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Quantum Zeno effect and adiabatic change

M. Kitano*
Department of Electronics and Communication, Kyoto University, Kyoto 606-01, Japan

~Received 11 September 1996; revised manuscript received 25 March 1997!

We show that the quantum Zeno effect and the adiabatic change have a close connection even though the
former means a halt of the dynamics by frequent measurements and the latter is the dynamics by a slowly
changing Hamiltonian. We investigate the motion of a spin under stepping magnetic fields in terms of the
~inverse! quantum Zeno effect. The relation between this model and the adiabatic change is studied. Another
model is used to integrate the two effects into one formulation which is an extension of the proof of the
adiabatic theorem. Despite their good parallelism, the asymptotic behaviors of the transition probability with
respect to the total periodT have different forms; the former effect shows aT21 behavior while the latter
scalesT22. @S1050-2947~97!00908-6#

PACS number~s!: 03.65.Bz, 42.50.2p
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I. INTRODUCTION

The quantum Zeno effect is the suppression or the inh
tion of the free dynamics of a system by frequent or co
tinual measurements@1#. The projection associated wit
measurements effectively destroys the coherence,
through which the transition from one state to another co
take place. So the essential ingredient of the Zeno effec
not literal quantum measurement but destruction of coh
ence, which can be provided by other means such as op
pumping@2#, collisions, noisy external fields, and so on. W
even can find classical realizations of the Zeno effect;
example, in a system of two coupled pendulums, we
suppress the excitation transfer from one pendulum by
ing strong damping to the other pendulum. The damp
accompanies no energy losses.

It is very interesting to view the quantum Zeno effe
from a rotating frame in which the free dynamics of t
system is canceled. In this frame, a series of projection
performed toward slightly different states one after anot
and the system evolves after these states. This effect
discussed by Aharonov and Vardi@3# and was called the
inversequantum Zeno effect by Altenmu¨ller and Schenzle
@4#.

This active view of the quantum Zeno effect suggests
applicability to manipulation of quantum systems beca
we can guide the system as prescribed. In spite of the n
unitarity of evolution, the probability amplitude is almo
conserved. We also note that the situation is very simila
that of the adiabatic change of quantum systems in which
state is evolved so as to be an eigenstate of the instantan
Hamiltonian at each time. The adiabatic change is wid
used to control quantum systems.

In this paper, we investigate the relation between
quantum Zeno effect and the adiabatic change. For simp
ity, we will consider a system of spin 1/2. First we w
present a simple discrete model for the inverse Zeno effec
Sec. II. In Sec. III, we analyze the motion of a spin und
stepping magnetic fields. When the number of steps is

*Electronic address: kitano@kuee.kyoto-u.ac.jp
561050-2947/97/56~2!/1138~4!/$10.00
i-
-

ly
d
is
r-
al

r
n
-

g

is
r
as

s
e
n-

o
e

ous
y

e
c-

in
r
-

creased, the spin follows the magnetic field like an adiab
change. Comparing these two models, we present a c
analogy between the adibatic change and the inverse Z
effect.

In Sec. IV we introduce a continuous model with a sp
1/2 under the action of a magnetic field and a cohere
relaxation, both of which are slowly moving in time. W
examine the long-time asymptotic behavior of the transit
probability. The result can be understood as an extensio
the adiabatic theorem. In Sec. V, we illustrate numerical
lutions of the equations of motion.

II. ZENO EFFECT IN ROTATING FRAME

In the usual setting of the quantum Zeno effect, frequ
projections to one fixed state halt the system dynamics fr
that state to other states. Let us look at the phenomenon f
a moving frame in which the system dynamics is cancel
In this frame, each projection takes place toward a differ
state one after another and the system follows it.

Let us consider a spinR for which a series of projections
is applied. The axes of projections are defined as

uk52 sin
kp

n
e21cos

kp

n
e3 , ~1!

where (e1 ,e2 ,e3) are the Cartesian unit vectors.
By the projection tou1, the initial stateR05e3 is trans-

formed to

R15~R0•u1!u15cos
p

n
u1 . ~2!

