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Symmetry-recovering crises of chaos in polarization-related optical bistability
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We investigate delay-induced chaos in an optically bistable system which has a symmetry with
respect to the exchange of two circular polarizations. Roughly speaking, the output of the system
bifurcates in the following way as the input light intensity increases: (1) symmetric steady state, (2)
asymmetric steady state, (3) asymmetric periodic oscillation, (4) asymmetric chaos, and (5) sym-
metric chaos. The first bifurcation is a well-known symmetry-breaking transition. It is shown that
the last bifurcation through which the symmetry is recovered can be viewed as a crisis of chaos,
which has been defined by Grebogi et al. as a sudden change of strange attractor. By changing sys-
tem parameters, we find three distinct types of the crises in the experiment with an electronic circuit
which simulates the difference-differential system equation. Before and after the crises, waveforms
characteristic of each type are observed. In a simple two-dimensional-map model, we can find all
three types of crises. It is also found that the types of crises are determined by the nature of un-

stable fixed (or periodic) points which cause the crises by colliding with the chaotic attractors. The
symmetry-recovering crises seem to be general phenomena appearing in nonlinear systems with
some symmetries.

I. INTRODUCTION

The phenomenon of chaos has been the subject of in-
tense interest in the last few years. It is now recognized as
a common phase of the nonlinear dynamical system in ad-
dition to the conventional phases of stationary equilibrium
and periodic (or quasiperiodic) oscillation. Since Ikeda
et a/. ' have predicted chaotic behaviors in an optically
bistable system, many theoretical and experimental studies
have been made. An optical system is a suitable
method with which to study nonlinear phenomena includ-
ing chaos because it has tractable theoretical models and
precise experiments are possible. If necessary, we can add
moderate complexities to it. ' Along this line, we have
proposed an optical system which utilizes interactions be-
tween right and left circularly polarized light beams
through a J= —, to J= —,

' transition. We have shown that
symmetry breaking and optical tristability are possible for
this system. Since then, various kinds of phenomena have
been predicted ' and some of them have been demonstrat-
ed experimentally. '

Recently, we proposed a new version of such a
polarization-related bistable system that utilizes the opti-
cally induced Faraday effect and needs no optical cavity. "
We also performed the experiment by using a sodium cell
and a multimode dye laser tuned to a wing of the Di
line. ' An interesting feature of the system is that it ex-
hibits the most typical pitchfork bifurcation which breaks
the polarization symmetry. Namely, the symmetry-
breaking bifurcation is of a supercritical type, while in the
tristable syste~ it is of a subcritical type. In this paper
we investigate the delay-induced chaos in this optical sys-
tem. When we increase the input light intensity passing
over the first bifurcation, a chaotic state having polariza-
tion asymmetry appears. If we increase the intensity still
more, fully developed symmetric chaos is reached. We are
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FIG. 1. Schematic illustration of the optically bistable system
without an optical cavity.

thus interested in the bifurcation which lies between those
two states. As we will see later, the symmetry recovering
occurs through a sudden change of the chaotic attractors.
Recently, Grebogi et al. ' have introduced a new class of
bifurcation named "crises of chaos, " where the size of
chaotic attractor suddenly changes. We will show that in
our case the symmetry is recovered through the crisis.

In Sec. II, we show the setup of the system and derive
the system equation which is a one-dimensional
difference-differential equation having symmetry with
respect to the exchange of two circular polarizations. In
Sec. III, we discuss a one-dimensional-map model and
show a simple example of symmetry-recovering crisis. In
Sec. IV, we describe the experimental setup of an electron-
ic circuit to simulate the optical system. In the experi-
inent we observe three distinct types of symmetry-
recovering crises. In Sec. V, we introduce a two-
dimensional-map model to explain the experimental re-
sults. Although the inodel seems to be oversimplified to
approximate our system in infinite-dimensional space, it
can reproduce all three types of crises. We present the
strange attractors near crises for each type, and discuss
how they recover the symmetry. As we will see, unstable
fixed points play important roles in crises. So we show
the classification of fixed points of the two-dimensional
map in an appendix. Finally, we summarize our results
and discuss the remaining questions.
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II. SYSTEM EQUATION

a+ =a(1+m, ),
k+ ——ko+z(1+m, ),

(2)

where a and a are the absorption coefficient and the incre-
mental wave number for the unpolarized (m, =0) medium,
respectively, and ko is the wave number in a vacuum. In
the dispersion regime we can neglect the absorption losses.

