immunoglobulin (Ig) genes, a considerable number of non-Ig genes, including proto-oncogenes, can be attacked by AID [6]. Furthermore, a growing number of reports suggest that, because of its mutagenic activity, AID may be involved in tumorigenesis in both B and non-B cells [7–12]. Studies indicate that the incidence of lymphoma carrying a Myc-Ig translocation is drastically reduced in AID-deficient mice [7,12]. In contrast, systemic AID overexpression in transgenic mice consistently results in T-cell lymphoma, as well as lung tumor, liver tumor, and B lymphoma, with lower frequencies [13–16]. Notably, tumorigenic hepatitis C virus or H. pylori infection can induce AID expression [10,17]. AID thus appears to be genotoxic, and its expression must be tightly regulated.

We previously showed in vitro that Aicda expression is regulated by a balance between enhancers and silencers [18]. The silencers E2f and c-Myb strongly repress Aicda transcription in non-B cells and non-stimulated B cells. When B cells are stimulated, B-cell-specific (Pax5 and E2a) and stimulation-responsive (NF-κB, STAT6, Smad3/4, and C/EBP) enhancers act in concert to overcome the silencers, thereby turning on Aicda transcription [18]. This model explains the mechanism by which AID is restricted primarily to activated B cells, yet can be induced in non-B cells by strong environmental stimuli [18].

In fact, high AID levels are found only in germinal-center (GC) B cells, which actively undergo SHM and CSR [19]. Small amounts of AID have been found in immature B cells, although the amount of AID and the percentage of AID-positive immature
B cells have not yet been accurately measured. Significant levels of SHM and CSR have been observed in these cells, suggesting that AID might be involved in antigen-independent immunoglobulin diversification in B cells at an early development stage [20–22]. In addition, involvement of AID in B cell central tolerance in both human and mouse was suggested by recent two publications [23,24]. These observations imply that even subtle level of AID expression would have important role in regulation of immune system. Small amounts of AID have also been found in the mouse ovary and human testis [25,26], although AID’s function in germ cells is not well established, since AID-deficient mice reproduce without obvious genetic disorders.

AID is difficult to detect convincingly at low levels. To overcome this problem, we introduced a genetic marking system using bacteria artificial chromosome (BAC) transgenic mice carrying Cre-ires-hCD2 knocked into the Aicda locus [27]. We also crossed this mouse with a genetically marked reporter mouse. This system allowed us to examine both past and current AID expression by detecting two genetic markers. Since the marked cells can accumulate in a cell population, the detection sensitivity for AID-expression history can be enormously enhanced. Using this system, we unexpectedly found that AID is expressed in a considerable fraction of CD4+ memory T cells in mice maintained under specific pathogen-free conditions.

Results

The Aicda-cre system efficiently monitors Aicda expression

The Aicda-cre transgenic mouse carries a 190-kb BAC DNA containing the entire Aicda locus [Figure S1A] [27]. The Aicda coding region on the transgene was engineered to generate the human CD2 and Cre recombinase instead of AID; thus, current Aicda promoter activation can be visualized by hCD2 staining. In addition, by crossing these mice with Rosa26 reporter mice (R26R or Rosa-tdRFP), previous Aicda promoter activation can be visualized, because Cre irreversibly turns on LacZ or RFP reporter expression at the Rosa26 locus (Rosa reporters) [28,29].

We analyzed the Aicda-cre/R26R and Aicda-cre/Rosa-tdRFP mice and found substantial numbers of LacZ/RFP single-positive cells in secondary lymphoid organs (Figure 1A and Figure S1B). The majority of LacZ/hCD2+ B cells were peanut-aggutinin (PNA) positive, either CD38+ or CD95+, marking them as GC B cells (Figure 1A and Figure S1B); Rosa single-positives contained only a small fraction of GC B cells. This indicates that cells quickly lost AID expression after leaving the GC. Nonetheless, IgA+ plasmablasts, which should have expressed AID, were almost completely labeled by RFP in the Aicda-cre/Rosa-tdRFP mice (Figure 1B and 1C).

Initially, we thought the exAID B cells were post-GC cells. However, these cells comprised a substantial fraction of the B220+ cells in the spleen of young animals (3–4 weeks), although the percentage varied from 3–23% for unknown reasons (Figure 1D). The percentage of exAID B cells remained fairly stable at 5–10% between 5–40 weeks of age, after which it gradually increased, reaching a plateau of 20–25% (Figure 1D). The absolute numbers of exAID B cells followed a similar tendency; this was less apparent, however, perhaps due to the inevitable technical fluctuations of cell yield in each experiment (Figure S1C). The majority of accumulated exAID B cells in old animals remained IgM+IgD+, but SHM on the IgG downstream region was significant (Figure S1D and Table 1), suggesting that switched memory B cells may not accumulate in the spleen.

