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Precise determination of the nonequilibrium tricritical point based on Lynden-Bell theory
in the Hamiltonian mean-field model
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Existence of a nonequilibrium tricritical point has been revealed in the Hamiltonian mean-field model by a
nonequilibrium statistical mechanics. This statistical mechanics gives a distribution function containing unknown
parameters, and the parameters are determined by solving simultaneous equations depending on a given initial
state. Due to difficulty in solving these equations, pointwise numerical detection of the tricritical point has been
unavoidable on a plane characterizing a family of initial states. In order to look into the tricritical point, we expand
the simultaneous equations with respect to the order parameter and reduce them to one algebraic equation. The
tricritical point is precisely identified by analyzing coefficients of the reduced equation. Reentrance to an ordered
phase in a high-energy region is revisited around the obtained tricritical point.
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I. INTRODUCTION

Hamiltonian systems with long-range interactions [1,2]
have several differences from ones with short-range inter-
actions. One remarkable phenomenon in dynamics is that
a system with long-range interactions is trapped in a long-
lasting nonequilibrium quasi-stationary state (QSS) before
it goes toward the thermal-equilibrium state. A lifetime of
QSS diverges as the number N of particles increases. The
divergence is observed as N1.7 for a spatially homogeneous
QSS [3,4] and as N1 for an inhomogeneous QSS [5–8] in
the Hamiltonian mean-field (HMF) model, and as ln N in
the α-HMF model with α = 1 [9], which corresponds to
the boundary between long range and short range. Another
typical time scaling is N/ log N for stellar systems [10]. The
divergence of lifetime implies that one can observe solely
QSSs within his or her lifetime if the system size is large
enough. Moreover, in QSSs, negative kinetic specific heat,
whose temperature is associated with kinetic energy, possibly
appears both in microcanonical and in canonical ensembles
[11]. It is thus important to develop nonequilibrium statistical
mechanics describing QSSs.

A QSS is recognized as a stable stationary solution
to the Vlasov equation [2,3,10], which is also called the
collisionless Boltzmann equation. The Vlasov description of
N -body dynamics is verified if the mean-field approximation is
appropriate [12–15]. The Vlasov equation admits continuous
infinity of stationary states, and QSSs may depend on not only
energy (or temperature) but also initial order parameter, for
instance. A nonequilibrium statistical mechanics hence must
determine a QSS for a given initial state.

Based on incompressibility of the Vlasov equation and
the pioneering work of Lynden-Bell [16], a nonequilibrium
statistical mechanics has been studied in a plasma system [17],
in gravitating systems [18–21], and in the HMF model [22–24].
For plasma and gravitating systems, the nonequilibrium statis-
tical mechanics is not a complete theory due to the appearance
of the core-halo structure, but it is useful to describe QSSs
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in the HMF model, though the core-halo structure is also
observed in the HMF model [25]. One of the remarkable
predictions of the statistical theory is existence of first-order
phase transition and a nonequilibrium tricritical point [24]. We
stress that both the first-order phase transition and the tricritical
point never appear in thermal equilibrium of the HMF model.
Moreover, around the tricritical point, reentrant phenomenon
to the ordered phase has been reported above the critical
point [26], which is observed by N -body simulations. It is
hence worth detecting the tricritical point on a parameter plane
accurately, and investigating dynamics around the tricritical
point.

The tricritical point has been detected as follows. The
nonequilibrium statistical theory gives a Fermi-Dirac–type
distribution function for a QSS, and the distribution function
includes several undetermined variables depending on initial
states. The undetermined variables are determined by solving
simultaneous equations, which come from conservations hold-
ing in the Vlasov equation and the self-consistent condition
for potential. After computing values of the undetermined
variables, we divide the parameter plane into homogeneous
(disordered) phase and inhomogeneous (ordered) phase, and
draw transition lines as boundaries of the two phases. The
tricritical point is found as the collapsing point between the
second-order transition line and the first-order transition line.

