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Abstract 

    Fatigue life is affected by the crack growth behavior that depends on the material 

microstructure as well as the stress biaxiality. By considering such effects on crack growth, a 

numerical procedure for predicting failure life in biaxial fatigue of materials with different 

microstructures was proposed in this work. Such a procedure will be helpful in the material 

design for higher performance of fatigue resistance in a material. The microstructure of a 

material was first modeled by using Voronoi-polygons, and the crack initiation was analyzed 

as the result of slip-band formation in individual grains in the modeled microstructure. In the 

analysis, stress states in individual grains were randomized so that the average stress state 

should be equivalent to the bulk stress state. An algorithm for the crack growth analysis was 

established as a competition between the crack-coalescence growth and the propagation as a 

single crack. The failure life was statistically predicted based on the crack growth behavior 

simulated for forty distinct microstructural configurations, which were generated by 

randomizing shapes of Voronoi-polygons for the same material. By applying the proposed 

procedure, simulations were conducted for experimental conditions of fatigue tests, which had 

been conducted under axial, torsional and combined loading modes by using 

circumferentially-notched specimens of pure copper, medium carbon steel, and (+) and  

titanium alloys. In this case, forty different failure-lives were obtained for each combination 

of material and loading mode. It was revealed that the failure lives observed in experiments 

were almost covered by the life-ranges between the minimum and the maximum lives given 

in simulation. Statistical characteristics in simulated life-distributions were investigated by 

using Weibull distribution function and its related statistical parameters. 
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1. Introduction 

    The majority of failures in structural or functional systems are caused by fatigue under 

biaxial stresses. Based on numerous investigations on fatigue properties under biaxial stresses, 

several approaches and models have been proposed for the life prediction; i.e., as 

representative models, a critical plane approach (Ref 1-6), an equivalent strain range approach 

(Ref 7, 8), a local stress/strain model (Ref 9, 10), an energy model (Ref 11), an event 

independent cumulative damage model (Ref 12), and so on. Since the actual fatigue damage 

in structures is caused by the progress of fatigue cracks in them, the fatigue failure life is 

controlled by cracking behavior, which depends on not only the biaxiality of the applied stress 

but the material microstructure (Ref 13, 14). Considering that most of dangerous parts in 

structural components are notched regions, more realistic assessments of failure life of 

machine or its elements having stress-concentrated parts require a new appropriate procedure 

based on the analysis of such a crack growth process by reflecting both effects of micro-



structure and stress state. The development of such a procedure is expected to be useful for 

the material design for higher performance of fatigue resistance in a material. From this point 

of view, some models of the fatigue process have been proposed to describe the behavior of 

crack initiation and propagation under biaxial stress state (Ref 15-21). There is, however, no 

simple model adequately to express geometric features of a complex microstructure of 

polycrystalline material. 

    In the present work, an updated analytical procedure is developed based on a previous 

model (Ref 21) so that it should be more applicable to biaxial fatigue behavior in notched 

components of materials with different microstructures. Modeling of microstructure in 

polycrystalline material is especially improved in this investigation, and a microstructure is 

modeled by using Voronoi-polygons. A new modeling is also introduced in the analysis of 

crack initiation in a modeled microstructure. Using the developed procedure, a computer 

simulation of Monte Carlo type is made to clarify the fatigue life in four kinds of materials 

with different microstructures under axial, torsional and combined axial-torsional loading 

modes. The applicability of the developed procedure is investigated by comparing simulated 

results with experimental observations. Statistical characteristics are mainly discussed based 

on Weibull analysis of simulated failure lives. 

 

2. Experimental Fatigue Tests to Be Analyzed 

    A brief outline of fatigue tests, which will be analyzed by using a proposed procedure, is 

mentioned at first. 

The materials are an oxygen-free pure copper with purity of 99.98%, a medium carbon 

steel including 0.45wt% C, and two types of Ti-6Al-4V titanium alloys having (+) phases 

and  phase. Mechanical properties and grain sizes of these materials are summarized in 

Table 1. Note that there is a large variation especially in grain size. 

Specimens were of solid cylindrical type with a circumferential blunt notch as shown in 

Fig. 1. Table 2 shows the combinations of root radius R and minimum diameter D of a notch 

root, which were employed in experiments of respective materials. For pure copper and 

medium carbon steel, specimens with two notch-shapes were prepared as shown in Table 2. 