After n projections, we have a spin-flipped state

Rn52cosn
p

n
e3 . ~3!

The asymtotic behavior of the factor is

cosn
p

n
512OS 1

nD , n→`. ~4!
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56 1139QUANTUM ZENO EFFECT AND ADIABATIC CHANGE
Thus we can make a spin follow a dense sequence of pro
tions along a presumed path without loss of its length.

For realistic systems each projection requires a finite t
tk and therefore the total timeT for transfer must satisfy the
condition

T.(
k

tk;n t̄ , ~5!

where t̄ is a typical value oftk . Therefore,T must be
increased according asn is increased.

The situation where the direction of spin is made to f
low a prescribed path reminds us of the adiabatic change
spin by a slowly moving magnetic field.

III. DISCRETE MODEL TOWARDS ADIABATIC CHANGE

Let us consider the motion of a spinR(t) driven by a
magnetic fieldB(t) steppingn times during the time interva
@0,T#. The magnetic field B(t) is kept constant a
Bk5Bkuk during the subintervals „(k21)T/n,kT/n…
(k51, . . . ,n), whereuk are defined by Eq.~1!.

In the first interval the spin does not move if we set t
initial condition R(0)5e3.

At t5T/n, B(t) is suddenly switched fromB0 to B1 and
then the spin starts to precess aboutB1 with the precession
anglep/n:

R~ t !5e3cosf1u1cos
p

n
~12cosf!2e1sinf, ~6!

wheref5ggB1(t2T/n) andgg is the gyromagnetic ratio.
The next switching occurs att52T/n. Here we assume

that the timing of switching has an ambiguity much larg
than the precession period, 2p/ggB1. This assumption is rea
sonable when the precession is fast enough. We will cons
the statistical ensemble average with respect to the switc
time. The averaged~mixed! spin state just before the switch
ing can be represented as

R15^R~ t !&f5cos
p

n
u1 . ~7!

After the switching the averaged spin precesses abouB2
with the precessing anglep/n.

Repeating the same procedure, we reach the final sta

Rn52cosn
p

n
e3 , ~8!

where we have taken then-fold ~statistically independent!
averages with respect to the switching jitters.

The spin has been flipped frome3 to 2e3 but its length is
diminished by the factor cosn(p/n) owing to the average op
erations. However, this factor scales as 12O(1/n) for large
n; therefore, we can make the final state as pure as pos
by increasingn in spite of the averaging operations.

The spin transport by a stepping magnetic field is jus
realization of the inverse Zeno effect formulated in Sec.
because the average performed by Eq.~7! corresponds to the
von Neumann projection~2!. The decoherence induced b
c-

e

-
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projections plays an essential role in the quantum Zeno
fect. In the present case, the coherence is destroyed by
statistical average with respect to the switch timing of t
magnetic field.

At first sight, in the limit of n→`, the present mode
seems to be reduced to the adiabatic following to the s
and smooth magnetic field. For adiabatic changes, the los
probability ~or spin length! is proportional toT22 @5#. In the
present case, the total timeT must be long enough to accom
modate all the switching jitters:

T.(
k

2p

ggBk
;

2p

ggB̄
n, ~9!

whereB̄ represents a typical value ofB. With the help of Eq.
~4!, it is found that the loss of probability is proportional t
T21 rather thanT22.

This contradiction comes from the fact that the stepp
magnetic field does not satisfy the adiabatic condition e
in the limit of n→`. A series of stepping functions ca
approximate a smooth function, which is assumed in
adiabatic theorem, in its value but not in its derivative. T
high-frequency components due to the discontinuities of
derivative promote the transition.

We note, however, that our present model retains the p
cipal feature of the adiabatic process in the sense that
spin follows the moving magnetic field and that the slow
the change of field is, the more faithfully the spin follows

IV. CONTINUOUS MODEL

In the last section we introduced a discrete model w
which the connection between the adiabatic change and
inverse quantum Zeno effect is inspired. In this section
generalize a proof of adiabatic theorem@5# by including a
relaxation term which accounts for the Zeno effect.