Difficulty of detecting the tricritical point comes from com-
plexity of the simultaneous equations, which include integrals
of the Fermi-Dirac–type distribution function. One therefore
has had to explore the parameter plane by pointwise numerical
computations. The tricritical point sensitively depends on
accuracy of computations [24,26], but the accuracy has been
improved in a recent work [27].

Avoiding hard numerical computations to detect the posi-
tion of the tricritical point accurately, we direct our attention
to the fact that the order parameter is small enough around
the second-order phase transition line, including the tricritical
point. This fact admits to expand the simultaneous equations
in power series with respect to the order parameter. Truncating
simultaneous equations up to fifth order of the order parameter,
we can reduce them into one algebraic equation of the
order parameter whose coefficients depend on an initial state

061140-11539-3755/2011/84(6)/061140(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.061140


SHUN OGAWA AND YOSHIYUKI Y. YAMAGUCHI PHYSICAL REVIEW E 84, 061140 (2011)

identified as a point on the parameter plane. The tricritical
point is precisely detected by analyzing the coefficients with
the aid of Landau’s phenomenological theory. This method
is much simpler than the method of solving the simultaneous
equations used in the previous studies [24,26,27]. Around the
obtained tricritical point, we revisit the reentrant phenomenon
by performing N -body simulations.

We remark that there are two types of reentrant phe-
nomenon around the tricritical point. One is predicted by the
nonequilibrium statistical mechanics [22,26,27] by increasing
energy with fixing the parameter representing the initial
height of water-bag initial distribution. The other is observed
numerically and is not theoretically predicted [26]. We will
focus on the latter type of reentrant phenomenon by fixing the
initial magnetization.

This article is constructed as follows. We review the Vlasov
equation and Lynden-Bell’s statistical theory quickly in Sec. II.
The reduction of simultaneous equations is performed in
Sec. III. The reduced equation is analyzed with the aid of
Landau’s phenomenological theory in Sec. IV. The reentrant
phenomenon is revisited around the tricritical point in Sec. V.
Section VI is devoted to summary and discussions.

II. VLASOV EQUATION AND LYNDEN-BELL’S THEORY

The considered model in this article is the HMF model
whose Hamiltonian is written in the form

HN =
N∑

i=1

pi
2

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )],

(1)
θi ∈ [−π,π ], pi ∈ R, for i = 1, . . . ,N,

where N is the number of particles. The order parameter, or
the magnetization, of this finite N -body system is defined as

M (N)
x = 1

N

N∑
i=1

cos θi, M (N)
y = 1

N

N∑
i=1

sin θi,

(2)

M (N) = | �M (N)| =
√

M
(N)
x

2 + M
(N)
y

2
.

This model has the homogeneous phase and the inhomoge-
neous phase, which are characterized by zero and nonzero
modulus M (N) in the limit N → ∞, respectively. The HMF
model is one of the simplest models having long-range in-
teractions, and its canonical equilibrium [28], thermodynamic
stability [29], kinetic equation [30], dynamical stability [31]
and Lyapunov instability, and finite size effects [32] have been
investigated.

The N -body Hamiltonian dynamics is well described by
the Vlasov equation,

∂f

∂t
+ p

∂f

∂θ
− ∂H[f ]

∂θ

∂f

∂p
= 0, (3)

in the large-N limit [12], where f is the one-body distribution
function and H[f ] is the one-body Hamiltonian defined by

H[f ] = p2

2
− Mx[f ] cos θ − My[f ] sin θ. (4)

The order parameter vector (Mx[f ],My[f ]) in the Vlasov
context is the continuous limit of (M (N)

x ,M (N)
y ) [1,12,13] and

is defined by

Mx[f ] =
∫ +∞

−∞
dp

∫ 2π

0
f (θ,p,t) cos θ dθ, (5)

My[f ] =
∫ +∞

−∞
dp

∫ 2π

0
f (θ,p,t) sin θ dθ, (6)

M[f ] =
√

Mx[f ]2 + My[f ]2. (7)

QSSs are regarded as stable stationary solutions to the Vlasov
equation [3]. It is, however, impossible to predict Vlasov equi-
libria dynamically for given initial states in general. We then
use Lynden-Bell’s pioneering idea of statistical mechanics,
which takes incompressibility of the Vlasov dynamics into
account [16].