The fatigue behavior of notched specimens of the four materials had been investigated 

experimentally in our other works (Ref 17,18, 22). 

   Fatigue tests were carried out under fully reversed and force-controlled conditions in axial, 

combined axial-torsional and torsional modes. Fatigue testing conditions to be analyzed are 

summarized in Table 3. By using the axial stress range z and the shear stress range z, the 

range of equivalent stress at the notch root, eq, in Table 3 is defined as follows; i.e., eq = 

(z
2
 + 4z

2
)
1/2

 for pure copper, and eq = (z
2
 + 3z

2
)
1/2

 for the other materials. When 

the equivalent values of von Mises type were applied in describing the cyclic deformation in 

pure copper, it was revealed that there is no unified relation in the stress vs. plastic-strain 

behavior between axial and torsional loading. This is the reason why the equivalent stress and 

plastic-strain of Tresca type are adopted in expressing the cyclic stress-strain relation of pure 

copper. The constitutive equation of eq = k (eq)
n
 is obtained from observed cyclic 

stress-strain curves, and used in a finite element method to analyze elastic-plastic deformation 

behavior in notched specimens. The material constants k and n are respectively 7.2910
2
MPa 

and 0.116 for pure copper, 1.7310
3
MPa and 0.186 for medium carbon steel, 3.1010

3
MPa 

and 0.109 for (+) Ti alloy and 4.3610
3
MPa and 0.158 for  Ti alloy. 

Since the specimen shape is cylindrical, a cylindrical orthogonal-coordinate r--z system 

is adopted to specify the stress components. The axes of  and z are respectively set in the 

circumferential and axial directions of specimen, while the r-axis coincides with the normal 

direction of specimen surface. 

 



3. Framework of Modeling 

In this chapter, the framework of a proposed modeling procedure is described for the 

transgranular cracking mode by supposing that the fatigue damage may be dominated by the 

crack growth of transgranular type in the four kinds of materials. Of course, the crack growth 

modeling for intergranular mode or mixed mode of transgranular and intergranular types is 

required for materials in which such a complex crack growth becomes predominant for the 

fatigue damage. In future, an adequate initiation model of intergranular crack should be 

researched to be able to analyze the initiation life quantitatively, and the modeling of crack 

growth needs to be improved based on a researched model for crack initiation analysis. 

 

3.1 Modeling of material microstructure by using Voronoi-polygons 

    It is well known that most of fatigue cracks are initiated on surfaces of stressed elements 

except for materials in which cracks are initiated from inclusions inside. In this work, the 

microstructure on the notch root surface of a specimen is modeled as a two-dimensional area 

by using Voronoi-polygon. A Voronoi diagram is a kind of decomposition of a metric space, 

which is determined by distances to a specified discrete set of points in the space (Ref 23). It 

is also known that an aggregate of convex hexagons is obtained as Voronoi-polygons in a 

two-dimensional Voronoi diagram. The merit in adopting Voronoi-polygons for 

microstructure of polycrystalline material is that a modeling of microstructure is possible 

under a simple algorithm in numerical analysis. Since a curved surface of notch root area is 

developed into a flat surface, i.e., a two-dimensional surface in the present analysis, the 

circumferential direction (-direction) of a specimen is developed onto the horizontal 

direction in the two-dimensional surface when the specimen axis (z-direction) is set to 

coincide with the vertical direction. 

    The size of the aforementioned two-dimensional area is determined as follows. In this 

case, we should note that the stresses in the region around notch root region decrease when 

moving away from the notch root in the axial direction. Such a stress gradient and its effects 

on crack initiation and propagation should be taken into account in the crack growth analysis. 

For convenience, in this work, the area to be analyzed in this simulation is restricted in the 

axial direction so that an axial or shear stress generated on the surface of the notch area must 

exceed at least 95% of the maximum stress at the notch root. Finally, sizes in the 

circumferential ( ) direction and in the axial (z) direction are set depending on material and 

notch geometry as shown in Table 4. 

    The number of polygons, n, in the analyzed area is determined so that the resultant mean 

grain-size should approximately equal the size measured in experiment. The polygon-number 

for a material consisting of one phase, such as pure copper or  Ti alloy, is determined by the 

just-above mentioned procedure. 

