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Abstract 22 

The spatial relationship between topography and rock uplift patterns in asymmetric 23 

mountain ranges was investigated using a stream erosion model in which the 24 

asymmetric rock uplift was given and erosion rates were proportional to the m-th 25 

power of the drainage area and the n-th power of the channel gradient. The model 26 

conditions were simple, and thus the effects of horizontal rock movement, diffusional 27 

processes, and erosion thresholds were neglected, and spatially uniform precipitation, 28 

lithology, and vegetation were assumed. In asymmetric mountain ranges, under 29 

realistic exponent conditions (m < n) and the above assumptions, the surface erosion 30 

rate is faster on the steeper side and slower on the gentler side. The topographic axis 31 

migrates away from the rock uplift axis toward the center of the mountain range owing 32 

to the contrast in erosion rates. This migration continues until the erosion is balanced 33 

with rock uplift. In a dynamic steady state, the topographic pattern is independent of 34 

the rock uplift rate as indicated by an analytical solution, and is prescribed by the rock 35 

uplift pattern and the exponents m and n. As the asymmetry of the rock uplift pattern 36 

increases, the topographic axis migrates a greater distance. The location of the 37 

topographic axis is related to the location of the rock uplift axis by a simple 38 

logarithmic function, for a wide range of m and n. The fit of the numerical results and 39 

the logarithmic function is particularly good when m = 0.5 and n = 1.0. If the rock 40 

uplift pattern in asymmetric mountain ranges is known, the value of 5 / 4n m−  can be 41 

constrained based on the logarithmic relation, assuming a dynamic steady state. On the 42 

other hand, if the value of 5 / 4n m−  is known in an asymmetric mountain range, the 43 

rock uplift pattern can be estimated directly from the topography. This relation was 44 

applied to the Suzuka Range in central Japan, and the value of 5 / 4n m−  was 45 

estimated for an assumed reverse fault motion. 46 

 47 
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1. Introduction 51 

   Remarkable recent developments in geodetic techniques have produced detailed 52 

topographic information for the entire world (e.g., Farr et al., 2007). Detailed 53 

elevation maps have even been obtained for some satellites and planets, such as the 54 

moon (Araki et al., 2009) and Mars (Smith et al., 1999). In contrast, the data of 55 

tectonic movements are very limited in space and time. For example, even Japan's 56 

GEONET, one of the densest GPS networks in the world, provides crustal movement 57 

data at a spacing of about 20 km for a time span of less than two decades (Sagiya, 58 

2004). Data relevant to the long-term tectonic movements (103–106 years or more) 59 

that control topographic evolution are even sparser. Information of long-term tectonic 60 

deformation is fundamentally important to deduce tectonic processes. A principal goal 61 

of tectonic geomorphology would be to extract information regarding the rates and 62 

patterns of tectonic deformation directly from topography.  63 

   The purpose of this study is to quantitatively estimate rock uplift rate patterns using 64 

the topography of asymmetric mountain ranges. Asymmetry of mountain ranges may be 65 

caused by horizontal rock movements (Adams, 1980; Willett et al., 2001; Herman and 66 

Braun, 2006; Miller et al., 2007), differential base levels of erosion (Ellis and Densmore, 67 

2006), asymmetric distribution of rain and snow precipitation (Beaumont et al., 1992; 68 

Willett, 1999; Mitchell and Montgomery, 2006; Anders et al., 2008), or differences in 69 

lithology (Adams, 1980). Asymmetric rock uplift, however, should also result in 70 

asymmetric mountain ranges (Koons, 1989; Kooi and Beaumont, 1996; Kühni and 71 

Pfiffner, 2001). For example, the Suzuka Range in central Japan has been differentially 72 

uplifted by a west-dipping reverse fault system at the eastern margin of the range (Ota 73 

and Sangawa, 1984), which results in asymmetric topography. 74 

   In this study, asymmetric vertical rock uplift is considered to be a proxy for tectonic 75 

movement. Although lateral advection may be important in some asymmetric ranges, 76 

incorporating this effect requires the addition of more model parameters, such as the dip 77 

angle and length of the fault. Furthermore, natural faults commonly have some 78 

curvature. If even more realistic models are sought, for example, the elastic thickness of 79 
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the lithosphere must also be taken into account (e.g., Thatcher and Rundle, 1984; 80 

Fukahata and Matsu'ura, 2006). Although realistic, such complicated modeling is not 81 

the aim of this study, which focuses on a simpler set of conditions. 82 

   To express surface erosion, a stream erosion model (e.g., Howard and Kerby, 1983; 83 

Howard et al., 1994; Tucker and Slingerland, 1994) is used, in which the long-term 84 

erosion rate is proportional to the product of power functions for the drainage area and 85 

channel gradient. The values of the exponents of the power functions have been 86 

estimated in some mountain ranges from observed incision rates along river profiles 87 

(Stock and Montgomery, 1999; Whipple et al., 2000; van der Beek and Bishop, 2003; 88 