The polarization plane of the linearly polarized incident
light is rotated by an angle 8 when the difference between

k+ and k exists (Faraday rotation). If we represent the
incident light field as Et V Iox, the transm——itted field Ez.
is given by

We consider an optically bistable system shown in Fig.
1. It is largely the same as the one in Refs. 11 and 12 ex-

cept that a delay in the feedback is introduced by taking a
large distance L between the cell and the mirror M. Fol-
lowing the inodel adopted for the previous studies, ""
we consider spin- —,

' atoms which are optica11y pumped by
the incident and the reflected light beams which are tuned
to the wing of the resonance line. The state of the ensem-
ble of atoms can be characterized by the magnetization
component M, along the optical axis, which is proportion-
al to the population difference between mJ ———,

' and

mq ————,
' sublevels in the ground state. The time evolu-

tion of M, is described by the Bloch equation:

dM,
( I +I+ +—I )Mg+ (I+ I )M—p,

dt

where I" is the relaxation rate of the magnetization and I+
are the cr+ light intensities which are normalized so as to
give pumping rates. If I+ (I ) is large enough compared
to I (I+) and I', all atoms are oriented along the +z
(—z) direction and the maximum polarization M, =Mp
(—Mp) is attained.

The absorption coefficients o;+ and the wave number
k+ for cr+ light are determined by the normalized magnet-
ization component m, =M, /Mp as

through the mirror M and an auxiliary A, /8 plate. We can
also monitor the polarization state Er by setting the fast
axes of two A, /8 plates to form right angles. From Eqs.
(7) and (5) we have the light intensities in the cell:

I+ ——Ip[1+R sin[2xlm, (t —tz)]/ . (8)

y ', = X(t')+p s—in[X(t' —t~')],
dt

where p =2~lRIo/(I +2Io) and

ttt =y (I +2Io)4 .

(10)

In the case I » Io, p is proportional to Io and t~ is in-
dependent of Io. In the experiment we can vary tRy by
changing the length I. or the relaxation rate I . Hereafter,
we drop the primes in t' and t~ When . ttt y =0, Eq. (10) is
an ordinary differential equation in one dimension, while
in the limit tzy »1, the system can be described by a
difference equation as described in Sec. III. Therefore, the
parameter ttty represents whether Eq. (10) is close to a
difference equation or to a differential equation.

Note that Eq. (10) is invariant under the transformation
X~—X, which corresponds to the exchange of the roles
of the spin-up and -down atoms and the right and left cir-
cularly polarized light.

III. ONE-DIMENSIONAL-MAP MODEL

Substitution of Eq. (8) into Eq. (1) gives the systein equa-
tion as follows:

dm /dt = —(I'+2Ip)m (t)+RIpsin[2Klm (t —tg )] . (9)

Changing the time scale by

t'=y '(I +2I, )t

and introducing a new variable

X(t') =2~1m, (t),
we have a normalized form:

Er ——~Ip(x cos8+y sin8),

8(t) =(k —k+ )l/2=m, (t)~l,
(4)

(5)

In the limiting case t~y &&1, we can formally reduce
Eq. (10) to the difference equation:

X~+)=p sinX~

where I is the length of the cell and x and y are the unit
vectors.

The transmitted light is reflected by the mirror M set at
a distance J and is fed back to the cell. Thus, the feed-
back is delayed by the amount tJt 2I-/c. In the feedback——
path, a A, /8 plate is inserted whose optic axis is oriented to
the x axis. By its action, the polarization state of the light
fed back to the cell becomes

Eg V'Ig +e V'Ig e+, —— —

I„+ RIo j 1+sin[28(t —t~ )]——j /2,
where e+ ——( x+iy )/V 2 a—nd R is the reflectivity of the
mirror. The o.+ components of the reflected light suffer
complementary modulations according to sin28(t t~). —
Experimentally, the polarization state of E~ can be ob-
served by monitoring the output light transmitting

which defines an iteration of the one-dimensional map.
As is well known, ' ' this equation gives an adequate
qualitative prediction for the bifurcation structure for Eq.
(10) with tiiy »1.