To determine if exAID cells could appear in a pre-GC population, we analyzed each stage of B-cell development. We found a few exAID cells among the immature B cells in bone marrow (Figure 2A and 2B). The fraction of exAID cells increased in the immature B cells in the periphery; transitional (T) 2 B cells included more than 7% exAID cells. We could not observe the hCD2 expression in immature cells by conventional hCD2 staining method, but the expression was confirmed by RT-PCR (Figure 2C) [21,22,30]. These results suggest that the exAID B-cell population found in the spleen may be, at least in part, generated in pre-GC stages. Taken together, the current Aicda-cre/Rosa-reporter system appeared to be sensitive to a much lower level of Aicda expression than could be detected by staining.

ExAID cells in CD4+ T cells

Surprisingly, exAID cells also comprised about 7% of the CD3+CD4+ T cells in the spleen of 7-month-old Aicda-cre/R26R mice (Figure 3A and Figure S2AB). The frequency of exAID CD3+ CD8+ T cells was much lower than in CD3+CD4+ T cells. No clear hCD2+ T cells were observed, indicating that the Aicda expression in T cells is either very weak or rare at any given moment. ExAID CD4+ T cells had the effector memory (EM) phenotype (CD44+CD62L+) in the spleen [31,32], lymph nodes and Peyer’s patches, and few, if any, LacZ+ naïve T cells were observed (Figure 3C and Figure S2C). A small fraction of NK cells also expressed the Rosa marker (Figure S3A). In the thymus, exAID cells were not found in either CD4/CD8 double-positive or single-positive fractions (Figure 3B). Taken together, exAID T cells are likely to be generated in association with T-cell activation in the periphery. The percentage of LacZ+CD4+ T cells was consistently negligible in mice younger than 20 weeks, but gradually increased to around 25% of the total CD4+ T cells at around 18 months, although there were variations in individual animals (Figure 3D and Figure S3B). Furthermore, by crossing Aicda-cre/Rosa-tdRFP mice with Fucci transgenic mice, in which a cell-cycle indicator produces an Azami Green signal in the S/G2/M phase [33], we found that exAID CD4+ EM T cells proliferated as steadily as non-exAID EM T cells (Figure 3E). In the CD8+ (or CD4+) fraction there were generally very few exAID cells, which did not increase as quickly as those in CD4+ cells except in a couple of older animals (Figure S3C). It is thus likely that a certain fraction of activated CD4+ T cells, and a smaller but still detectable fraction of CD8+ T cells, can induce Aicda expression, and such exAID T cells can accumulate with age.

AID expression in GC B cells is associated with the environment, in which T-B interaction plays a critical role. To examine the possibility that the Aicda expression in T cells depends on B cells, we crossed the Aicda-cre/R26R mouse with the μMT mouse, which has virtually no B cells (Figure 4A) [34,35]. As shown in Figure 4B, there was no difference in the percentage of exAID cells found among the EM T cells in the μMT versus wild-type (WT) background. We conclude that T-B interaction is not essential for exAID T-cell generation, and that exAID T cells can develop without the GC reaction.

Endogenous AID mRNA expression in T cells

To examine whether the endogenous Aicda gene is expressed in T cells, we performed RT-PCR on LacZ+ and LacZ− EM T cells, as well as naïve T cells, sorted from pooled spleen and lymph node cells. A TaqMan probe that detects the exon 1–2 region of AID mRNA was used, because it does not detect the Aicda-cre transgene product. We detected weak but clear signals from the LacZ+ CD4+ T cells (Figure 4C). The signal strength was one-tenth of that from immature B cells, and similar to that of mature
Aicda Expression in T Cells

A

B220⁺ SPL mLN PP

hCD2 Lac Z (FDG)

0.06 0.21 0.4 3.4 0.1 5.5

B

IgA RFP DAPI

Small Intestine

IgA B220

RFP

C

D

SPL

Rosa-hCD2⁺ in B220⁺ 4 week

Age (w)

LacZ (FDG)
B cells. Because Cμ and CD19 mRNAs were almost absent in each sample, B-cell contamination was unlikely. Furthermore, we did the same experiment with Aicda-cre/R26R/μMT mice, and detected substantial AID mRNA levels in the LacZ+ T cells. These levels were higher than in WT LacZ+ T cells, and as high as in immature B cells (Figure 4C). In accordance with the PCR results, the hCD2 levels were much higher in the lymph node T cells of Aicda-cre/R26R/μMT mice than in those of WT mice (Figure 4D). We conclude that LacZ+ CD4+ T cells indeed expressed endogenous AID mRNA.

Properties of exAID T cells

In T cells, Aicda expression occurred primarily in the activated CD4+ fraction. To examine whether there are functional differences between exAID and non-exAID cells, we first analyzed the localization of exAID T cells within lymphoid organs. Sections of a Peyer’s patch from an Aicda-cre/Rosa-tdRFP mouse were outlined in the left panel. Bar represents 100 μm. (C) FACS analysis of lamina propria cells from the small intestine of an Aicda-cre/Rosa-tdRFP mouse. (D) The percentage of B cells with the Rosa26 LacZ or RFP hCD2+ among B220+ cells in the spleen, plotted by age (in weeks); symbols indicate individual mice. Correlation coefficient (r) was 0.65. Human CD2 and LacZ expression in B220+ spleen cells from a 4-week-old Aicda-cre/R26R mouse are shown (rightmost panel).