Harkins et al., 2007) and from the intrinsic concavity index of rivers with some 89 

assumptions of rock uplift rates under steady state conditions (e.g., Tarboton et al., 90 

1989; Seidl and Dietrich, 1992; Kirby and Whipple, 2001; Meade, 2010). However, the 91 

relation between the values of the exponents and asymmetry of topography has not been 92 

elucidated. 93 

   The response of topography to asymmetric (gabled) vertical rock uplift is examined 94 

using the stream erosion model. The location of main drainage divides (topographic 95 

axes) is of particular importance because these divides determine the first-order 96 

topographic features and drainage patterns in mountain ranges, which prescribe the 97 

environment and landscape of the area. If there is no erosion, the topographic axis must 98 

simply coincide with the rock uplift axis. Under asymmetric rock uplift and fluvial 99 

erosion, however, the erosion rate is seemingly faster on the steeper side, as long as all 100 

other conditions that contribute to erosion rate, such as precipitation, lithology, and 101 

vegetation, are uniform. Asymmetric uplift and stream erosion would predict, therefore, 102 

that the topographic axis migrates away from the rock uplift axis toward the center of 103 

the mountain range. The aim of this study is to systematically quantify the distance 104 

between the topographic and rock uplift axes. Because the distance also depends on the 105 

exponent values of the stream erosion model, this study links to estimation of these 106 

values. 107 

   This study employs a topographic evolution model that incorporates the effect of 108 
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rock uplift into a stream erosion model. Under conditions of asymmetric rock uplift, 109 

topographic evolution is numerically simulated, and a curious relationship between 110 

topographic and rock uplift axes is shown. We then investigate the dependence of the 111 

relation on the values of the exponents, and discuss the implications of the results for 112 

real mountain ranges.  113 

 114 

2. Topographic evolution model 115 

   The stream erosion model is suitable for modeling fluvial erosion at a resolution of 116 

1 km and was developed based on the law of open channel flow for stream incision 117 

into bedrock (e.g., Howard and Kerby, 1983; Howard et al., 1994; Tucker and 118 

Slingerland, 1994). In the stream erosion model, the erosion rate ε  is expressed as 119 

the product of power functions for the drainage area A  and channel gradient S  as 120 

follows: 121 

 122 

( ) ( ) ( ), , , , , ,
m n

x y t K A x y t S x y tε = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                 (1) 123 

 124 

where K  is the coefficient of erosion and the dimensionless exponents m and n are 125 

positive constants related to basin hydrology, hydraulic geometry, and erosion process 126 

(Howard et al., 1994; Whipple and Tucker, 1999; Whipple et al., 2000). In the present 127 

study, surface deposition (e.g., Willgoose et al., 1991; Kooi and Beaumont, 1994; 128 

Tucker and Whipple, 2002), and hillslope processes (e.g., Schmidt and Montgomery, 129 

1995; Roering et al., 1999; Stark and Hovius, 2001; Anderson, 2002) were neglected, 130 

and the erosion threshold that depends on the critical shear stress (e.g., Howard et al., 131 

1994; Whipple and Tucker, 1999; Tucker and Bras, 2000; Lague et al., 2005) was not 132 

employed, for simplicity. Other factors that contribute to erosion rate, such as 133 

precipitation, lithology, and vegetation, are assumed to be spatially and temporally 134 

uniform. 135 

   Rock uplift u is incorporated into the stream erosion model of Eq. (1) as in many 136 
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previous studies (e.g., Willgoose et al., 1991; Kirkby, 1994; Tucker and Slingerland, 137 

1994; Kirby and Whipple, 2001; Miller et al., 2007) as 138 

 139 

( ) ( ) ( ) ( ), , , , , , , ,
m nd h x y t u x y t K A x y t S x y t

dt
= − ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                     (2) 140 

 141 

where h  represents altitude. The drainage area A  and the channel gradient S  are 142 

functions of h. In other words, if a topographic distribution ( , , )h x y t  is given, 143 

( , , )A x y t  and ( , , )S x y t  are uniquely determined. Parameter S is the gradient of h. A 144 

is dependent on h in a complex fashion, but a proportional change in h from ( , )h x y  145 

to ( , )ch x y , where c is an arbitrary positive constant, does not affect A. 146 

   Given the rock uplift rate ( , , )u x y t , the initial height ( , ,0)h x y , and the boundary 147 

conditions, Eq. (2) can be solved with a finite difference method. Following the 148 

scheme developed by Beaumont et al. (1992), the model can be discretized in space 149 

and time. A series of regular square poles is used to represent the discretized 150 

topography. The drainage area and channel gradient for each cell is computed using a 151 

steepest-descent flow accumulation algorithm (Tucker and Slingerland, 1994). In 152 

computing the drainage area for a particular cell, the area of that cell is included. If the 153 

cell concerned is not included, the drainage divide is fixed and can not migrate because 154 

the erosion rate at the headwater cell of each stream is always zero as there is zero 155 

drainage area. 156 

   In the numerical simulation, the model area is 100×100 km, which is divided into 157 