Figure 2 shows the bifurcation diagram for Eq. (11).
For popo ——1, there exists only one stable fixed point:
X=O. At p=pp a pitchfork bifurcation occurs at which
the solution X=O becomes unstable and a symmetry-
breaking transition takes place. This symmetry breaking
can also be seen for the case tery=0. "' In Fig. 2 we
showed only the negative branch after the bifurcation. As
p increases, each asymmetric branch undergoes period
doublings followed by chaos. For p &p[o~, the chaotic or-
bit is confined to the regions X&0 or X&0, namely, the
output state is chaotic but still elliptically polarized to ei-
ther direction. At p=p~o], the chaotic band suddenly
doubles its width. There the two oppositely polarized
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bands collide to form a single band. Thus, the symmetry
broken at p =po 18 recovered at p =p(0).

The sudden change may be viewed as the crisis of chaos
named by Grebogi et al. ' The crisis occurs when a
strange attractor collides with a coexisting unstable fixed
point or periodic orbit. In our case the situation is some-
what degenerate due to the symmetry, namely, a strange
attractor collides with an unstable fixed point X=O and
the other coexisting strange attractor simultaneously. We
call the phenomenon "symmetry-recovering crisis. "

Figures 3(a) and 3(b) show examples of chaotic orbits
for cases before (IM&p(OI) and after (p&p(OI) the crisis.
The short-time behaviors are the same for both cases but,
in the latter, crossover to the other polarized state some-
times occurs. According to Ref. 13, the average lifetime
r„of each polarized state is estimated as
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FIG. 3. Waveforms of Eq. (11) for (a) @=3.11 (before the
crisis) and (b) p=3.17 (after the crisis). Bar graph of X„as a
function of n for 375 iterations after preiteration.

FIG. 4. Experixnental setup. The analog circuit simulates the
difference-differential equation (10).

FIG. 2. Bifurcation diagram for the map, Eq. (11). For a given value of p, an initial point is chosen and its orbit is plotted after
preiteration to avoid transient phenomena. The same procedure is repeated for a slightly increased value of p where the last point is
used as the initial value. At p=pG ——1, a symmetry-breaking bifurcation occurs. For p &pG, only the negative branch is pictured.
The positive branch can be obtained by the transformation X—+ —X. At p =p(G~, a symmetry recovering is seen.
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FIG. 5. %aveforms (a) before and (b) after the symmetry-recovering crisis of type I. Parameters: t& ——0.41 s, y=2.0 Hz, (a)

p=4.26; (b) p=4.38.

(12)

We confirmed the estimation numerically.

IV. SIMUI.ATION BY ANAI. OG CIRCUIT

In order to see how the symmetry-recovering crises for
Eq. (10) appear we constructed an analog circuit which
simulates Eq. (10). Figure 4 shows the experimental set-
up. The nonlinear function sinX in Eq. (10) is approxi-
mated by X—X3 and realized by two analog multipliers
(Intersil IC1.8013) and an operational amplifier. The de-
lay t~ is given by a digital delay line equipped with a 12-
bit (binary digit) analog-to-digital (A-D) converter, a
digital-to-analog (D-A) converter, and a 4096-word buffer.
The cutoff frequency y of the low-pass filter is set at 2 Hz
when we record waveforms on a strip chart recorder. We
can conveniently find bifurcation points or crises on a
cathode-ray tube (CRT) instead of the recorder by setting

y -10 —10 Hz and shortening tz correspondingly.

By changing ra, we could find three distinct types of
symmetry-recovering crises. We named them type I, II,
and III according to the order of the values tz for which
each type was observed. The critical value p~o~ for crisis
decreases as t~ y increases.

Type I. Before the crisis, rather regular pulsing is ob-
served [Fig. 5(a)]. We can see damped oscillations near
X=0 between the pulses, whose durations are different
from pulse to pulse. Such oscillation is not observed when
p, is far below p~o~ and appears as p approaches p~o~.
After the crisis [Fig. 5(b)], the crossover to the other po-
larized state neccessarily occurs through the damped oscil-
lation. Thus, the oscillation may be viewed as a precursor
for the crisis and also as a crossover transient.

Type II. The waveform before the crisis [Fig. 6(a)] is
fairly random. The bursts of periodic oscillation are pre-
cursors for the crisis. They appear randomly and their
duration is also random After . the crisis [Fig. 6(b)], the
crossover occurs through the burst of oscillation.