Table 1. Mutation frequency of Jh4 downstream intron of Igh of B220+ CD3+ cells.

<table>
<thead>
<tr>
<th>Cell</th>
<th>Mutation rate/(base pair)</th>
<th>Mutated base/Total base</th>
<th>Mutated clone/Total clone</th>
</tr>
</thead>
<tbody>
<tr>
<td>LacZ+ hCD2</td>
<td>1.0×10^-1</td>
<td>1/9,600,000</td>
<td>1/160</td>
</tr>
<tr>
<td>LacZ+ hCD2</td>
<td>3.0×10^-4</td>
<td>30/98,400</td>
<td>10/164</td>
</tr>
<tr>
<td>LacZ+ hCD2</td>
<td>8.3×10^-4</td>
<td>75/90,600</td>
<td>8/151</td>
</tr>
</tbody>
</table>

* p = 3.2×10^-4

| a,p = 2×10^-6

Statistical comparisons between two types of cells (a- and b-pairs) were done by use of 2×2 contingency tables made by Mutated base/Total base of each pair.

doi:10.1371/journal.pone.0029141.t001

Figure 1. Aicda-cre/R26R or /Rosa-tdRFP B cells are efficiently marked upon their activation in vivo. (A) Peripheral lymphoid organs of Aicda-cre/R26R 21-week-old mice were stained with B220, human CD2, PNA, and CD38. Histograms show CD38 and PNA expressed in LacZ- hCD2- and LacZ+ hCD2+ cells. SPL, spleen; mLN, mesenteric lymph node; PP, Peyer’s patch. (B) Immunofluorescence analysis of the small intestine of an Aicda-cre/Rosa-tdRFP mouse. IgA (green), RFP (red), and DAPI (blue) signals are shown together. The right panel shows an enlarged view of the area outlined in the left panel. Bar represents 100 μm. (C) FACS analysis of lamina propria cells from the small intestine of an Aicda-cre/Rosa-tdRFP mouse. (D) The percentage of B cells with the Rosa26 LacZ or RFP hCD2+ among B220+ cells in the spleen, plotted by age (in weeks); symbols indicate individual mice. Correlation coefficient (r) was 0.65. Human CD2 and LacZ expression in B220+ spleen cells from a 4-week-old Aicda-cre/R26R mouse are shown (rightmost panel).
higher than that observed from naive T cells. Furthermore, the RFP⁺ cells generated from RFP² EM T cells appeared to be located predominantly in the mesenteric lymph nodes (mLN) and small intestine (Si) lamina propria while majority remained RFP⁻ in the spleen, suggesting that RFP⁺ EM T cells might be generated upon activation of EM T cells by environmental stimuli in the gut (Figure 7A). Both RFP⁺ and RFP⁻ EM phenotype T cells did not expand in CD3e²/² mice as compared with naive T cells (Figure 7B). We did not find any difference in the recovered-cell number between the transfer of RFP⁺- and RFP⁻-cells. It suggested that RFP⁺- and RFP⁻-cells have similar capability for proliferation even after the transfer; the result is consistent with the result obtained by cell cycle indicator mice (Figure 7B and Figure 3E).

Aicda expression in T cells seems to be induced under specific in vivo conditions in response to stimuli derived from gut environment, with the resultant exAID T cells acquiring distinct functional properties, at least in the cytokine profile. It is important to know whether the AID in T cells plays any role in T-cell functions. Aberrant AID expression could cause mutations in proto-oncogenes, such as Myc [6,8,14]. However, we could not find AID-dependent mutations in exAID T cells at the Myc mutation hotspot through sequencing (Table 2 and S1). T cell antigen receptor (TCR) genes are other possible SHM targets [14]. We sorted the hCD2⁺ LacZ⁺ T cells from mMT background mice, and a mixture of TCR cDNAs were randomly cloned for sequencing analysis; however, no significant difference in mutation frequency was observed between the LacZ⁺hCD2⁺ and LacZ⁻hCD2⁻ fractions (Table S2). Nevertheless, we cannot...
Figure 3. Aicda-cre/R26R mice reveal the history of Aicda expression in a subset of T cells. Spleen T cells (A), thymocytes (B), and peripheral lymphoid organs (C) from Aicda-cre/R26R mice were stained with the markers indicated. The gating used for each plot is shown at the top of each panel. Data shown is for 29-week-old (A and C) or 7-week-old (B) animals. Numbers in the panels show the percentage of gated cells of each Aicda expression.
exclude the possibility that a limited number of TCR clones accumulated mutations, because the TCR sequencing analysis showed only the average in the total population analyzed.