1×1 km cells. The x-axis is the east direction, and the y-axis is the north direction. The 158 

origin ( , ) (0,0)x y =  is at the center of the model area.  159 

   The asymmetric rock uplift rate in the x direction is given by the following 160 

function: 161 

 162 
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( )

( )

max u
u

max u
u

( , , )

x L u L x x
x L

u x y t
L x u x x L
L x

+⎧ − ≤ ≤⎪ +⎪= ⎨ −⎪ ≤ ≤
⎪ −⎩

                      (3) 163 

 164 

where L is half of the model length (L= 50 km). The functional form is shown in Fig. 1. 165 

ux  represents the location of the rock uplift axis, and maxu  represents the maximum 166 

rock uplift rate, which is equal to the rock uplift rate at the rock uplift axis ux . The 167 

rock uplift rate is uniform in the y direction and constant over time. 168 

 169 

[Insert Fig. 1] 170 

 171 

   The initial conditions are a flat topography at an elevation of 0 m, with white noise 172 

with maximum amplitude of 10 m. The altitudes of the eastern and western boundaries 173 

are exactly set at 0 m through the computation. The water drains only through the 174 

eastern and western boundaries, and the northern and southern sides are no-flow 175 

boundaries. The problems associated with closed depressions (e.g., Tucker et al., 2001) 176 

are not included because the gradient of slopes generated by the following 177 

computations is usually very steep, except for just after initiation of rock uplift. For 178 

closed depressions, the erosion rate is set to zero. 179 

 180 

3. Results 181 

   The relationship between rock uplift and topography was quantitatively 182 

investigated with the topographic evolution model introduced above. Different values 183 

for parameters ux  and maxu , which prescribe the rock uplift rate, were used in order 184 

to determine the dependence of topography on these parameters. In contrast, 185 

parameters m, n, and K, which control the erosion rate, were initially fixed at m = 0.5, 186 

n = 1.0, and 51.2 10K −= ×  yr-1. These values imply that the stream incision rate was 187 

modeled as a function of stream power per unit bed area (e.g., Whipple and Tucker, 188 
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1999). As discussed in Section 3.4, the dependence of topography on these parameters 189 

was also examined. 190 

 191 

3.1 Topographic evolution under asymmetric rock uplift 192 

   The rock uplift parameters ux  and maxu  were initially set at 30 km and 6 mm yr-1, 193 

respectively, to observe the topographic evolution process (Fig. 2). The results show 194 

that after initiation of rock uplift, the mountain grows at approximately the same rate as 195 

uplift because erosion is very weak. The topographic axis, defined here as the line of the 196 

highest mean altitude along the north-south profiles, coincides almost exactly with the 197 

rock uplift axis. However, as the mountain grows, surface erosion increases, especially 198 

on the side of the range having the steepest topographic gradient (east). The topographic 199 

axis thus gradually migrates toward the center of the mountain range (Fig. 2). This 200 

means that the location of the topographic axis is more strongly affected by the effect of 201 

the channel gradient S than by the drainage area A, which is larger on the less steep side. 202 

A dynamic steady state is reached before t = 4.0 My. A dynamic steady state is defined 203 

as the condition under which the elevation change over a 1 My interval, averaged over 204 

the model area and normalized by the maximum elevation, is less than 0.01%. Before 205 

reaching a steady state, the topographic axis migrates about 10 km from the rock uplift 206 

axis toward the center. The elevation of the topographic axis is slightly reduced during 207 

this migration. 208 

 209 

[Insert Fig. 2] 210 

 211 

3.2 Relationship between rock uplift and topography  212 

   The relation of asymmetric rock uplift to topographic evolution was simulated by 213 

changing the maximum uplift rate maxu  and the location of the rock uplift axis ux . 214 

Values of 2, 6, and 10 mm yr-1 were used for maxu , and ux  was taken every 5 km 215 

from 5 to 45 km for each maxu . To suppress the dependence of topographic evolution 216 

on the initial random noise, the numerical simulation was performed five times for 217 
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each maxu  and ux  pair by changing the random noise of the initial topography. Fig. 3 218 

shows the relation between maxu  and the location of the topographic axis in the steady 219 

state tx  for various values of ux . As shown in the figure, tx  does not depend on 220 

maxu  irrespective of ux . In the simulation of topographic evolution based on Eq. (2), 221 

the pattern of topography in the steady state is generally independent of the rate of rock 222 

uplift for the following reason. In the steady state, the left side of Eq. (2) is zero:  223 

 224 

( , ) [ ( , )] [ ( , )]m nu x y K A x y S x y=                                       (4) 225 

