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Geometry of one-dimensional wave propagation
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(Received 6 October 1994)

We investigate the geometrical features of one-dimensional wave propagation, whose dynamics is
described by the (2+1)-dimensional Lorentz group. We find many interesting geometrical ingredients
such as spinorlike behavior of wave amplitudes, gauge transformations, Bloch-type equations, and
Lorentz-group Berry phases. We also propose an optical experiment to verify these effects.

PACS number(s): 03.65.Bz, 03.40.Kf, 02.40.—k

I. INTRODUCTION

The Berry phases [1] produced by rotations have been
most extensively studied for various physical systems.
Another interesting class consists of Berry phases pro-
duced by Lorentz transformations. Chiao and Jordan
[2] showed that Lorentz-group Berry phases could be ob-
served as a change of phase of the electromagnetic field in
squeezed states. Successive squeezing operations for ei-
ther light or microwaves by degenerate parametric ampli-
Gers induce a phase shift that can be interpreted geomet-
rically. These kinds of experiments have drawn consider-
able interest because they can be viewed as the quantum
optical realization of the Lorentz kinematics [3,4].

Another optical manifestation of the Lorentz-group
Berry's phase was proposed and experimentally verified
[5]. It is shown that when one cycles light through a se-
quence of partially polarized states, the light acquires a
geometrical phase.

It is well known that the wave propagation in one di-
rnension (1D) can be described by the Lorentz-group dy-
namics, therefore, one can expect Lorentz-group Berry
phases in wave systems. In this paper, we present Berry
phases and related geometrical features seen in the 1D
wave propagation in inhomogeneous media.

In Sec. II, from the 1D wave equation with quasi-
periodic potential we derive a Schrodinger-like equation,
which explicitly exhibits the Lorentz dynamics via the
generators of SL(2,R). The dynamical variables of the
equation are the two quadrature wave amplitudes, which
form a two-column state vector.

In Sec. III, a SL(2,R)-Bloch equation is derived from
the Schrodinger-like equation. The equation is very simi-
lar to the conventional SU(2)-Bloch equation for the spin-
1/2 except that the SL(2,R)-Bloch vector moves on a
conical surface not on a sphere. The similarity could be
very useful for the geometrical understanding of Lorentz
dynamics, especially because the SU(2)-Bloch model has
been successfully employed in various fields such as nu-
clear magnetic resonances, nonlinear optics, polarization
optics, interferometry, and atomic physics, etc.

In Sec. IV, we discuss two-valuedness of the state vec-
tors. A Bloch vector represents a pair of state vec-
tors with opposite signs. When a Bloch vector circles
around the apex of a cone, the corresponding state vec-

tor changes its sign. It is shown that the two-valuedness
comes from a symmetry of the wave equation with re-
spect to the translation of half wavelength.

Extending the above geometrical situation, we intro-
duce in Sec. V a local gauge transformation associated
with the deformation of space coordinate.

So far, we have assumed that the state vector is real be-
cause the potential function in the wave equation is real.
It turns out, however, the extension to complex wave
functions is very convenient, because a complex solution
could represent two linearly independent real solutions
at once. In Sec. VI, we derive a Bloch equation for the
case of complex amplitudes. In this case, a Bloch vector
corresponds to a set of state vectors that dier only in
phase factors. The Bloch vector moves on the surface of
hyperboloid. This is the arena where the Berry phase
plays a role. In Sec. VII, we define the Berry phase for a
cyclic evolution of the system.

Finally, we propose a feasible optical experiment where
we can observe the Berry phase for 1D wave propagation.

II. 1D WAVE EQUATION AND SL(2,R)

Let us start with a one-dimensional wave equation
(the Helmholtz equation) for a monochromatic wave
@(x)e

(
d2

, + k'[1+ e(x)]) e[x) = 0,

where k = k(io) is the wave number in free (e = 0) space.
We assume the spatial variation of the refractive index

or the potential e(x) has the following form:

e(x) = eo(x) + 2e, (x) cos 2kx + 2e, (x) sin 2kx. (2)

The spatial modulation at wave number 2k strongly mod-
ifies the propagation of the wave with wave number k
owing to the Bragg eKect. The dc component eo also
has substantial inBuences through the Bragg resonance
condition.