We consider a spin 1/2 driven by a magnetic field and
relaxation both of which varies in time fromt0 to t1 continu-
ously. We use a normalized times5(t2t0)/T with the total
periodT5t12t0. We will investigate the asymptotic behav
ior of the system with respect toT.

We represent the continuous change of the magnetic fi
as B(s)5gg

21V(s)u(s). We suppose that the unit vecto
u(s) is a continuous function ofs anddu(s)/ds is a piece-
wise continuous function.

It is assumed that the relaxation axis coincides with
direction u(s) of the magnetic field. The spin componen
orthogonal to the axis relax with the rateG(s) while the
component along the axis does not relax. This kind of rel
ation results in the projection to the axis.

The equation of motion for the (232) density matrix
r(s) can be written as

i\T21
dr

ds
5

\V~s!

2
@r,s#1 i

\G~s!

2
~srs2r!, ~10!

wheres5s(s)5u(s)•s ands5(s1 ,s2 ,s3) are the Pauli
spin matrices.

Here we introduce a Hermitian operatorK(s) by which
s(s) is evolved,
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i\
ds

ds
5@K,s#, ~11!

starting froms(0)5s3 at s50. K(s) can be expressed as

K~s!5
\v~s!

2
v~s!•s, ~12!

whereu3du/ds5vv. The vectorvv can be interpreted a
the effective field induced by the motion of the referen
frame and is piecewise continuous; i.e., it could have disc
tinuous jumps at finite points.

We define the integrated, evolution operatorA(s), which
satisfies

i\
dA

ds
5KA, ~13!

with A(0)5I . With the unitary transformationA(s), we get
the equation of motion forr̃ (s)5A†rA in the moving
frame,

i\
d r̃

ds
5@ r̃ ,K̃#1

\TV~s!

2
@ r̃ ,s3#1

i\TG~s!

2
~s3 r̃ s32 r̃ !,

~14!

whereK̃5A†KA.
We can write down the equations for the matrix eleme

of r̃ , r̃ 12 and D̃5 r̃ 112 r̃ 22:

i
d r̃ 12

ds
52bT r̃ 121aD̃, ~15!

i
dD̃

ds
52a* r̃ 1222a r̃ 12* , ~16!

where b5b81 ib95V(s)1 iG(s), a5a81 ia9, and
K̃5\(a8s12a9s2). Now we see that the real partb8 cor-
responds to the adiabatic change and the imaginaryb9 cor-
responds to the Zeno effect.

The first equation can be integrated if we assu
D̃(s);D̃(0)51:

r̃ 12~s!52eiTg~s!E
0

s

ia~s!e2 iTg~s!ds

5
a~s!

Tb~s!
2

1

T
eiTg~s!E

0

s d

dsS a

b De2 iTg~s!ds, ~17!

where g(s)5g81 ig95*0
sb(s)ds. It is assumedr̃ 12(0)

50.
Substitution ofr̃ 12 into Eq.~16! and its integration yields

r̃ 22~1!52
1

2
~D̃~1!21!522 ImE

0

1

a* r̃ 12ds, ~18!

which represents the probability of transition. Let us consi
the two extreme casesb5 ib9 ~Zeno case! andb5b8 ~adia-
batic case!.
n-

s

e

r

For the Zeno case, the first term of Eq.~17! dominates.
This approximation is equivalent to neglecting the left-ha
side of Eq.~15!: r̃ 1252 i (a/Tb9)D̃. It is interesting to re-
member that sometimes this procedure is called the adiab
elimination of variable~in the present caser12) @6#. Equation
~18! can be written as

r̃ 22~1!5
2

TE0

1ua~s!u2

b9~s!
ds5OS 1

TD . ~19!

For the adiabatic case, the first term of Eq.~17! has no
effects on Eq.~18! and therefore the second term has to
estimated. We obtain

r̃ 22~1!5
2

T2 ReE
0

1 d

dsS a* F

b8 DeiTg8ds5OS 1

T2D , ~20!

where

F~s!5E
0

s d

dsS a

b8De2 iTg8ds. ~21!