 226 

Therefore, if a topographic distribution ( , )h x y  is a solution of Eq. (4) under a given 227 

uplift rate ( , )u x y , ( , )n ch x y  is also a solution for another given uplift rate with the 228 

same pattern ( , )cu x y , where c is an arbitrary positive constant. Recall that a 229 

proportional change in height distribution from ( , )h x y  to ( , )c h x y′  does not affect 230 

the drainage area ( , )A x y ; only the channel gradient changes from ( , )S x y  to 231 

( , )c S x y′ . The minor fluctuation of each line in Fig. 3 is ascribed to the given random 232 

noise added to the initial topography. In brief, a proportional change in u from ( , )u x y  233 

to ( , )cu x y  results in no change in A and a proportional change in S from ( , )S x y  to 234 

( , )n cS x y  in the steady state. Here, it should be noted that u, K and m may be 235 

spatially variable, but n must be constant in space. 236 

 237 

[Insert Fig. 3] 238 

 239 

   From the theoretical relations described above, the height of the topographic axis in 240 

the steady state should be proportional to the rock uplift rate to the 1 n  power. Given 241 

that n is taken to be unity, we show the elevation of the topographic axis in the steady 242 

state maxh  normalized by maxu  as a function of ux  in Fig. 4A. Each line of different 243 

rock uplift rates overlaps almost completely with each other. This means that maxh  is 244 

indeed proportional to rock uplift rate. In addition, maxh  decreases with ux , which is 245 

consistent with the topographic evolution process shown in Fig. 2, where the elevation 246 
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of the topographic axis decreases as the topographic axis moves away from the rock 247 

uplift axis ux  toward the center. The distance between ux  and tx  increases with 248 

ux , as shown in Fig. 3 and Fig. 5. 249 

 250 

[Insert Fig. 4] 251 

 252 

   Fig. 4B shows the time required to reach a dynamic steady state for each ux  and 253 

maxu  pair. As expected, the time to reach a steady state is longer for larger ux . The 254 

topographic axis slowly moves from the rock uplift axis toward the center of the 255 

mountain range (Fig. 2), and the distance increases with ux  (Fig. 3). During this time, 256 

the drainage network continues to evolve and adapt. This process takes time. 257 

Comparison of Fig. 4A and B shows that the time required is most sensitive to the 258 

initial random noise. 259 

   The time required is also independent of the maximum rock uplift rate maxu  (Fig. 260 

4B). For this independence, the key is that n is taken to be unity. When a height 261 

distribution ( , , )h x y t  is a solution of Eq. (2) for a given uplift rate ( , , )u x y t  that is 262 

constant in time, the height distribution ( , , )ch x y t  is also a solution for another given 263 

uplift rate with the same pattern ( , , )cu x y t . Recall again the drainage area ( , , )A x y t  is 264 

constant for a proportional change in height distribution from ( , , )h x y t  to ( , , )ch x y t  265 

and that ( , , )S x y t , which is the gradient of ( , , )h x y t , is proportional to ( , , )h x y t . In 266 

brief, the proportional relation of topography to rock uplift rates holds true throughout 267 

the time development. However, it should be noted that the proportional relation does 268 

not hold true when 1n ≠ ; only in the steady state, the proportional relation of 269 

topography to the n-th root of the rock uplift rate (Fig. 3 and Fig. 4A) holds true for 270 

1n ≠ . The independence of the elapsed time relative to the magnitude of rock uplift rate 271 

has already been noted by Kooi and Beaumont (1996) for the case of symmetric rock 272 

uplift. The independence is also valid for asymmetric rock uplift. 273 

 274 

3.3 Logarithmic relation between topographic and rock uplift axes 275 
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   The relation between the rock uplift axis ux  and the topographic axis tx  in the 276 

steady state (Fig. 3) requires examination. Any proportional change in a given rock 277 

uplift rate, from ( , )u x y  to ( , )cu x y , does not affect the location of the topographic 278 

axis under steady-state conditions (and for transient behavior when 1n = ). The 279 

numerical simulation was run five times for each maxu  and ux  pair, and the average 280 

and standard deviation of 15 trials with different rock uplift rates were assessed as a 281 

group.  282 

   The results show that tx  increases with ux  (Fig. 5), but the rate of increase in 283 

tx  is not as rapid as that in ux . The numerical relation between tx  and ux  needs to 284 

be expressed with an analytical function. The function must increase monotonically 285 

and the differentiation of the function should decrease monotonically; therefore, a 286 

logarithmic function would be appropriate. As a boundary condition, the function must 287 

pass through the origin u t( 0)x x= =  because there is no need for the topographic axis 288 

to move away from the center of the model region when ux  equals zero. In addition, a 289 

very small change in ux  from zero seems to cause the same amount of change in tx . 290 