We represent the wave 4'(x) with mean wave number
k as

i'(x) = A(x) cos kx + H(x) sin kx,
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where A(x) and B(2:) are slowly varying envelope func-
tions. These envelopes are normally considered to be real
functions, since e(x) in Eq. (1) is real. However, the ex-
tension to complex functions is sometimes very useful as
will be discussed in Sec. VI.

Substitution of Eqs. (2) and (3) into Eq. (1) gives

In order to see the geometrical structure of SL(2,R) dy-
namics, let us derive the corresponding Bloch equation.
(A more detailed derivation will be given in Sec. Vl. See
also Ref. [6].)

First we de6ne the 2 x 2 density matrix p as

d & k '

dg; B 2 —ec —~p

—6'c + Ep
(4) where (g~ represents the row vector (A, B), and s

(si, s2, s3) the Bloch vector. We note,

which can be rewritten in a Schrodinger-like form, s = (2AB, —A + B,A + B ). (10)

with the column vector ~g} = (A, B) . Here we in-
troduced e(x) = ( t„e —eo) = (E'i e2 e3) and K'

(Ki, K2, J3)) with

Ki ——io3/2, K2 ——io'i/2, J3 ——o'2/2, (6)

where o;(i = 1, 2, 3) are the Pauli's spin matrices.
We have assumed that A(x) and B(x) do not

change appreciably over distances of the order of k
(slowly-varying-envelope approximation) and neglected
the terms with wavelength +3k (secular-term approxi-
mation).

The matrices (6) are the generators of SL(2,R), the
two-dimensional real unimodular group, and satisfy the
commutation relations

zdS x s)
dt

(i2)

where the SU(1,1) vector product defined as

a x b = (a2bs —asb2, asbi —aib3, —aib2 + a2b, ) (13)

for two vectors, a = (ai, a2, a3) and 6 = (bi, b2, b3). We
also define the SU(l, l) scalar product,

a . 6 = azbz+ a2b2 —a3b3. (14)

The equation of motion for p can be obtained from Eq.
(5) as

ik —= [
—e. K, p].

~ —1dp
dx

Using the commutation relations (7), we have the equa-
tion of motion for s,

[Ki, K2] = —iJ3, [K2 J3] iK1 [J3 Kl] iK2 ~

(7)

Then from Eq. (10), we have

S 8=0) 83 +0)

The (A. , B) plane is squeezed in one direction and
stretched in the orthogonal direction by the generators
Kz or K2, and rotated by J3.

The group SL(2,R) has the close connection (locally
isomorphic) to the (2+1)-dimensional Lorentz group
SO(2, 1) as does the group SU(l, l). Instead of Eq. (3), if
we use a representation

then we have the SU(l, l)-Schrodinger equation with
Ki = icri/2, K2 = —io.2/2, J3 = o3/2, which satisfy the
same commutation relations as Eq. (7). In the following
discussion, we mostly use SL(2,R) rather than SU(l, l).

ds ~ ds a=0
dx dx

(16)

A trajectory, which is the intersection of a plane and
the cone could be an ellipse, a parabola, or a hyperbola
according as e is greater than, equal to, or less than
ez + t'2. The elliptical, bound trajectories correspond
to the propagating waves in the conduction bands and
the hyperbolic, unbound trajectories correspond to the

which means the Bloch vector s moves on the surface of
the (upper) cone depicted in Fig. l.

When e(x) is constant, trajectories for s are very sim-
ple; the vector s lies in a plane that is orthogonal to the
vector e = (ti, e2, e3), b—ecause

III. SL(2,IR)-BLOCH EQUATION —REAL
AMPLITUDE CASE

„S3

Equation (5) has a form similar to the Schrodinger
equation for the spin-1/2 (J) in time varying magnetic
fields R(t); ih(d/dt)~@} = —H(t) J~vP}. The underlying
group for the spin-1/2 dynamics is SU(2), which is the
covering group of the three-dimensional rotation group,
SO(3). The Bloch equation derived from the spin-1/2
Schrodinger equation apparently rejects the structure of
those groups; the Bloch vector moves on a sphere, and
the Berry phase for spin 1/2 can be related to the surface
area of the sphere.

S2

FIG. ].. Bloch vector s (for real amplitudes) on the conic
surface: 8& + 8q —&3

2 2



GEOMETRY OF ONE-DIMENSIONAL WAVE PROPAGATION

evanescent waves in the forbidden bands.
Owing to the geometrical simplicity and the similarity

to the conventional Bloch equation, the SL(2,R)-Bloch
equation could be very useful.