We consider initial states which are two-valued water-bag
distributions expressed by

f0(θ,p) =
{
f0 for (θ,p) ∈ D,

0 otherwise,

D = [−�θ,�θ ] × [−�p,�p], (8)

�p � 0, 0 � �θ � π.

The parameter f0 is determined by the normalization condition
as

f0 = 1

4�θ�p
. (9)

The incompressibility implies exclusivity of area elements
having the height f0 on μ space, and leads the fermioniclike
entropy [16],

S[f̄ ] = −
∫∫ [

f̄

f0
ln

f̄

f0
+

(
1 − f̄

f0

)
ln

(
1 − f̄

f0

)]
dθ dp,

(10)

where f̄ (θ,p) represents the coarse-grained distribution. In the
following, we drop the bar of f̄ for simplicity of the symbol.
We stress that the parameter f0, which reflects how particles
spread in the μ space at the time t = 0, appears explicitly in
the entropy (10), so that the distribution function maximizing
S[f ] depends on the initial state.

We maximize the entropy (10) under the conservations of
the normalization condition,

N [f ] =
∫∫

f (θ,p,t)dθ dp = 1, (11)

the total energy condition,

U[f ] =
∫∫

p2

2
f (θ,p,t)dθ dp + 1 − (M[f ])2

2
= U, (12)

and the total momentum condition,

P[f ] =
∫∫

pf (θ,p,t)dθ dp = P. (13)

Using Langrange multipliers, the variational problem is
expressed as

δ[S[f ] − α(N [f ] − 1) − β(U[f ] − U )

−γ (P[f ] − P )] = 0, (14)
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and the solution fLB is

fLB(θ,p) = f0

1 + eα+β(p2/2−M[fLB] cos θ)+γp
. (15)

From the rotational symmetry of the HMF model, we set
My[f ] = 0 and wrote Mx[f ] as M[f ] without loss of
generality.

The distribution function (15) has four undetermined
variables: the three Lagrange multipliers α,β,γ and the
magnetization M[fLB]. The magnetization M[fLB] must
satisfy the self-consistent equation

M[fLB] =
∫∫

fLB(θ,p) cos θ dθ dp = M. (16)

For the water-bag initial state (8), the total momentum P takes
0 and hence γ is 0. The distribution function hence becomes

fLB(θ,p) = f0

1 + eα+β(p2/2−M cos θ)
. (17)

The undetermined parameters α, β, and M are determined by
solving three equations (11), (12), and (16), simultaneously
for a given initial state parametrized by the pair of (�θ,�p).
This pair gives the initial magnetization,

M0 = sin �θ

�θ
, (18)

and the energy U ,

U = (�p)2

6
+ 1 − (M0)2

2
, (19)

and hence initial states are also parametrized by the pair of
(M0,U ) instead of (�θ,�p). We use the former pair.

Solving the simultaneous equations is the most difficult step
in determining the distribution function and drawing the phase
diagram on the parameter plane (M0,U ). This is the reason why
we need a theoretical reduction of the simultaneous equations.

III. REDUCTION OF SIMULTANEOUS EQUATIONS

The idea to reduce the simultaneous equations is to expand
them into power series of the order parameter M by focusing
on the fact that M is small around the second-order phase
transition line. The strategy is as follows. We obtain α and β

as functions of M by expanding two equations N [fLB] = 1
and U[fLB] = U with respect to M and by solving them
up to the fifth order of M . Substituting the obtained α and
β into expansion of the equation M[fLB] = M , we have
one algebraic equation of M . One solution to the algebraic
equation gives one value of magnetization M , and M gives
α and β accordingly. The obtained distribution function fLB

corresponds to a QSS if it is stable. Roughly speaking, the
phase diagram is drawn on the parameter plane (M0,U ) by
counting the number of solutions of M .