This condition is written as t u/ 1dx dx =  at u 0x = . The logarithmic function to fit the 291 

numerical relation is then expressed by 292 

 293 

( ) u
t u ln 1xx f x a

a
⎛ ⎞= = +⎜ ⎟
⎝ ⎠

                                            (5) 294 

 295 

A natural logarithmic function is used here, but even if an apparently different base is 296 

used for the logarithmic function, the functional form is the same as Eq. (5) after 297 

transformation of the base. Eq. (5) consists of only the fitting parameter a, which is 298 

determined using the least-square method. 299 

 300 

[Insert Fig. 5] 301 

 302 

   The fit of the logarithmic function to the numerical results is statistically significant 303 
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(Fig. 5). The function passes almost exactly through the average of each trial. The 304 

average misfit to the nine data points is less than 0.2 km, which is much smaller than 305 

the grid interval of the numerical simulation. It should be noted that the result of each 306 

trial does not necessarily fit the logarithmic function, as shown by the error bar 307 

representing the standard deviation. After many trials with different initial random 308 

noise, however, the averages of the results follow the natural logarithmic function.  309 

   So far, parameters m, n, and K, which control erosion rates, have been fixed. 310 

Parameter K does not affect the functional relation between tx  and ux  because K 311 

has the same effect (except for the reciprocal) as u (Eq. (4)). However, tx  does 312 

depend on m and n. The effect of the exponents m and n on the logarithmic relation 313 

between tx  and ux  requires investigation. 314 

 315 

3.4 Dependence of the logarithmic relation on the exponents 316 

   As explained by Tucker and Whipple (2002), Eq. (1) has been used to model various 317 

fluvial erosion processes, including bed shear stress ( 0.3, 0.7)m n  (Howard and 318 

Kerby, 1983; Howard et al., 1994; Tucker and Slingerland, 1997), stream power per unit 319 

channel length ( 1.0)m n =  (Seidl and Dietrich, 1992), and stream power per unit 320 

bed area ( 0.5, 1.0)m n  (Stock and Montgomery, 1999; Whipple and Tucker, 1999; 321 

Kirby and Whipple, 2001). They also pointed out that the computed stream profile 322 

concavity under the condition 1.0m n ≥  or 0.2m n <  is not common for most 323 

mountain drainage basins. 324 

   The values of the exponents m and n as well as those of ux  and maxu  are 325 

changed: n is set at 0.5, 1.0, and 1.5, and m n  has values that increase in increments 326 

of 0.1, from 0.3 to 0.8, for each value of n. For each pair of m and n, the same 327 

computation as in Fig. 5 is repeated, and the relationship between the location of the 328 

topographic axis in the steady state tx  and that of the rock uplift axis ux  for each 329 

pair of exponents m and n is plotted (Fig. 6). The fit of the logarithmic function is 330 

again very good for most cases, indicating that the value of the fitting parameter a can 331 

be determined from one datum point of tx  and ux , regardless of the values of the 332 
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exponents m and n. The fit appears to be best when 0.5m n = . For smaller m n , the 333 

numerical results appear to be slightly more rectilinear than the logarithmic function, 334 

as for example in the case of 0.3m n = . For larger m n , the fit is still good. This 335 

may be due to the characteristics of the fitting function. The fitting function 336 

asymptotically approaches t ux x=  as m n  increases (Fig. 6). Therefore, even if the 337 

theoretical fitting function deviated from the logarithmic function, the deviation would 338 

not be noticeable.  339 

 340 

[Insert Fig. 6] 341 

 342 

   The change in the fitting function in Fig. 6 corresponds to the change in the fitting 343 

parameter a in Eq. (5). For larger a, the fitting function approaches t ux x= , but for 344 

smaller a, the curvature of the fitting function becomes more acute. The value of a is 345 

controlled by the relative susceptibility of drainage area A and channel gradient S to 346 

erosion. The relative contribution of the drainage area, which is larger on the gentler 347 

side, increases with larger m n . This means that for larger m n , the topographic axis 348 

tx  does not move away from the rock uplift axis xu  as much, the fitting function 349 

approaches t ux x= , and a becomes large. In contrast, for smaller m n , the 350 

topographic axis migrates a substantial distance, the curvature of the fitting function is 351 

more acute, and the fitting parameter a becomes smaller. As shown in Fig. 6, however, 352 

the value of a can vary significantly for smaller m n , even if m n  has the same 353 

value. In short, parameter a is not dependent only on m n .  354 

   A contour map of parameter a on the m and n coordinate plane (Fig. 7A) shows 355 

that a is roughly constant for n pm− , where p is about 5/4. If a is then plotted relative 356 

to n pm q− +  on a double logarithmic diagram (Fig. 7B) where q is a constant 357 

parameter, the numerical results can be fitted by a linear function expressed as 358 

 359 

10 10log log ( )a r n pm q s= − + +                                        (6) 360 

 361 
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where the optimal parameter values determined with the least-square method are 362 

1.26p = , 0.415q = , 2.55r = − , and 1.11s = . The fit is again excellent. If 1.25p =  363 

is used instead of 1.26p = , the fit is nearly the same. This means that 5 4n m−  is an 364 

appropriate indicator of the relative susceptibility of drainage area A and channel 365 

gradient S to erosion. For smaller 5 4n m− , in which the contribution of the drainage 366 

area is relatively high, the value of a becomes larger, and vice versa. With Eqs. (5) and 367 