Type IIL At a glance there seems to be no difference

(a)
X(t)

0——

,
~ I!l I Ji, I'(& ~i'I Ji/5& I/, &!Ijlllli!/Illllilill(il (~ilai l.'(ill)

(b)

0 [

60s
FKx. 6. Waveforms (a) before and (b) after the type II crisis. Parameters: t~ ——2.05 s, y =2.0 Hz, (a) p =2.96; (b) p =3.02.
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FIG. 7. Waveforms (a) before and (b) after the type III crisis. Parameters: tz ——4.10 s, @=2.0 Hz, (a) p=2.77; (b) p=-2.79.

between Figs. 7(a) and 7(b). However, the waveform in
Fig. 7(a) shows period-4 chaos which has an asymmetry
with respect to X; the upper boundary is flat while the
lower is not. In the middle of Fig. 7(b) we can see a cross-
over. No marked precursory phenomena nor crossover
transients are seen for this type.

V. TWO-DIMENSIONAL-MAP MODEL

By the analog circuit simulation we have confirmed
that symmetry-recovering crises exist for Eq. (10) as
predicted by the one-dimensional-map model. However,
the waveforms at the three types of crises were very dif-
ferent from that for the one-dimensional map. In this sec-
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FIG. 8. Calculated waveforms (a) before and (b) after the
type I crisis. graph of X„of Eq. (15) for 750 iterations after
preiteration. Parameters: a=0. 1, (a) p=10.24; (b) p=10.30.
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type II crisis. Parameters: a=0.5, (a) p=3.54; (b) p=3.57.
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FIG. 1G. 10. Calculated waveforms (a) before and (b) after the
type III crisis. Parameters: a=0.85, (a) @=2.944; (b) p=2 946

tron we mtroduce a two-dimensional difference equation
and show that the three types of crises occur for the equa-
tion with appropriate values of parameters.

We formally discretize Eq. (10) as

) X„+(—X„
r = —X„+pF(X„~),

where N is an integer, bt=ttr /N, X„=X(nest), and
F(X)=X(1—X )—X,'. By introducing a parameter a=yet,
we obtain the following (N+1)-dimensional difference
equation:

(14)

X„~r
——(1—a)X„+apF(F„), (lsa)

(1Sb)

X„+i——(1—a)X„+apF(X„~).
In the irmrt a~0, N and ter ——const, Eq. (14) approximates
the differential equation (10) with trr

——0. For the case
a=1, Eq. (14) reduces to the one-dimensional difference
equation (11). So a is a parameter which connects a
difference equation and a differential equation as t does
in Eq. (10).

ua ion as tzy oes

Here we crudely set N = 1 in Eq. (14) and obtain a two-
dimensional difference equation
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where F =X T"-e equation is invariant under the
~ ~ ~

transformation (X, Y)~(—X, —Y).
Surprisingly, we could find the three types of crises in

this oversimplified equation. In Figs. 8, 9, and IO we
show the waveforms near the crises. The clear correspon-

same precursors and crossover transients appear for t es
I and II. T e Iype was found for smaller values of a (near
the differential equation limit), type III was found for
a (1 (near the difference equation limit), and type II was
in the middle. The order is consistent with th 1e resu ts in

FIG. 11. (a) Chaotic attractor for Eq. (15) before the ty e I
crisis. An initial point is chosen and its orbit is plotted after
preiteration. The other coexisting attractor is obtained by the
transformation (X, Y)~(—X, —Y). Parameters: a =0.1,
@=10.24. (b) Blowup of the boxed region in (a). Both coexist-
ing attractors are plotted. A cross represents an unstable fixed
point at (0,0). Parameters: a =0.1, @=10.244.
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FIG. 12. (a) Chaotic attractor for Eq. (15) before the type II
crisis. The other coexisting attractor is obtained by the transfor-
mation (X, Y)~(—X, —Y). Parameters: a=0.5, p= 3.51. (b)
Blowup of the boxed region in (a). Both coexisting attractors are
plotted. Parameter p is closer to p(0) than in (a). A cross
represents one of unstable period-2 points at (+0.39,+0.39). Pa-
rameters: a=0.5, p=3.541.

FIG. 13. Four-piece chaotic attractor (A2,Aq+3, A4) for Eq.
(15) before the type III crisis. The other coexisting attractor
(A ] Q gyA 3 yA 4) is obtained by the transformation {X,Y)
~(—X, —Y). Parameters: a=0.85, p=2.93. (b) Blowup of
the boxed region in (a). Parameter p is above the critical value
for the crisis; therefore, attractor pieces are merged to form a
two-piece attractor. Parameters: a=0.5, p=2.946.