AID expression in other tissues

AID expression in non-lymphocytes has been observed with viral or bacterial infection, or under other inflammatory conditions [10,17]. AID has also been found in non-lymphoid tissues, mouse ovary [25], and human testis [26] under normal conditions. We therefore histologically examined non-lymphoid tissues, including the testis and ovary of Aicda-cre/Rosa-tdRFP mice, and found RFP-positive cells in both the seminiferous tubule and the ovary (Figure S5AB). However, only one or two tubes per tissue section contained RFP+, suggesting that Aicda is occasionally expressed in a few spermatocytes in normal spermatogenesis. In the ovary, many granulosa cells and Theca externa cells were RFP-positive. We could not find RFP+ oocytes so far as we examined. We also could not find clear RFP signals in any other tissues examined so far, which include the pancreas, cerebellum, cerebrum, lung, liver, and kidney (unpublished observations).

Discussion

In the present study, we employed a highly sensitive monitoring system for in vivo Aicda promoter activation and found a new fraction of CD4+ T cells that expressed Aicda at some point. This observation convincingly demonstrates that AID can be expressed in non-B somatic cells under physiological conditions. Such T-cell populations may not be discovered by conventional procedures, because less than 1% of the CD4+ T cells expressed hCD2 or AID at any given time point. Despite this low frequency, exAID CD4+ T cells accumulated with age, eventually making up about 25% of the CD4+ T-cell population. This raises the possibility that these cells play distinctive functions in long-term phenomena such as immune-memory or immunosenescence, rather than in short-term responses.

Kwon et al. (2008) demonstrated that the efficiency of Cre-mediated deletion induced by the Aicda-cre transgene varies between the different floxed reporters present in the Tfl2zdood and R26Rood alleles. Only 20% of the GC B cells recombine R26Rood, whereas almost all of the GC B cells recombine Tfl2zdood, suggesting that Cre’s accessibility to a given locus is an important factor for conditional mutagenesis. Although the two reporter genes used in this study were inserted into the Rosa26 locus, which is similar to the R26Rood allele, both of them allowed us to detect Cre activity with apparently higher sensitivity than that obtained with the R26Rood. Therefore, the sensitivity of the Rosa26 system also seems to depend on the structure of the integrated reporter gene itself. Furthermore, despite its high efficiency in GC B cells, the Tfl2zdood allele fails to reveal Aicda-cre activity in immature B and T cells [27], suggesting that Cre’s accessibility to a given target gene may also vary in different cell types and developmental stages. These results imply that the fluctuating factors discussed above strongly influence the outcome of Cre-mediated conditional mutagenesis. Importantly, however, the Cre-positive cells detected with the more sensitive reporter system used in this study could not have been false positives, because they both depended on Aicda-cre and expressed Aicda transcripts, as shown by RT-PCR.

The exAID T cells expressed IFN-γ and IL-10, but little IL-4 or IL-17, indicating that they do not match any typical CD4+ T-cell subset. Actually, substantial fraction of cells expressed both IFN-γ and IL-10 as obvious in the intracellular staining. The IFN-γ production implies Th1, but IL-10, which has broad anti-inflammatory activity, has not been considered a typical Th1 cytokine [41]. Recently, however, cells producing IL-10 have been found in chronic infections caused by protozoa such as Toxoplasma gondii and Leishmania major [42,43]. These IL-10-producing Th1 cells are the major source of IL-10 in mice suffering from chronic intracellular parasite infection. IL-10 protects hosts animals from mortal hyperinflammation by T. gondii, while it prevents the healing of skin lesions in animals infected with L. major [42,43]. Although our mice were not infected with such protozoa, environmental antigens might occasionally stimulate T cells, thereby activating the regulatory cytokine program. Besides, the exAID EM T cells express slightly higher CCR7 and lower PSGL-1 in comparison with the non-exAID EM T cells. Because CCR7 and PSGL-1 is involved in leukocyte homing to lymphoid organ and effector site, respectively, exAID T cells might have some tendency closer to the central memory T cells although CD62L expression were not high [32]. The fact that exAID T cells acquired a cytokine signature and a homing receptor pattern distinct from other T cells suggests that the Aicda expression in T cells is associated with some specific stimuli.

A recent report demonstrated a unique PD-1+ T-cell subpopulation that is characteristic of aged animals [37]. These cells have memory phenotypes but hardly proliferate in response to TCR stimulation, and they produce fewer typical T-cell cytokines [37]. We found that most of the exAID CD4+ T cells in the spleen of aged animals were PD-1+, but many PD-1+ cells remained LacZ-negative. Therefore, it is possible that a fraction of the PD-1+ memory phenotype CD4+ T cells might comprise of heterogeneous cells, some of which express Aicda sometime during their development. Interestingly, C/EBPβ, which has a binding motif involved in Aicda expression [18], is highly expressed in the PD-1+ T-cell population [37].