A. Elimination of β

We can extract β from integrands of the simultaneous
equations by changing variables as x = p

√
β/2 and η = βM .

The transformed simultaneous equations are

f0

(
2

β

)1/2

F (α,η) = 1, (20)

f0

(
2

β

)3/2

G(α,η) = 2U − 1 + η2

β2
, (21)

f0

(
2

β

)1/2

H (α,η) = η

β
, (22)

where the functions F, G, and H are defined by

F (α,η) =
∫ ∞

−∞
dx

∫ 2π

0

dθ

1 + eα−η cos θ+x2 (23)

G(α,η) =
∫ ∞

−∞
dx

∫ 2π

0

x2dθ

1 + eα−η cos θ+x2 , (24)

H (α,η) =
∫ ∞

−∞
dx

∫ 2π

0

cos θ dθ

1 + eα−η cos θ+x2 . (25)

We remark that F and G are even with respect to η, and H

odd:

F (α,−η) = F (α,η),

G(α,−η) = G(α,η), (26)

H (α,−η) = −H (α,η).

The normalization condition (20) gives√
β =

√
2f0F (α,η), (27)

and, using Eq. (27), we can eliminate β from energy condition
(21) and the self-consistent equation (22) as

F (α,η)G(α,η) = f 2
0 (2U − 1)F (α,η)4 + η2

4f 2
0

, (28)

F (α,η)H (α,η) = η

2f 2
0

, (29)

respectively.

B. Determination of α(η)

We assume that |η| � 1, and solve Eq. (28) with respect to
α. This assumption requires that both M and β are small, and
breaks around M0 � 0, since β becomes large. The solved α,
denoted by α(η), must be even with respect to η thanks to the
fact of Eq. (26). See the Appendix for details. The solution
α(η) is hence expanded as

α(η) = α0 + α2η
2 + α4η

4 + α6η
6 + · · · . (30)

Substituting the expansion (30) into F (α,η), we get

F (α(η),η) = F0(α0) + F2(α0,α2)η2

+F4(α0,α2,α4)η4 + · · · , (31)

where

F0(α0) = F (α0,0), (32)

F2(α0,α2) = Fα(α0,0)α2 + 1
2Fηη(α0,0), (33)
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F4(α0,α2,α4) = Fα(α0,0)α4 + 1

2
Fαα(α0,0)α2

2

+ 1

2
Fαηη(α0,0)α2 + 1

4!
Fηηηη(α0,0). (34)

The symbol Fαηη, for instance, denotes that

Fαηη = ∂3F

∂α∂η2
. (35)

The expansion of G is obtained by replacing F with G in the
above expressions. Considering Eq. (28) in each order of η,
we obtain the equations for α0, α2, and α4 as

F0G0 − f 2
0 (2U − 1)F 4

0 = 0, (36)

F0G2 + F2G0 − 4f 2
0 (2U − 1)F 3

0 F2 − 1

4f 2
0

= 0, (37)

F0G4 + F2G2 + F4G0 − f 2
0 (2U − 1)

(
6F 2

0 F 2
2 + 4F 3

0 F4
) = 0,

(38)

respectively. The value of α0 is determined by solving Eq. (36),
which depends on α0 only. The value of α2 is determined by
solving Eq. (37), and we get

α2 = 1 − 2f 2
0 (FGηη − 3FηηG)

4f 2
0 (FGα − 3FαG)

, (39)

where the functions of the right-hand side are evaluated at
(α,η) = (α0,0). The value of α4 is computed from the relation

−F (FGα − 3FαG)α4

=
[

1

2
F (FGαα − 3FααG) + Fα(FGα − 6FαG)

]
α2

2

+
[

1

2
F (FGαηη − 3FαηηG) + 1

2
F (FαGηη + FηηGα)

− 6FαFηηG

]
α2 +

[
1

4!
F (FGηηηη − 3FηηηηG)

+ 1

4
Fηη(FGηη − 6FηηG)

]
. (40)

The functions appearing in Eq. (40) are evaluated at (α,η) =
(α0,0) again. The solution α(η) is hence obtained by Eqs. (36),
(39), and (40) up to O(η5).