-A +A

IV. TWO-VALUEDNESS 0
+A

In this section, we study a subtler geometrical feature
of SL(2,R)-Bloch equation. We note the correspondence
between (A, B) and s given by Eq. (10) is not one to
one but two to one; a single vector 8 represents two state
vectors with opposite signs: (A, B) and (—A, B). —

At first sight, these two state vectors may seem to
represent two distinct physical situations. Within the
framework of the present approximation (slowly varying
envelopes), however, the two situations are virtually iden-
tical. Figure 2 represents the local pictures of waves with
opposite polarities (real lines). A potential with period

ark i is also shown (dashed lines). We note the dispo-
sitions of the waves relative to the potential are the same
and, therefore, the waves would evolve identically.

This degeneracy comes from the fact that the potential
(2) is invariant under the translation x ~ z+ nmk (n:
integer), as far as the variation of e(z) over the distance
nark can be neglected;

e(x+ nark ') - e(x). (17)

On the other hand, from Eq. (3), we see that the trans-
lation induces (A, B) m (—1)"(A, B).

In order to see the geometrical structure of the two-
valued representation, we can make a cone from the
(A, B) plane as shown in Fig. 3. The (A, B) plane is
cut along a line from the origin (+A axis in this exam-
ple) and is wrapped to make a twofold cone with apex
angle of 60 degrees. When the vector 8 on the cone en-
circles a closed curve around the apex, we see that the
corresponding (A, B) gains a factor (—1),where n is the
winding number of the curve.

Even though, two vectors (A, B) and (—A, B) repre--
sent (almost) the same physical situation, we can conve-
niently detect the minus sign by interferometric methods,
as that for spin 1/2 rotated by 2' [7]. (The two cases have
good analogy, but it is only for the latter case that inter-
ference experiments are absolutely required and even in
principle there is no other way to detect the minus sign. )

Figure 4 shows an example of interferometry. We have

FIG. 3. In order to identify (A, B) and (—A, B), w—hich
represent physically the same state, we make a twofold cone
from the (A, B) plane by making a cut from the origin and
wrapping.
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two trajectories both of which start from (A, B) = (1,0)
at x = 0. One evolves with a constant e and the other
with —e. After some evolution, they reach conjugate
points in the (A, B) plane. Looking at the corresponding
wave forms [Fig. 4(b)], we notice that the phase shifts
accumulate to make signs opposite.

This situation reminds us of the sign change of a spinor
rotated by 2m, the Aharonov-Bohm eKect with an infi-
nite solenoid, the sign change around the degeneracy of
the eigenstates of real-Hamiltonian systems [8,9], and the
(relative) configuration space of two identical particles in
two-dimensional space [10]. In terms of the second anal-
ogy, the topological magnetic flux of vrhc/e is required to
account for the sign change or the phase shift of 7r. The
amount of flux is consistent with the (singular) curvature
at the cone apex or the apex angle.

FIG. 2. Waves with opposite polarities (real lines) have
the same phase relationship with the half-periodic potential
(dashed line).

FIG. 4. Interferometric detection of two-valuedness of
wave amplitudes. (a) Two trajectories starting off from
(A, B) = (1,0) at x = 0 evolved by e = n( —2, 1, 3)/400 (real
line)& and by e(dashed line), respectively, —and reach conju-
gate points at x = 100k . (b) Corresponding wave forms.
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Mathematically speaking, SL(2,R) is a two-valued
representation of the (2+1)-dimensional Lorentz group,
SO(2,1), as SU(2) is for the three-dimensional rotation
group, SO(3). It is very interesting that the two-valued
representation which is believed peculiar to the quantum
regime manifests itself in the classical context.