What kind of stimuli might be involved in Aicda expression in T cells? Aicda expression was not induced in T cells in our in vitro culture experiments with various polarizing conditions; thus the conventional stimulation to activate T cells is not sufficient to induce Aicda expression efficiently. In contrast, a considerable fraction of effector memory cells as well as naive CD4+ T cells became RFP+ upon in vivo transfer into T cell-deficient mice, suggesting that AID upregulation may take place during homeostatic expansion, induced likely by antigens from the commensal bacteria [44,45]. It has been reported that IL-10-producing Th1 cells are generated by stimulation with a high antigen dose in conjunction with IL-12 in vitro [46]. Therefore, strong antigen stimulation might also be involved in generating exAID T cells. TCR crosslinking induces NK-kB signaling [47,48], which can also promote Aicda expression [18]. NF-kB can also be activated through Toll-like receptors, which are important for Aicda expression in immature B cells [20]. Th1 cells express TLR2
Figure 4. T-B interaction is not required for Aicda expression in T cells. (A) Results of B220 and IgM staining of Aicda-cre/R26R/μMT and Aicda-cre/R26R spleen (SPL) cells from 35-week-old animals are shown. (B) LacZ expressed in Aicda-cre/R26R/μMT (upper) and Aicda-cre/R26R (lower) spleen T cells. Naive and EM CD4+ T cells were gated as populations with CD3+CD4+CD62LhiCD44hi and CD3+CD4+CD62LloCD44lo phenotypes, respectively. FACS data shown are representative of five independent experiments. (C) Endogenous Aicda mRNA expression in peripheral B and CD4+ T cells was quantified by real-time PCR with Taqman® probes. Pooled spleen and lymph node cells were sorted and analyzed. Each value was normalized to the Pipb signal and shown as a number relative to the signal of germinal center B cells in each experiment; therefore, in this graph, one corresponds to the signal equivalent to germinal center B cells. The error bar indicates the standard deviation of triplicate PCR. The results are representative of two independent sorting experiments using two animals each. The following markers were used to define each fraction: germinal center B, B220+CD38--; transitional B, B220+IgM+IgD+CD21++; naive B, B220+IgD+IgM+; naive T, B220-CD3+CD4+CD62LhiCD44hiLacZ--; EM T (LacZ+), B220-CD3+CD4+CD62LloCD44hiLacZ--; and EM T (LacZ-), B220-CD3+CD4+CD62LloCD44loLacZ-. (D) Human CD2 and LacZ expression in the peripheral CD4+ T cell fraction in 33-week-old Aicda-cre/R26R/μMT mice. EM T cells (B220-CD3+CD4+CD62Lhi) in the spleen (SPL) or lymph node (LN) were examined for each mouse with the indicated genotype. Percentage within the gate is indicated.
doi:10.1371/journal.pone.0029141.g004

Immature B cells have been reported to express low levels of AID, for which the Toll-like receptor signal is responsible [20]. SHM in immature B cells has been proposed to contribute diversity to the primary repertoire [20–22,54]. It is not clear, however, whether such mechanisms are critical for B-cell repertoire maintenance. ExAID cells comprised only 5–10% of immature B cells, and the average level of AID mRNA expression was less than 10% of that in GC B cells. Aicda expression in immature B cells may be induced or triggered in part of the population, rather than intrinsically programmed. The AID expressed in immature B cells has been suggested to play a role in the negative selection of auto-reactive B cells [20,23,24]. ExAID immature B cells might have expressed BCR reactive to environmental antigens, including self-antigens, and such BCR could be edited to change its specificity.

Recently, two groups reported analogous strategies for analyzing AID expression in memory B cells [55,56]; these reports did not study AID in immature B cells, as our study did. Differences may be due at least partly to the cre expression level or the reporter sensitivity. Dogan et al. used the cre-ER system, in which cre is inactive until tamoxifen is administered [56]. This system is excellent for labeling the cells at one particular moment by tamoxifen injection, but it does not allow the accumulation of labeled exAID cells. Despite these

Figure 5. The localization of exAID CD3+ cells in Peyer’s patches. Left panel: an image of a Peyer’s patch, taken with a low power field, stained with CD3 (green), AID (blue), and RFP (red). The section was cut at the position where the germinal center was dense. The dotted line indicates part of a T-B border. Bar represents 200 μm. Right panels: enlarged view of the area indicated in the left panel. White arrows indicate CD3+ RFP+ double-positive cells.
doi:10.1371/journal.pone.0029141.g005
Aicda Expression in T Cells