C. Reduced equation

Remembering that the function H (α,η) is odd with respect
to η, we can expand H (α(η),η) as

H (α(η),η) = H1(α0)η + H3(α0,α2)η3

+H5(α0,α2,α4)η5 + · · · , (41)

where

H1(α0) = Hη(α0,0), (42)

H3(α0,α2) = Hαη(α0,0)α2 + 1

3!
Hηηη(α0,0), (43)

H5(α0,α2,α4) = Hαη(α0,0)α4 + 1

2
Hααη(α0,0)α2

2

+ 1

3!
Hαηηη(α0,0)α2 + 1

5!
Hηηηηη(α0,0). (44)

Substituting the expansions of F and H , Eqs. (31) and (41),
respectively, into the self-consistent equation (29), we obtain
the reduced equation in η as

Ãη + B̃η3 + C̃η5 + O(η7) = 0, (45)

where

Ã = 1

2f 2
0

− F0(α0)H1(α0), (46)

B̃ = − [F0(α0)H3(α0,α2) + F2(α0,α2)H1(α0)] , (47)

C̃ = −[F0(α0)H5(α0,α2,α4) + F2(α0,α2)H3(α0,α2)

+F4(α0,α2,α4)H1(α0)]. (48)

The reduced equation (45) is written in η, but what we have
to compute is a reduced equation in M . For rewriting Eq. (45)
into the power series of M , we expand β as a series of η as

β(η) = 2f 2
0 F (α(η),η)2

= β0 + β2η
2 + β4η

4 + · · · , (49)

where

β0 = 2f 2
0 F0(α0)2, (50)

β2 = 4f 2
0 F0(α0)F2(α0,α2), (51)

β4 = 2f 2
0 [2F0(α0)F4(α0,α2,α4) + F2(α0,α2)2]. (52)

We used the fact that β(η) is even, since F (α(−η),−η) =
F (α(η),η). Substituting the definition η = βM into Eq. (49)
recursively, we get

β = β0 + β2
0β2M

2 + β3
0

(
β0β4 + 2β2

2

)
M4 + O(M6), (53)

and the reduced equation (45) is rewritten in the form

AM + BM3 + CM5 + O(M7) = 0, (54)

where

A = β0Ã, (55)

B = β2
0 (Ãβ2 + B̃β0), (56)

C = β3
0

[
Ã

(
β0β4 + 2β2

2

) + 3B̃β0β2 + C̃β2
0

]
. (57)

Note that A, B, and C depend on f0 and U only, and we can
compute their values from a given initial state characterized by
(f0,U ) or (M0,U ). Equation (54) is odd with respect to M , and
−M is a solution if M is. The number of real solutions is hence
1, 3, or 5 if we neglect O(M7), and the number depends on
signs of the coefficients A, B, and C. For each of the solutions
M , values of α and β, and hence the distribution function (17),
are determined from the expansions (30) and (49) by using the
definition η = βM up to O(η5).

IV. LANDAU’S PHENOMENOLOGICAL THEORY

It is helpful to introduce the pseudo free energy �(M),
whose critical points represent (meta)equilibrium states. A
critical point of �(M) is stable (unstable) if it is a local
minimum (maximum) point. Phase transitions occur when the
minimum point of �(M) changes from M = 0 to M 	= 0.
Analysis of phase transitions by using the pseudo free
energy is called Landau’s phenomenological theory [33]. For
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reproducing the reduced equation (54) as a derivative of the
pseudo free energy, we define �(M) by

�(M) = �0 + A

2
M2 + B

4
M4 + C

6
M6 + O(M8). (58)

We note that both �(M) and −�(M) give the same
equation for obtaining the critical points, but stability is
opposite between the two. The signature of pseudo free energy
is determined by noting that the coefficient A can be rewritten,