As described in Sec. III, for the one-dimensional map
the symmetry crisis is undergone when a strange attractor
collides with an unstable fixed point and the other strange
attractor. Here we investigate the situation for the two-
dimensional cases. Figures 11, 12, and 13 show the
strange attractors near the crises of type I, II and III,
respectively.

Type I. Figure 11(a) shows the strange attractor just be-
fore the crisis. The other coexisting attractor is obtained
by the transformation (X, Y)~(—X, —Y). The two

limit-cycle —like attractors are about to touch each other
near the origin. A round trip of the cycle forms a pulse in
Fig. 8. At p=p(0~, two attractors are merged and for
p (p~o~, an orbit on an attractor can go over to the other
attractor.

Figure 11(b) is an enlargement of part of Fig. 11(a).
The two attractors are clearly separated. The regular
structure of the attractors is a reflection of the existence
of a fixed point (0,0) of Eq. (15). By the stability analysis,
we can see that the eigenvalues p~~2 of the linearized map
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FIG. 14. Schematic illustration for crisis of a chaotic attrac-
tor through a saddle point S. (a) Before and (b) after the crisis,
the regions R; are mapped to R;+&. C, and C„represent the
stable and unstable invariant curves of S, respectively.

0.4 -0.8 -0.7
0

at (0,0) satisfy the following relations: —1 &p i
= —0.66 & 0, 1 &p2 ——1.56. The corresponding eigenvec-
tors are u& ———0.66x+y, uz ——1.56x+y. According to
the classification of the fixed points in the Appendix, the
point (0,0) is DR for this parameter value. To simplify
the situation, we consider a composite map T' '=To T,
where T is a map defined by Eq. (15). The point is a sad-
dle (D ) for T' ' since 0&pi &1 &p2. We use schematic il-

lustrations in Fig. 14 to give general discussions. The
point S is a saddle, and C, and C„are the stable and un-

stable invariant curves, respectively. The eigenvectors u ~

and uz are tangent to C, and C„at S. When p &p~o~ [Fig.
14(a)], C, is also the boundary separating the basins of at-
traction for the two attractors. The region Ri, which is
mapped from somewhere in the attractor, is mapped to
R 2 E.3 ~, successively, and at last repelled back along
C„. When the crisis is reached, R& touches the boundary
C, ; as a result, R; (i =2,3, . . .) touches C, and R touches
S. As seen in Fig. 14(b), for p &p~o~, points in R

&
over C,

are repelled over to the other attractors along C„after
some iterations of the map.

Near the crisis, a point mapped close to C, in R~ will
need many iterations to be repelled away froin S, namely,
the orbit is trapped to S temporarily. If S is a period-n
point (a fixed point for Ti"'), one will observe n-periodic
oscillation with some duration. Such phenomena will be
seen as a precursor of crisis when p (@~0~ and as a cross-
over transient when p )p(p).

Type II. A wide-spread attractor is seen in Fig. 12(a).
The other coexisting attractor lies symmetrically. The
touch occurs near period-2 points (+0.39,+0.39), whose
stability is D . Figure 12(b) shows a blowup where we see
the same structure as in Fig. 14(a). We can hardly see the
regular structure in Fig. 12(a) because p is not as close to
p(p). The bursts of oscillation seen in Fig. 9 mean that the
orbit is trapped to the period-2 points. The closer the

FIG. 15. Blowup of part between A3 and A2 of Fig. 13(b).
Parameter p is above p~o). The regions R; are mapped to R;+~
by T' '. C represents an unstable invariant curve. Parameters:
a =0.8S, p =2.2447.

point is dropped to the stable invariant curve, the longer
the regular oscillation continues.

Type III. The situation is rather more complicated
than in types I and II. Before the crisis, two four-piece
strange attractors are coexisting. In Fig. 13(a), only the
attractor (A&+2+&g&) is pictured. The other attractor
(A ]yA 2yA 3Q 4) is obtained by the transformation
(X,Y)~( —X, —Y). An orbit cycles as A i ~A2~A3
—+~4~~ i or as A i ~A a~A 3~34 ~A ~, and gives
period-4 chaos as in Fig. 10(a). The flat boundary in the
waveform comes from the fact that the attractor pieces A4
and A4 have narrower width in the X direction than the
other pieces.