(6), the relation between tx  and 5 4n m−  are obtained for various values of ux  368 

(Fig. 8). This diagram means that we can estimate 5 4n m−  or ux , if we know either 369 

value of them, because the topography (i.e., tx ) is commonly well known. 370 

 371 

[Insert Fig. 7], [Insert Fig. 8] 372 

 373 

4. Discussion 374 

   As shown in the numerical simulations, the erosion rate in asymmetric mountain 375 

ranges is faster on the steeper side and slower on the gentler side under realistic 376 

exponent conditions ( m n< ), as long as the other conditions that contribute to erosion 377 

rate are uniform. For example, in the Taiwan Central Range, where the eastern slope is 378 

much steeper than the western slope, significantly faster erosion is suggested for the 379 

eastern flank as compared to the western flank, as indicated by the metamorphic grades 380 

of exposed rocks (Ho, 1986), fission track analyses (Willett et al., 2003), and heat-flow 381 

data (Yamano, 1995; Fukahata and Matsu'ura, 2001).  382 

   To address the distance migrated by the topographic axis relative to the rock uplift 383 

axis, the model was applied to the Suzuka Range in central Japan as an example (Fig. 384 

9A). The Suzuka Range is located in the Kinki Triangle (Huzita, 1962), an area 385 

currently under east-west compression (Huzita, 1980; Terakawa and Matsu'ura, 2010). 386 

The eastern limit of the Suzuka Range is bounded by west-dipping reverse faults of the 387 

Ichishi Fault system, which have been active since the late Pliocene (Ota and Sangawa, 388 

1984; Ishiyama et al., 1999). There is no significant local variation in lithology (Huzita, 389 

1962; Geological Survey of Japan, AIST, 2009) and precipitation across the range.  390 
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 391 

[Insert Fig. 9] 392 

 393 

   A cross-section of the topographic profile of the range (Fig. 9B) was produced by 394 

averaging the elevation data in the direction parallel to the trend of the range 395 

(approximately north-south, Fig. 9A). In the topographic profile, the horizontal 396 

distance and relative elevation of the mountain range are normalized by the width of 397 

the range RL  (20 km) and the difference between the maximum (812 m) and 398 

minimum (170 m) heights. The topographic axis of the Suzuka Range is located at 399 

about 0.20 (normalized distance) as shown in Fig. 9B.  400 

   The uplift and erosion rates across the Suzuka Range are not known. A seismic 401 

reflection survey showed that the Fumotomura Fault, one of the faults of the Ichishi 402 

Fault system, has a dip angle of about 60˚ at shallow depth (Ishiyama et al., 1999). The 403 

youngest strata, the Tokai Group, are cross-cut by the fault, but the displacement is 404 

very small. West of the fault, strata of the Tokai Group steeply dip eastward, indicating 405 

that deformation around the eastern end of the range is caused by a fault-propagation 406 

fold (Ishiyama et al., 1999). Based on the seismic survey, we simulated the crustal 407 

deformation pattern in the Suzuka Range. The fault was assumed to have a dip angle of 408 

60˚ at the earth's surface, which gradually changes to a horizontal detachment fault at 409 

depth (Fig. 10A). The slip rate along the fault was assumed to decrease gradually to 410 

zero at surface from 3 km at depth because the deformation is caused by a 411 

fault-propagation fold. It should be noted that the true fault geometry and slip rate 412 

distribution are not well determined from observations; the configuration described 413 

was adopted to demonstrate the use of the model described in the previous section. In 414 

the computation of crustal deformation due to the dislocation across the fault plane, an 415 

elastic half-space was assumed and a value of 50 GPa was used for the bulk modulus 416 

and 30 GPa for the shear modulus. 417 

 418 

[Insert Fig. 10] 419 
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 420 

   Fig. 10B and C shows the profiles of vertical and horizontal displacements, 421 

respectively. The rock uplift axis is located at 0.32 in normalized distance (Fig. 10B). 422 

When u 0.32x =  and t 0.20x = , we can obtain the estimate of 5 4n m−  to be 423 

0.38± 0.05 based on Fig. 8, where the estimation error is originated from the standard 424 

deviation shown in Fig. 6. 5 4n m− = 0.38 almost coincides with a typically used set of 425 

the exponent values of ( , )m n = (0.5,1.0) . Then, 5 4n m−  is 0.375. If the topography 426 

of the Suzuka Range is before the dynamic steady state, the value of 5 4n m−  427 

becomes larger, because tx  further moves toward the center of the range. 428 

   So far, only the purely gabled rock uplift pattern has been considered as a cause of 429 

topographic asymmetry. In actual mountain ranges, however, the other factors may 430 

significantly affect the relation between the rock uplift axis ux  and the topographic 431 

axis tx . So, we carried out some sensitivity tests, in which u 0.32x =  and 432 

( , )m n = (0.5,1.0)  were used, and the topographic evolution was computed 15 times for 433 

each setting with different initial random noise. 434 

    As shown in Fig. 10B and C, the computed uplift pattern is not purely gabled and 435 

the horizontal displacement is not zero. Thus, the computed displacement profiles 436 