A = β0

f 2
0

[
1 + π

∫ ∞

−∞

1

p

dfLB,hom

dp
(p)dp

]
, (59)

where fLB,hom is a homogeneous Lynden-Bell distribution
function defined by replacing α with α0, β with β0, and
setting M = 0 in Eq. (17). The inside of the brace in Eq. (59),
denoted by I , represents linear [31,34,35] and formal stability
[3] of the homogeneous state fLB,hom, and I > 0 (I < 0)
implies that fLB,hom is stable (unstable). The equation I = 0
has been used for obtaining the stability diagram of the
homogeneous Lynden-Bell distribution function [22]. From
the facts F0(α0) > 0 and hence β0 > 0, the signature of A is
identical with I and hence A > 0 implies that fLB,hom is stable.
On the other hand, positive A implies that a solution M = 0 to
d�/dM = 0 is a local minimum point, and hence the pseudo
free energy must be �(M) instead of −�(M).

Landau’s phenomenological theory gives a phase diagram
on the (A,B) plane by assuming that C is always positive.
The lines A = 0 for B > 0 and 3B2 − 16AC = 0 for B < 0
represent second- and first-order phase transition lines, re-
spectively. The coexistence region associated to the first-order
phase transition is bounded by A = 0 and B2 − 4AC = 0.
The three lines A = 0, 3B2 − 16AC = 0, and B2 − 4AC = 0
meet at the origin A = B = 0, and the tricritical point is
located at the meeting point [36]. We stress that the condition
A = B = 0 is exact to detect the tricritical point, since five
solutions to Eq. (54) are degenerated at M = 0 irrespective of
neglected higher-order terms.

FIG. 1. (Color online) Phase diagram on the parameter plane
(M0,U ). Lines (A), (B), and (C) represent A = 0, 3B2 − 16AC = 0,
and B2 − 4AC = 0, respectively. The point (TC) represents the
tricritical point. The region enclosed by lines (A) and (B) is the
coexistence region. The ordered and the disordered phases appear in
the lower side of (B) and the upper side of (A), respectively.

TABLE I. Comparison of values of parameters at points which
are reported as the tricritical point in the present and a previous
paper [27].

U tc M tc
0 f tc

0

Present result 0.606178 0.15118 0.10949
Result in Ref. [27] 0.6059 0.15 0.109497

The coefficients A,B depend on f0 and U through α0 and
α2, and the phase diagram on the (A,B) plane can be mapped
to the (M0,U ) plane. We remark that C is always positive
around the phase transition lines according to numerical
computations. The obtained phase diagram is shown in Fig. 1,
which is qualitatively consistent with the previously reported
one in Ref. [24]. We denote the values of U, M0, and f0 by
U tc, M tc

0 , and f tc
0 , respectively, at the tricritical point. The

values arranged in Table I are in good agreement with the
values reported in [27].

V. N-BODY SIMULATIONS

Results of nonequilibrium statistical mechanics are sup-
ported by N -body simulations in a region which is not
close to the tricritical point [24]. Around the tricritical point,
however, a discrepancy between the statistical mechanics and
N -body simulations has been reported in Ref. [26]. The
statistical mechanics predicts monotonically decreasing M as a
function of energy U , but N -body simulations have revealed a
reentrance to an inhomogeneous phase in a high-energy region
in the (M0,U ) plane. We revisit this reentrant phenomenon
around the obtained exact tricritical point. To avoid confusion,
we again stress that this reentrant phase corresponds to what
is called “the second (unexpected) reentrant phase” in Fig. 12
of Ref. [26].

FIG. 2. (Color online) Energy dependences of magnetization for
four fixed values of M0 around M tc

0 . M0 = 0.10 (�),M tc
0 (∗),0.18 (×),

and 0.20 (+). The number of particles N is 105. Points are obtained
by taking averages over time from t = 500 to t = 1000. The solid
line is obtained by using the Landau theory for M tc

0 . We remark that
validity of the Landau theory is not guaranteed for large M .
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FIG. 3. (Color online) Same as Fig. 2, but for M0 = 0.13 (�),
0.14 (�),M tc

0 (∗),0.155 (×), and 0.16 (+).