Normally, this integrationF seems to tend to zero asT in-
creases because of the oscillating factor whose frequenc
proportional toT. But in some unfavorable cases wherea
contains high-frequency components, the integration co
be independent ofT. The asymptotic form of the Fourie
transform f (v) of a/b8, which is a piecewise continuou
function of s, could scalev21 and then the Fourier trans
form of its derivative behaves asv0 and F(s)5O(T0).
~Strictly speaking the derivative ofa/b8 is not a function but
a generalized function because it containsd function compo-
nents.! The same argument can be applied to the evalua
of Eq. ~20! and we have found that the transition probabil
r̃ 22(1) scales asO(1/T2).

We have obtained a unified view which connects the ad
batic change and the quantum Zeno effect by generaliz
the formalism for the adiabatic change. We have seen
the transition probability for each case has a differe
asymptotic behavior for largeT.

V. NUMERICAL EXAMPLE: MIXED CASE

So far we only have investigated the two extreme cas
In order to study a mixed case where the Zeno effect and
adiabatic change coexist, we solve a set of differential eq
tions ~15! and ~16! with the Runge-Kutta method under th
initial condition D̃(0)51, r̃ 12(0)50.

We keep the amplitude of the magnetic fieldb8(s) and
the relaxation rateb9(s) constant and write

b5
1

2
@~12k!1 ik# ~0<k<1!.

Here the parameterk represents the relative strength betwe
the relaxation rate and the magnetic field;k51 corresponds
to the Zeno case andk50 to the adiabatic case. As th
motion-induced field, we use the constant forma(s)5p/2
which would flip over the spin during the unit time o
r̃ 22(1)51, if T50.
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56 1141QUANTUM ZENO EFFECT AND ADIABATIC CHANGE
The transition~or flipping! probabilities r̃ 22(1) are~log-
log! plotted as functions ofT in Fig. 1. For k50, r̃ 22(1)
oscillates rapidly, but the peak values scales asT22. For
k51, we see the smooth curve which asymptotically tend
T21. In order to see intermediate cases (0,k,1), we plot-
ted the curves fork50.1 andk50.01. In either case, we se
the crossover fromT22 ~adiabatic! to T21 ~Zeno! as T in-
creases.

VI. CONCLUSION AND DISCUSSION

In this paper, we have investigated the relation betw
the inverse quantum Zeno effect and the adiabatic cha

FIG. 1. The probability of spin flipping,r̃ 22(1), is plotted as a
function of T. It scalesT21 for Zeno case (k51) and T22 for
adiabatic case (k50).
d

to

n
e.

We have introduced a discrete and a continuous mode
the former model, the spin follows the stepping magne
field. The phenomenon seemingly resembles to the adiab
change but should be regarded as an example of the inv
Zeno effect because of its asymptotic behavior. The dest
tion of coherence, which is essential to the Zeno effect
caused by the jitter of the stepping magnetic field.

The latter model enabled us to integrate the two effe
into one formulation which is an extension of the proof
the adiabatic theorem. In this formulation, the real part of
diagonal elements of the evolution operator correspond
the magnetic field which accounts for the adiabatic chan
while the imaginary part corresponds to the relaxation of
coherence which induces the Zeno effect. Despite the g
parallelism, the long-time contributions to the transitio
probability have different forms; the former shows aT22

behavior while the latter scalesT21. We have shown a nu
merical example where two effects coexist.

Our discrete model belongs to a class of dynamics akin
the adiabatic one. By extending the discussion in Sec. II
might be possible to understand the proper adiabatic pro
in terms of the quantum Zeno effects; a slow movement
magnetic field incoherent to the rapid spin precession can
flip the spin effectively.

We suggested that the inverse quantum Zeno effect ca
used to manipulate quantum systems without losses via n
unitary evolutions. We are now carrying out an experime
in order to demonstrate such effects.
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