It should be noted that the cone introduced here and
that for the Bloch vector discussed. in the previous section
have different apex angles and different parametrization:

I = 2 dx = 2nvrk
d((x)

dx
(24)

which is independent of the local behavior of (, amount
to the sign factor exp( —inkl/2) = (—1) between (A, B)
and (A', B').

x" = x+((x), with ((x) = 0 for x & xq and ((x) = n7rk
for x & x2, in the interval of x~ ( x ( x2, x" smoothly
connects x and x'. The integration of the gauge field

& = (sll s2~ ~»s)/2~ss~ (1s)

where s is a vector in Fig. 3. VI. SL(2,R) BLOCH EQUATION —COMPLEX
AMPLITUDE CASE

V. GAUGE TRANSFORMATION

In order to generalize the discussion in the previous
section, we introduce a (local) gauge transformation. We
conveniently use the SU(l, l) amplitudes [see Eq. (8)] A
and E':

From now on let us consider I@) = (n, p) as complex
amplitudes. Before proceeding, physical meaning of com-
plex amplitudes should be clarified. At first sight of Eq.
(1), which has real coefficients, no complex amplitudes
seems required. In fact, if we decompose 1$) into real
and imaginary parts,

A = (A+ iB)/2, f = e, + ie, .

With this notation, the Schrodinger equation (5) can be
represented in a scalar form as

2ik —A = EA* + epA,
dx (2o)

where A' stands for the complex conjugate of A.
Here we consider a space coordinate x' which is slightly

deviated from x as

then each of I@'} and Ig") is a real solution to Eq.
(5). Therefore, a complex solution could represent two
independent real solutions. The independence is as-
sured by n'P" —n"P' g 0, where Ig') = (o.', P') and
1$') = (n", P") . A complex solution is convenient in
the sense that any real solutions can be represented as
Re(zl@)) with a complex number z.

Starting from the SL(2,R)-Schrodinger equation (5)
with complex I@):

x' = x —((x). (21) ik 'd 14) =N(x)l@)~ g G

N(*) = ~&K&+ ~2K2+ ~s Js,

(26)

(27)
We assume the deviation ( is small enough to assure
A(x —() - A(x), f(x —() - t(x), and ((x —() - ((x)
for any x. In the x' coordinate, A' and Z' are defined as

let us derive the corresponding Bloch-like equation. The
adjoint equation [11] is

ikg— —2iA:g (22)

respectively, and the equation of motion transforms as

ik 'd—l~) =N'(x)IV),

N (x) = —~gKg —e2K2+ ~s Js,

(2s)

(29)

2ik ' A' = t'A" + op+ 2 A'.
dx' dx' (23)

or equivalently,

—ik 'd {v I

= (~IN(x) (3o)

Here we have an extra term 2d(/dx' which accounts for
the gauge transformation. This term can be interpreted
as a gauge field.

In Eqs. (2) and (3), in order to define e, A, and B, we
needed a long yardstick accurately graduated in 2mk
However, with the help of the above equations, we can
compare the wave amplitudes for two observers whose
rulers are not necessarily accurate in a long span.

We note that the discussion in the previous section
can be reproduced by considering the case of constant
deviation ((x) = nnk ~, which yields A' = —A, F' = E,
and d(/dx' = 0. We consider two coordinate systems x
and x' shifted by nark, and a third coordinate system

In our case, N and N~ are related via

Nt = BNB (31)

where R = —R = exp(iver Js) = 2iJs. With use of this
relation, we can rewrite the adjoint equation (28) as

ik ' RI(p) = N(x)RI(p) (32)

and find that Rl p) and Iv/i) obey the same equation.
Hence, if Rlv'( )) = l~( )) hen Rlv'(x)) = l~(x)) for
any x.
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Now we introduce the density operator as

p = l@)(v I

= I@)(@l»

which follows the evolution equation,

ik —p = [K, p].
d

dx

The matrix representation of p is given as follows:

(34)

of a cone in the (sq, s2, ss) space, as in Sec. III; so ——0
implies real amplitudes because n and P share the same
phase, which can be eliminated.

In the case of so g 0, s moves on the surface of a two-
sheet hyperboloid, as shown in Fig. 5. Without loss of
generality, we normalize the state vectors as sp ——1.

VII. CEOMETBICAL PHASE

It can be parametrized as

p = z(sQI/2 + s&K& + s2K2 + ss Js)

In the case of real amplitudes, a density matrix rep-
resents two states. On the other hand, in the case of
complex amplitudes, a density matrix p represents an in-
Gnite number of state vectors. For example, the state
g') = e *&~*I/), lp') = e'4'~

l(p) derived from I@) and

p) with K, = s . K yield the same density matrix;

where p' = I@')(~'I = e '~
I@)(v le*~ ' = p, (40)

Sp = 0! —0! Z)

» = ~*P+ oP*,
» = -l~l'+ I&l'

» = l~l'+ I&l'. (37)

Substitution of (27) and (36) into (34) gives the equa-
tion of motion for s = (sq, s2, ss):

gdS
k —=6 X 8,

dx

which resembles to the Bloch equation, except for the use
of the SU(l, l) vector product.