The canonical equation derived from the Hamiltonian of
the HMF model is written in the form

dθi

dt
= pi,

dpi

dt
= −M (N)

x sin θi + M (N)
y cos θi, (60)

for i = 1, . . . ,N . We integrate the equation of motion (60)
numerically by using a fourth-order symplectic integrator [37]
with step size dt = 0.1. Initial values of θi and pi are randomly
drawn from the water-bag distribution (8).

We investigate the reentrant phenomenon by changing
value of M0 around the tricritical value M tc

0 . The results of
N -body simulations are reported in Figs. 2 and 3. According
to the statistical theory, increasing M0, the order of the phase
transition changes from first to second when the initial order
parameter passes M tc

0 . It is also predicted that the transition
energy U c(M0) should vary continuously when M0 crosses
M tc

0 . This is however not supported by N -body simulations.
A schematic picture of energy dependences of magnetization
is illustrated for several values of M0 in Fig. 4. As M0

increases, the reentrant phenomenon becomes clearer in one
side, M0 < M tc

0 , but it tends to disappear in the other side,
M0 > M tc

0 .
To show the signalization of the reentrance around the

tricritical value M tc
0 clearly, the local maximum and the local

FIG. 4. (Color online) Schematic picture of energy dependences
of magnetization. Broken lines in (a) and (b) represent jumps due to
the first-order phase transitions, which are predicted by the statistical
mechanics [24]. Two upper arrows in (b) and (d) represent direction
of change by increasing the initial magnetization M0. A reentrant
phenomenon appears and grows (b), and the growth stops at the
tricritical value M tc

0 (c). The panel (d) is for the value of M0 ∼ 0.18.
The reentrance disappears in large values of M0 (e).

FIG. 5. (Color online) Local maximum Mmax (×), the local
minimum Mmin (+), and their difference Mmax − Mmin (∗) as functions
of M0. Mmax and Mmin are defined in the inset. This graph is obtained
from the results exhibited in Figs. 2 and 3. The values of M0 marked
by (b), (c), and (d) in this figure correspond to panels (b), (c), and (d)
of Fig. 4, respectively.

minimum, which are observed in panels (b), (c), and (d)
of Fig. 4, are reported as functions of M0 in Fig. 5. The
Mmax − Mmin takes the maximum value around M0 = 0.155,
which is close to M tc

0 within 3% error. This error is compatible
with the error of the tricritical point, which is observed by M0

dependence of M with the fixed energy value U = U tc, though
it is not reported. We may therefore conclude that the reentrant
phenomenon is signalized around the tricritical point.

VI. SUMMARY

A tricritical point has been reported on a parameter plane
associated to a family of water-bag initial states in the HMF
model. One water-bag initial state goes to a Lynden-Bell
distribution, which has three undetermined variables, and the
three variables, including the order parameter, are determined
by solving three simultaneous equations. Due to difficulty in
this solving step, pointwise numerical detection of the position
of the tricritical point has been unavoidable.

We overcame this pointwise detection by deriving one re-
duced equation for the order parameter by expanding the three
simultaneous equations with respect to the order parameter.
One solution to the reduced equation gives magnetization in a
QSS for a given initial state, which is represented as a point on
a two-dimensional parameter plane. The phase diagram on the
parameter plane is hence drawn by analyzing the coefficients of
the reduced equation, since the coefficients are functions on the
parameter plane. We remark that the coefficient of the leading
order is equivalent to the formal and linear stability criterion for
homogeneous stationary states [3,35], and zero level contour
of this coefficient corresponds to the order-disorder transition.
The obtained phase diagram is qualitatively in good agreement
with ones previously obtained by directly solving the three
simultaneous equations [24,26,27]. Furthermore, the tricritical
point detected in the present paper is in good agreement with
that obtained by the detailed investigation reported in Ref. [27].