After the crisis occurs, the two attractors are merged as
seen in Fig. 13(b). To see how the merging occurs, a fur-
ther blowup is given in Fig. 15. Between A3 and Az there
exists an invariant curve C, which forms a part of the
basin boundary before the crisis. We can see that the re-
gions R; (i=1,2, . . .) are mapped to R;+i by T' '. In the
course of iterations of the map, the regions are stretched
in the direction across the curve C, and their tips are at-
tracted to A 2. The regions R; (i ~ 12) can't be seen for the
points are so dispersed by the stretching.

The configuration of R; along C can be understood as
follows. Restriction T' ' to the invariant curve C gives a
one-dimensional unimodal map which exhibits period-2
chaos. So the configuration of R; is somewhat erratic, al-
though we can group them into (R q„ i ) and (Rq„)
(n = 1,2,. . .).

It is seen, from the theory of the unimodal map, that
there exist infinite numbers of unstable fixed points on C;
one UR, two UR, four UR', . . . . Therefore, we may
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say that the crisis occurs through UR (k = 2n. ,
n=0, 1,2, . . .). Here, however, we are tempted to modify
Grebogi's definition of crises as "a collision of a chaotic
attractor to the basin boundary. "

VI. CONCLUSION

In summary, we have investigated the symmetry-
recovering crises of chaos in a polarization-related optical-
ly bistable system. Through the crises, chaotic states hav-
ing the polarization asymmetry, which is inherited from
the first bifurcation, jump back to a symmetric state. We
have found three distinct types of the crises by changing
the parameter trt y. All of the waveforms near these crises
are very different from that for the one-dimensional-map
model which has been used to analyze difference-
differential equations such as Eq. (10}, whereas a two-
dimensional-map model we introduced gives good qualita-
tive explanations to the three types of crises.

As Grebogi et aI. ' said, crises occur when a chaotic at-
tractor collides with an unstable fixed point or an unstable
periodic orbit. In our cases of types I, II, and III, col-
lisions to the unstable fixed points of types DR ', D, and
UR " (k =2") occur. For types I and II the unstable fixed
fixed point has a stable invariant curve in addition to an
unstable invariant curve. The stable curve forms a part of
the basin boundary which separates the paired chaotic at-
tractors before the crisis. Along the stable invariant
curve, regular structures are formed just before and after
the crisis. For type III, a one-dimensional map on the in-
variant curve, which yields chaos, gives marked structure
to the strange attractors near the crisis.

Perhaps there exist other types of symmetry-recovering
crises than those we treated here. [For example, Fig. 3(c)
in Ref. 16 suggests another type which is close to type
III.] Some of them may need models in higher dimen-
sions. Even for such cases, types of the unstable fixed
point will characterize the crises. Statistical behavior near
each crisis such as in Eq. (12) should be investigated.

Finally, we estimate experimental parameters to observe
the phenomena in an all-optical system. The Na system
of Ref. 12 with which we have observed the symmetry-
breaking bifurcation should be modified. The delay trt
can be provided by an optical fiber with sufficient length
L W. e see from Eq. (10) and the requirement sty & 1 that
the required power density Io is inversely proportional to
tIt or L. For L =1 km (tzt ——6 ps), Io is estimated to be
1 —10 W/mm, which is not an unrealistic value consider-
ing the use of a multimode laser.
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APPENDIX: CLASSIFICATION
OF A FIXED POINT

The stability of a fixed point of a two-dimensional map
T can be characterized by the eigenvalues p~ and p2 of the
linearized map. ' If

I pi I
&1 and pz I

&I, the fixed
point is called simple. A fixed point is called orientation
preserving when pg2 & 0 and orientation reversing when

piiaz&0. Orientation-preserving simple fixed points are
classified as follows: completely stable (S),

I pi I
&1,

Ipz I
&1; completely unstable (U), Ipi I

&1, Ipz I
&1;

directly unstable (D), 0 &pi & 1 &pz, inversely unstable (I),
p~ ~ —1&p2~0. The o6.entation reversing one is classi-
fied as follows: completely stable (SR),

I pi I
& 1,

pz I
&1' comp etey un tab (U ) pi& 1 pz

directly unstable (DR}, —I &pi &0, 1 &pz, inversely un-
stable (IR), pi & —1, 0 &pz &1. We can extend the above
notation to n-periodic points; namely, if an n-periodic
point P is a fixed point DR of the map T'"', for example,
we then denote P as DR ".
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