(solid lines in Fig. 10B and C) were used in the numerical simulation of topographic 437 

evolution, instead of the purely gabled rock uplift pattern (dotted line in Fig. 10B). As 438 

a result, 0.217± 0.007 was obtained for tx . This value is close to 0.207± 0.010, which 439 

is obtained for the purely gabled rock uplift pattern. If the horizontal displacement is 440 

neglected and only the computed uplift profile (solid line in Fig. 10B) is used, 441 

0.225± 0.012 is obtained. The effect of horizontal displacement is not significant in 442 

this situation, because the horizontal displacement in the hanging wall is quite uniform 443 

(Fig. 10C). The effect of asymmetrical precipitation was also investigated by giving 444 

20 % larger precipitation (larger A in the simulation) in one side. The topographic axis 445 

at each time step was used as the boundary of the different precipitation. Then, tx  is 446 

0.179± 0.011 and 0.227± 0.007 for larger precipitation in the eastern and western sides, 447 

respectively. When the base level of erosion was changed 10 % in the normalized 448 
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height, tx  was 0.189 ± 0.014 and 0.223 ± 0.010 for the higher base level in the 449 

western and eastern sides, respectively. In either case, the calculated tx  is almost 450 

within the two sigma of the purely gabled uplift case demonstrated in the previous 451 

section. 452 

   In the numerical simulation, the effects of thresholds for erosion and hillslope 453 

processes were omitted for simplicity. Owing to this simplification, the numerical 454 

model is essentially described by only three parameters, the rock uplift axis ux  and 455 

the exponents m and n, and does not depend on the rock uplift rate (Fig. 3 and Fig. 4) 456 

or the coefficient of erosion K. Numerical experiments in which a threshold of critical 457 

shear stress for stream erosion is included do not cause notable changes, probably due 458 

to a rapid erosion rate in the numerical simulation. Although the model does not 459 

explicitly incorporate hillslope processes, the uppermost cells of streams can be eroded 460 

because the area of any given cell is included in the calculation of the drainage area. 461 

This differs from the models of Kooi and Beaumont (1996) and Kühni and Pfiffner 462 

(2001). If we incorporate hillslope processes into the model, the migration distance of 463 

the topographic axis would probably be larger because the second derivative of the 464 

topography 2h∇  would be reduced. The main features of the topography, however, 465 

are considered to be primarily controlled by an advective stream process (Howard, 466 

1994; Kooi and Beaumont, 1996). In fact, the numerical simulation of Miller et al. 467 

(2007), in which the scale of their target (Siwalik Hills, Nepal) is about 20 km in the 468 

horizontal direction, demonstrated that diffusion does not visibly affect the asymmetry 469 

of the range under normal conditions.  470 

   This study identifies the logarithmic relation between the topographic and rock 471 

uplift axes for a simple set of conditions (Fig. 5 and Fig. 6). The fitting parameter a of 472 

the logarithmic function was also clearly related to the exponents m and n (Fig. 7). To 473 

reveal the nature of the logarithmic relation, we tried to derive these relations 474 

analytically, but failed despite of its simplicity. This problem should be addressed in 475 

the future. 476 

 477 
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5. Conclusions 478 

   Asymmetric rock uplift is one of the main causes of asymmetric mountain ranges, 479 

such as the Suzuka Range in central Japan. In asymmetric mountain ranges, the surface 480 

erosion rate is faster on the steeper side and slower on the gentler side, under realistic 481 

conditions for the exponents ( m n< ) and assuming that the other conditions that 482 

control the erosion rate, such as precipitation, lithology, and vegetation, are uniform. 483 

Therefore, the topographic axis migrates from the rock uplift axis toward the center of 484 

the mountain range until erosion is balanced by rock uplift (Fig. 2); this balancing 485 

takes a few million years (Fig. 4).  486 

   The migration distance from the rock uplift axis can be expressed by a logarithmic 487 

function (Fig. 6). The fit of the logarithmic function is especially good when 488 

( , ) (0.5,1.0)m n =  (Fig. 5). A proportional change in the uplift rate does not affect this 489 

relationship (Fig. 3 and Fig. 4) because a change in the uplift rate from ( , )u x y  to 490 

( , )cu x y  results in no change in the drainage area A and a proportional change in S 491 

from ( , )S x y  to ( , )n cS x y . Here, u, K, and m may be spatially variable, but n must 492 

be constant. 493 

   If the rock uplift pattern for an asymmetric mountain range is similar to be gabled, 494 

the value of 5 4n m−  can be constrained (Fig. 8). This concept was applied to the 495 