We emphasize that the obtained tricritical point is theoreti-
cally exact, since the assumption of the present method is that
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the product of the order parameter and the inverse temperature
is small enough and is satisfied around the tricritical point.
Potential importance of the present method is that it is
applicable to other statistical theories and systems, if order
parameters explicitly appear in smooth one-body distributions.

One statistical theory has been proposed based on the
core-halo structure [25], and the core-halo theory gives a
different phase diagram from one given by the Lynden-Bell
theory. For applying the present method to the core-halo theory,
we need to solve two problems: One is that the core-halo theory
includes a parameter determined with the aid of a numerical
simulation, and an extended theory is necessary to determine
the parameter theoretically. The other is that a distribution
function in the core-halo theory is expressed by step functions,
which are not smooth and are not expanded in the Taylor
series. It might be worth exploring the phase diagram based
on the core-halo theory theoretically by overcoming these
difficulties.

Around the obtained tricritical point, we revisited the
reentrant phenomenon, which is not a theoretically predicted
type [22,26,27] along iso-f0 lines, but is a numerically
observed type [26]. The latter type appears even along iso-M0

lines, and we explicitly confirmed the appearance of this
type of reentrance by performing N -body simulations. An
important observation by our computations is that the reentrant
phenomenon is signalized around the tricritical point. The
origin of this type of reentrant phenomenon is still unclear,
and is an open problem.
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APPENDIX: EVENNESS OF α

Let us introduce a function K(α,η) defined by

K(α,η) = F (α,η)G(α,η) − f 2
0 (2U − 1)F (α,η)4 − η2

4f 2
0

.

(A1)

This function K is even with respect to η, and we can expand
K as

K(α,η) =
∞∑

n=0

∂2nK

∂η2n
(α,0)

η2n

(2n)!
, (A2)

where 0! = 1. We solve K(α,η) = 0 with respect to α, and
show that the solution α(η) is even under some assumptions.

We expand the solution α(η) as

α(η) = α0 +
∞∑

m=1

αmηm. (A3)

Substituting this expansion (A3) into Eq. (A2), we have

K(α(η),η) =
∞∑

n=0

∞∑
k=0

1

(2n)!k!

∂2n+kK

∂αk∂η2n
(α0,0)

×
[ ∞∑

m=1

αmηm

]k

η2n. (A4)

The condition K(α(η),η) = 0 implies that the coefficient must
vanish in each order of η. From the terms of O(η), which comes
from n = 0 and k = 1, we get α1 = 0 if (∂K/∂α)(α0,0) 	= 0.
The terms of O(η3) are proportional to α1 or α3, and α3 appears
only in the term

∂K

∂α
(α0,0)α3η

3, (A5)

which comes from n = 0 and k = 1. The coefficient α1

vanishes and hence α3 = 0 if (∂K/∂α)(α0,0) 	= 0. Similarly,
we can prove that α2l+1 = 0 from the facts that (i) each
O(η2l+1) term includes one odd number of αm(m � 2l + 1)
at least, (ii) αm = 0 for m = 1,3, . . . ,2l − 1, and (iii) α2l+1

comes from n = 0, k = 1, and m = 2l + 1, which gives only
the term

∂K

∂α
(α0,0)α2l+1η

2l+1. (A6)

Consequently, if (∂K/∂α)(α0,0) 	= 0 at the α = α0, which
satisfies K(α0,0) = 0, then α(η) is even.

The above function ∂K/∂α is estimated at η = βM = 0,
which implies M = 0 for finite temperature. Using M = 0,
the one-body Hamiltonian H[f ] (4) is positive and hence
the chemical potential μ = −α/β is positive accordingly.
Consequently, the parameter α is negative. Numerical com-
putations reveal that ∂K/∂α is negative for negative α, and the
assumption (∂K/∂α)(α0,0) 	= 0 is satisfied in the HMF model.
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