Figure 6. Distinct functional feature of exAID T cells. (A) Naive T (CD3ε+CD4+CD62LhiCD44lo) and EM T (CD3ε+CD4+CD62LloCD44hi) cells, with or without LacZ, from Aicda-cre/R26R spleens were gated and examined for the indicated molecules. (B) Cytokine production of naive (diamond) and EM (LacZε+, triangle; LacZε+, square) T-cell fractions after stimulation with PMA and ionomycin is shown for the indicated time points. Unstimulated LacZε+ EM cells (non-stim., cross) were used as negative controls. Each symbol represents the result of an individual sample of multiple cultures (naive, n = 2; LacZε+, n = 6; LacZε+, n = 8; non-stim., n = 4). (C) TGF-β production 48 hours after PMA ionomycin addition, measured by ELISA. Symbols are the same as in (B). The result is representative of three independent experiments. IL, interleukin; IFN, interferon; TNF, tumor necrosis factor.

doi:10.1371/journal.pone.0029141.g006

Materials and Methods

Mice

Aicda-cre [27], R26R [29], Rosa-tdRFP [28], Fucci [33], μMT [34] and CD3εεεεε [60] mice were bred and maintained in specific pathogen-free conditions at the Institute of Laboratory Animals, Kyoto University, and in the animal facility at RIKEN. These animals were backcrossed at least 7 times on a C57BL/6 background. All experimental protocols involving animal use were approved by the Kyoto University Animal Research Committee and/or the Institutional Animal Care and Use Committee at RIKEN (Protocol number MedKyoi10055).

Antibody staining, LacZ detection and cell sorting

Cells were suspended in FACS buffer (PBS supplemented with 4% FBS, 1 mM HEPES, and 0.6% sodium citrate). The following antibodies were used for staining: monoclonal antibodies conjugated with FITC, PE, PE-Cy7, APC, APC-Cy7, Biotin or Pacific-
Table 2. Mutation frequency of Myc exon 1-intron 1 region.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Cell</th>
<th>Mutation rate/base pair</th>
<th>Mutated base/Total base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non imm.</td>
<td>Naive T</td>
<td>0.20 × 10^-4</td>
<td>3/153,114</td>
</tr>
<tr>
<td></td>
<td>EM T Rosa^-</td>
<td>0.40 × 10^-4</td>
<td>7/174,408</td>
</tr>
<tr>
<td></td>
<td>EM T Rosa^-</td>
<td>0.56 × 10^-4</td>
<td>2/35,490</td>
</tr>
<tr>
<td>Immunized*</td>
<td>Exp. 1</td>
<td>Naive T</td>
<td>0.16 × 10^-4</td>
</tr>
<tr>
<td></td>
<td>EM T Rosa^-</td>
<td>0.52 × 10^-4</td>
<td>8/153,114</td>
</tr>
<tr>
<td></td>
<td>EM T Rosa^-</td>
<td>0.34 × 10^-4</td>
<td>4/118,235</td>
</tr>
<tr>
<td></td>
<td>Exp. 2</td>
<td>Naive T</td>
<td><0.14 × 10^-4</td>
</tr>
<tr>
<td></td>
<td>EM T Rosa^-</td>
<td>0.26 × 10^-4</td>
<td>3/114,835</td>
</tr>
<tr>
<td></td>
<td>EM T Rosa^-</td>
<td>0.35 × 10^-4</td>
<td>5/143,785</td>
</tr>
</tbody>
</table>

*Mice immunized TNP-ova emulsified with incomplete Freund’s adjuvant. EM, effector memory; Exp, experiment; Rosa, LacZ or RFP.

Blue, specific for B220 (RA3-6B2), CD19 (1D3), CD93 (AA4.1), IgM (R6-60.2), IgD (11-26), CD38 (90), CD3 (500A2), CD4 (6B8), CD8 (53-6.7), CD44 (IM7), CD62L (MEL-14), NKG2D (CX5), Ddx5, NK-1.1 (PK136), CSFR7 (4B12), PSGL-1 (2PH1), ICOS (15F9), CXCR5 (2G8), CXCR4 (2B11), or hCD2 (RPA-2.10) (BD Biosciences or eBioscience). FITC conjugated or biotinylated PNA (VECTOR Laboratories) was also used. Biotinylated reagents were detected with either streptavidin-APC-Cy7 or streptavidin-APC (BD Biosciences). For LacZ detection, equal volumes of cell suspension and 2 mM fluorescein-di-β-galactopyranoside (FDG) in H2O were mixed at 37°C for 1 min. Stained cells were analyzed and sorted by FACS CantoII (BD Biosciences) and FACSAnalisys, respectively, and analyzed with FlowJo software (TreeStar, Inc.). A live lymphocyte population was gated according to forward-side scatters and 7-aminoactinomycin D staining.

Cell culture and cytokine detection

Sorted cells were cultured with PMA (50 ng/ml) and ionomycin (1 μg/ml) in RPMI-1640 supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 1 mM sodium pyruvate. In some experiments, cells were stimulated by pre-coating plates with 2 μg/ml anti-mouse CD3e (145-2C11, eBioscience) and 2 μg/ml anti-mouse CD28 (37.51, eBioscience) with or without added cytokine combinations, including TGF-β (3 ng/ml), IL-6 (20 ng/ml), IL-12 (5 ng/ml; BD Pharmingen), or IL-4 (10 ng/ml; R&D Systems). Concentrations of IL-2, IL-4, IL-10, IL-17, IFN-γ, and TNF-α in culture supernatants were measured by ELISA, a Ready-SET-Go kit (eBioscience), a CBA Mouse Th1/Th2/Th17 cytokine kit (BD Bioscience), or a TGF-β1 Emax ImmunoAssay System (Promega), used according to the manufacturer’s protocol.