Suzuka Range in central Japan (Fig. 9 and Fig. 10). Conversely, if a value of 5 4n m−  496 

is available, the rock uplift pattern can be estimated directly from the topography in 497 

asymmetric mountain ranges. 498 

 499 

 500 
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Figure Captions  655 

 656 

Fig. 1. Profile of asymmetric rock uplift rate in the x (east-west) direction, equivalent 657 

to Eq. (3). ux  and maxu  represent the location of the rock uplift axis and the 658 

maximum rock uplift rate, respectively. The rock uplift rate is uniform in the y 659 

(north-south) direction and constant over time. 660 

Fig. 2. Topographic evolution process under a given asymmetric rock uplift rate. The 661 

initial topography is flat with an elevation of 0 m and superimposed white-noise 662 

topography with a maximum amplitude of 10 m. (A) Snapshots of topography over 663 

4 My of elapsed time, with a contour interval of 1000 m. (B) East-west topographic 664 

profiles averaged in the y (north-south) direction. tx  and maxh  are the location and 665 

elevation of the topographic axis in the steady state, respectively. The rock uplift 666 

axis ux , represented by the thick broken line in each diagram, is 30 km, and the 667 

maximum uplift rate maxu  is 6 mm yr-1. Water is drained only from the western 668 

(left) and eastern (right) boundaries. 669 

Fig. 3. Relation of the location of the topographic axis in the steady state tx  to the 670 

maximum rock uplift rate maxu  for various rock uplift axes ux . To suppress the 671 

effect of the initial random noise, the numerical simulation was performed five times 672 

for each pair of maxu  and ux . The solid diamond and error bar represent the 673 

average and standard deviation of the five trials, respectively. 674 

Fig. 4. Relation between parameters of rock uplift and topography. (A) Relation of the 675 

height maxh  at the topographic axis in the steady state to ux  and maxu . In order to 676 

compare results, the height at the topographic axis is normalized by maxu . (B) The 677 

relation of the elapsed time to steady state versus ux  and maxu . The solid diamond 678 

and error bar in each diagram represent the average and standard deviation of the 679 

five trials, respectively, for each pair of ux  and maxu . 680 

Fig. 5. Relation of the location of the topographic axis in the steady state tx  to the 681 

location of the rock uplift axis ux . The numerical results are fitted by a natural 682 

logarithmic function in Eq. (5). In this figure, parameter a is 22.2 km. The solid 683 
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diamond and error bar represent the average and standard deviation of 15 trials, 684 

respectively. For reference, t ux x=  is also shown (dotted line). 685 

Fig. 6. Relation between tx  and ux  for various pairs of the exponents m and n. The 686 

solid diamond and error bar represent the average and standard deviation of 15 trials, 687 

respectively, for the numerical simulation with different random noise of initial 688 

topography. The fitted logarithmic function for each pair of exponents has the form 689 

of Eq. (5), and the fitting parameter a is determined by the least-square method. For 690 

reference, t ux x=  is also shown (dotted line). 691 

Fig. 7. Relation of the log-fitting parameter a (Eq. 5) with the exponents m and n. (A) 692 

Contour map of parameter a on the m and n coordinate plane. (B) Relation between 693 

parameter a and a linear function of m and n on a double logarithmic diagram. The 694 

solid line represents the fitting function given in Eq. (6). 695 

Fig. 8. Relation of the location of the topographic axis in the steady state tx  to an 696 

appropriate indicator of the susceptibility of erosion 5 4n m−  for various rock 697 

uplift axes ux .  698 

Fig. 9. Topography of the Suzuka Range in central Japan. (A) Location map of the 699 

Suzuka Range. The rectangle indicates the region where the elevation data were 700 

averaged for the topographic cross-section in Fig. 9B. The area of the Kinki triangle 701 

is also shown by dotted lines (Research Group for Active Faults of Japan, 1991). 702 

The inset shows the tectonic setting of this area; EUR, NAM, and PHS stand for the 703 

Eurasian, North American, and Philippine Sea plates, respectively. (B) Topographic 704 

cross-section for the Suzuka Range. The cross-section is calculated from the digital 705 

map of Japan (Geographical Survey Institute of Japan, 1997) by averaging the 706 

elevation data in the direction parallel to the trend of the range. The horizontal 707 

distance and relative elevation are normalized by the width of the range RL  and the 708 

difference between the maximum and minimum elevations max minh h− , respectively. 709 

RL , maxh , and minh  are about 20 km, 812 m, and 170 m, respectively. 710 

Fig. 10. Crustal deformation pattern caused by reverse fault movement. (A) Vertical 711 

cross-section of the assumed fault geometry. The slip rate gradually decreases from 712 
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3 km at depth to zero at the earth's surface. (B) Uplift rate profile at the earth’s 713 

surface due to the fault motion (solid line), normalized by the maximum rock uplift 714 

rate. Rock uplift pattern in the form of Eq. (3) with u 32kmx =  is also shown 715 

(broken line). (C) Horizontal displacement profile at the earth’s surface due to the 716 

fault motion, normalized by the maximum rock uplift rate. 717 
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