We note that sp is a constant of motion and that the
relation

—i P, J3 —i V K1 —i PJ3 (41)

An arbitrary state lg) can be obtained from lgo)
2 ~ (l, i)+, which belongs to a ray s = (0, 0, 1) as

since K, and p = l@)(pl = i(so/2 + K, ) com-
mute. In other words, a density matrix or a Bloch
vector corresponds to an equivalence class of states:
(e '~ 'lg)

I

—27r ( P ( 2a), or a ray.
Now we have a projective structure in which we can in-

troduce the Aharonov-Anandan connection [12], thereby
we can derive the dynamical phase and the geometrical
phase associated with a cycle of evolution.

The equivalence class introduced above can be repre-
sented more conveniently by using a decomposition of the
group element of SL(2,R):

S ' S= —Sp (39) I@) = ~l&o) (v I

= (~ol~
' (42)

holds.
In the case of sp = 0, the vector s moves on the surface

where lpo) = R lgo). The density matrix for this state
ls

p = I&) (v I

= e '""e " ' l@.)(v ole* (43)

which does not contain the parameter P.
Now we see that all the states in a ray can be derived by

applying a group action to the states l@~) = e '~~'lgo),
whose real and imaginary parts are given as

l@p) = cos tj&/2

sin P/2

—sin P/2
cos P/2

Thus the element in a ray can be parametrized by P.
Rejecting the two-valuedness discussed in Sec. IV, the

states with P and P+ 2vr in a ray have opposite signs.
Let us consider a cyclic evolution in which a state

lg(0)) evolves and returns to a state lg(L))
exp (i4) Ig(0) ), which belongs to the same ray, i.e. , p(0) =
p(L). The phase difference 4 is composed of a dynamical
phase P~ and a geometrical phase P~.

The geometrical phase PG. or the Berry phase for this
system is given as [5,13]

FIG. 5. Bloch vector s (for complex amplitudes) on the
hyperboloid: sz + 82 —83 — 1.

s3 dsq h, ds2, (45)
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where S is the area enclosed by the path. The in-
tegrand is an invariant two form under the group ac-
tion. It should be noted that this two form is diferent
from that for the surface curvature of the h~~perboloid,
(2ss —1) dsq h ds2, or that for the surface area of the
hyperboloid, (2 —ss ) ~ dsq Ads2. In the SU(2) case, all
of the three quantities have the same form incidentally.

4p
x=O

(x)

L

laser

I

interferometer

VIII. CONCLUSIONS

In conclusion, we have explored geometrical features
of 1D wave propagation. The underlying group of this
problem is the (2+1)-dimensional Lorentz group. The ge-
ornetrical approach would be very helpful for intuitive un-
derstanding of various wave phenomena. It is also appli-
cable to other systems that are governed by the I orentz
dynamics.

Finally, we would like to propose an experiment to ob-
serve the Berry phase and other geometrical phenomena
for the 1D wave propagation. In Fig. 6, an optical system
is presented. We have a medium whose distribution of re-
fractive index e(x) can be controlled externally. It is pos-
sible to write a holographic grating in optical fibers or in
some nonlinear media. The light propagated through the
medium is re8ected back with perfect mirror M. Thus
we can prepare a state corresponding to s(0) = (0, 0, 1)
on the mirror side (x = 0). By adjusting the mirror po-
sition, we can "tune" the phase Po of the initial state as

FIG. 6. Proposed. experimental setup for measuring the
Berry phase for a 1D wave system.

l&(0)) = (cos 4'o/2»n 4o/2) and hence we can map out
the complex [g) via Eq. (44). If we set up ~(z) so that
the evolution be cyclic, then the state on the other side
(x = L) should be [g(1)) = (cosPL/2, sin/I/2) . For
a cyclic evolution, C = $1. —Pp is independent of Po.
With the Mach-Zehnder interferometer we can measure
the difference 4 = PG + PD.
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