Quantitative Real-time PCR

Total RNA was extracted by TRIzol reagent (Invitrogen Life Technologies), and cDNA was synthesized with TaqMan® Reverse Transcription Reagents (Applied Biosystems) or a LightCycler RNA Pre-Amplification Kit (Roche). The Aicda, Igh-M, Cd19, and Gapdh expressions were assessed with TaqMan® Gene Expression Assays (Applied Biosystems; Mm00477577_m1, Mm01718956_m1, Mm00515428_m1, and Mm99999915_g1) using Applied Biosystem’s 7900HT PCR system. Gene expression was normalized to the Gapdh or Phob expression as assessed by iQ Sybr green supermix (Bio-Rad Laboratories, Inc.) with cyclophilin-F and cyclophilin-R primers (Table S3).

Immunohistochemistry

Histological staining was done essentially as described elsewhere [61]. Briefly, tissues were fixed in 4% paraformaldehyde at 4°C, incubated in 30% sucrose at 4°C overnight, embedded in OCT compound (Sakura Finetechanical), snap-frozen in liquid N2, and then sectioned at a thickness of 8 μm with a Cryostat. The sections were blocked in TNN buffer (PerkinElmer Life Science) containing 5% normal donkey serum, using the Streptavidin/Biotin Blocking Kit (Vector Laboratories). Endogenous peroxidase activity was quenched with 1% H2O2. The primary antibodies were applied in TNN buffer for 1.5 h at room temperature, or overnight at 4°C. Slides were washed and incubated with biotin-conjugated secondary antibodies, and then incubated with streptavidin–HRP conjugate (Zymed Laboratories). Antigens were detected using tyramide–FITC or tyramidetetramethylrhodamine from the tyramide signal amplification kit (PerkinElmer Life Science) according to the manufacturer’s instructions. Stained slides were mounted with Fluoromount-G (Southern Biotechnology Associates). To observe RFP without immunostaining, slides were prepared as above, and then mounted with Slow fade Gold with DAPI (Invitrogen). Antibody used for AID staining was MAID-2 [62].

Sequencing for Ig, Myc, and TCRs

The IgV downstream region was amplified and sequenced as described [4]. The 1-kb region of Myc exon-1-intron1 was amplified by PCR from the genomic DNA of naive, LacZ~ EM, and LacZ~ EM T cells with the high fidelity polymerase Pyrobest (TaKaRa), using Myc-F and Myc-R primers for 35 cycles. PCR products were first A-tailed by Taq, and then cloned by the T-vector pMD20 (TaKaRa) for sequencing. In some experiments, mice were immunized once with 100 μg of trinitrophenyl (TNP)-ova in complete Freund’s adjuvant, and boosted 4 times per 2-week interval with 50 μg TNP-ova in incomplete Freund’s adjuvant.

RNA from sorted T cells was reverse-transcribed with a mixture of specific primers for TCR Cα and Cβ (Cα-1 and Cβ-1). Synthesized single-stranded cDNA was purified with the Allfmetry cDNA clean-up module (Allfmetry). Single-stranded DNA was tailed by terminal deoxynucleotidyl transferase (New England Biolabs) with 190 μM dGTP for 10 minutes at 37°C, purified with
the Affymetrix cDNA cleanup module, and then used for PCR with a mixture of primers (C24-2-Xho, 0.3 μM; Cβ-2-Xho, 0.3 μM; anchor-Xba, 0.3 μM; anchor-tC-Xba, 0.05 μM) by Prime STAR HS (TaKaRa) for 35 cycles. PCR products around 400–800 bp in size were purified by agarose gel electrophoresis, then randomly cloned into a pBluescript vector at XbaI and XhoI sites for sequencing. Sequence data was searched on IMG/T/GENE-DB [63] and on NCBI blast.

Adaptive transfer
Spleen and lymph node cells of Aicda-cre/Rosa-tdRFP mice were pooled and used for the sorting. One hundred thousand of CD62L⁺CD4⁺tdRFP⁺ naive T cells, 1 x 10⁵ CD62L⁺CD44⁺tdRFP⁺ and 1 x 10⁵ CD62L⁺CD44⁺tdRFP⁺ EM T cells were injected intravenously into CD3^{−/−} mice. They were analyzed at 10 weeks after the transfer.

Statistics
P values (two-tailed) were calculated by Fisher’s exact test. Correlation coefficient between age and percentage of exAID lymphocytes were calculated by Excel software (Microsoft).

Supporting Information

Figure S1 Characterization of Aicda-cre mouse crossed with Rosa reporter mice. (A) Schematic representation of Aicda-cre, R26R and Rosa-tdRFP alleles. (B) FACS analysis of B220⁺ cells for hCD2 and RFP expression in peripheral lymphoid tissues of Aicda-cre/Rosa-tdRFP mice (31-week) are shown. CD95 (Fas) is an activated B cell marker. (C) Estimated absolute numbers of Rosa marker (R26R, diamond; Rosa-tdRFP, cross) positive hCD2⁺ B220⁺exAID B cells were plotted by age. (D) Ig isotype of LacZ⁺ and LacZ[−] B cells in the spleen of aged mouse (64-week). The result is representative for three independent staining experiments. SPL, spleen; LN, lymph node; PP, Peyer’s patch.

Figure S2 ExAID CD4⁺ T cells visualized by Rosa-tdRFP system. (A) B220⁺ cells from Aicda-cre/Rosa-tdRFP mouse (33-week, upper panels) were stained with indicated markers. RFP positive CD4⁺ T cells appeared Aicda-cre dependent manner. (B) RFP histograms of the CD3⁺CD4⁺ fraction were shown. (C) Spleen (SPL), lymph node (LN) and Peyer’s patch (PP) T cells were immuno-stained and gated as indicated.

Figure S3 Analysis of non-B exAID cells. (A) NK cells contain a small fraction of cells with Aicda expression history. Spleen cells from Aicda-cre/R26R mouse (21-week) were stained by NK cell markers. Almost no NK marker positive cells are detected within CD3⁺ CD4⁺ T cells while CD3⁺CD4⁺ contains few but obvious LacZ[−] NK marker positive cells. The number indicates percent of the fraction in each quadrant among gated cells. The result was representative for three independent experiments with 1 or 2 mice. (B) Estimated absolute numbers of Rosa marker (R26R, diamond; Rosa-tdRFP, cross) positive CD4⁺ B220⁺ exAID T cells were plotted by age. (C) Percentage of Rosa marker positive cells (R26R, diamond; Rosa-tdRFP, cross) in cytotoxic T cells fraction in the spleen. The fractions were defined as CD3⁺ (filled diamond) or CD4[−] (open diamond) T cells. The x-axis is the age of mouse (week). (D) PD-1 expression of naive (CD62L⁺), non-exAID effector memory (CD62L⁺ LacZ[−]) and exAID effector memory (CD62L⁺ LacZ⁺) helper T cells (CD3⁺ CD4⁺) in aged (65-week) mouse. The result was representative for the analysis of three old mice (65- or 64-week).

Figure S4 In vitro stimulation of CD4⁺ T cells. (A) CD4⁺ T cells were fractionated to Naive, and LacZ⁺ and LacZ[−] effector memory T cells by sorting according to their expression of CD44 and CD62L. They were cultured with 2 μg/ml anti-mouse CD3e (clone 145-2C11, eBioscience) and 2 μg/ml anti-mouse CD28 (clone 37.51, eBioscience) for 2 Days. IL-2, IL-4, IL-17, IFN-γ, TNF-α in culture supernatants were measured by ELISA, Ready-SET-Go kit (eBioscience). The experiment was done twice and the results were essentially the same. (B) In vitro stimulation of Naive CD4⁺ cells failed to induce AID expression. Naive CD4⁺ T cells were sorted from Aicda-cre/R26R mice and cultured in vitro with various combination of stimulants with which T cells should polarize to different types of helper T cell states as indicated above each panel. The left most is the culture with un-fractioned CD4⁺ T cells that included LacZ⁺ cells as a control culture. The data is the representative of two independent experiments.

Figure S5 Histological analyses of testis and ovary. Frozen section of fixed tissues from Aicda-cre/Rosa-tdRFP and control mice (wt) were examined. Nuclear counter staining of DAPI and bright field image (BF) were shown below and above. (A) Images of testis. Boxed regions were magnified as indicated by arrows. A scale bar is shown in the high power magnification picture of the DAPI staining. Scale bar = 25 μm. (B) Images of ovary. Three different follicles of Aicda-cre/Rosa-tdRFP ovary are shown. Two sets of males and one set of female with the same number of controls were examined.

Table S1 Mutation frequency of Myc exon 1-intron 1 region.

Table S2 Mutation analysis on randomly cloned TCR cDNA.

Table S3 Primers used in this study.

Acknowledgments
We thank Dr. Atsushi Miyawaki for providing the Fucci mice, Dr. Hiroshi Hiai for advice on histological analysis, Dr. Nagahito Minato and Dr. Takashi Shinohara for helpful discussions, and Ms. Shiraki for manuscript preparation.

Author Contributions
Conceived and designed the experiments: TH HN. Performed the experiments: HQ KS MN NI LTH MM HN. Analyzed the data: HQ. Contributed reagents/materials/analysis tools: SC SF HN. Wrote the paper: HQ KS SF MB TH HN.
Aicda Expression in T Cells