    On the other hand, medium carbon steel consists of ferrite and pearlite grains, and (+) 

Ti alloy has - and -phase grains in its microstructure. For these materials, 

Voronoi-polygons are randomly selected among all Voronoi-polygons so that an area-rate of 

selected polygons occupying in the analyzed area could coincide with the microstructural 

composition observed in a material under consideration. In medium carbon steel, by setting 

the area-rate to be 0.27, which is experimentally observed in medium carbon steel, the 

resultantly selected polygons are regarded as pearlite grains. In (+) Ti alloy, grains of 

-phase are observed to be larger than that of -phase. Therefore, for (+) Ti alloy, 

Voronoi-polygons are randomly selected, and each extracted Voronoi-polygon is treated as 

the polygon that nucleates -phase. Then, the neighboring two Voronoi-polygons for a 

selected polygon nucleating -phase are clustered into one polygon. The clustered polygon is 

regarded as a final -phase grain. This process is iterated so that the area-rate of -phase 



grains occupying in the analyzed area should be 0.42, which is experimentally observed in 

(+) Ti alloy. 

    Polygons formed as mentioned above are hereafter called grains, which constitutes 

polycrystalline material. Figure 2 shows an example of modeled microstructure. 

 

3.2 Stress state in modeled grain and grain size 

Since individual grains have differences in geometrical shape and deformation response 

in an actual polycrystalline material, a stress state in one grain is supposed to differ from that 

in another grain as illustrated in Fig. 3. Therefore, it is reasonable to consider that stresses, to 

which individual grains are subjected, are different from the applied bulk stress. The present 

model assumes that stress states in individual grains deviate from the given applied stress 

state in the crack initiation analysis as follows. 

 

z
(i) 

= z fi , 
(i) 

=  gi , and z
(i) 

=  z hi                                 (1) 

 

In Eq. (1), z,  and z are respectively axial, hoop and shear stress range components 

of the applied bulk stress, and z
(i)

, 
 (i)

 and z
 (i)

 are the stress range components in the 

i-th grain as shown in Fig. 3. These stress ranges are defined in the aforementioned r--z 

coordinate system. Deviation factors fi , gi and hi in Eq. (1) are randomly given within the 

range from 0.5 to 1.5 so that they should satisfy the condition specified in Eq. (2). 
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In Eq. (2), n is the aforementioned number of grains set in the analyzed area. Equation (1) 

under the condition of Eq. (2) implies that stress states in individual grains are randomized so 

that the average stress state should be equivalent to the bulk stress state. For the simplicity in 

application, in this work, a uniform distribution is assumed in expressing the variation of 

stress state in an individual grain. In spite of such a simple assumption, it is elucidated that the 

distribution of crack initiation angle is adequately simulated under the aforementioned    

assumption in biaxial fatigue (Ref 24). 

The grain size is defined as the length of line-segment passing through the nucleus-point 

in a Voronoi-polygon as illustrated in Fig. 3. In the following analysis of crack initiation, the 

grain size d
(i)

 of the i-th grain will be also used as the slip-band length in the grain. 

 

3.3 Competition model for fatigue crack growth under biaxial stresses 

    A competition model for crack growth established by the authors (Ref 15, 16, 18, 21) is 

also applied in this simulation. The model postulates that the cracking morphology and the 

fatigue failure life are determined as the result of competition between the growth by crack 

coalescence and the propagation of a main crack as a single crack. The competition implies 

that the dominant crack growth will be governed by the faster growth mode. Each analytical 

procedure is summarized in the following. 

3.3.1 Crack initiation analysis 

    In the crack initiation analysis too, the r-–z coordinate system is employed as depicted 

in Fig. 4. The z-axis is set to be parallel to the axial direction of specimen. Consider a slip 

plane in one grain on the specimen surface. On the slip plane, another orthogonal  

coordinate system is also defined so that the - and - axes should be respectively parallel to 

the normal direction of the slip plane and the slip direction on the slip plane. 



    The stress component [] for the slip system is correlated with an applied stress [rz] 

as Eq. (3), by using the directional cosine [ l ] which is defined between r-–z and  

coordinates. 

 

[ ] = [ l ] [rz] [ l ]
T
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In the above equation, the superscript “T” represents the transposed matrix, 
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    Considering slip in a surface grain, we may assume the plane stress state as r = rz = zr 

= r = r = 0. Under the above assumption, the resolved shear stress  in the slip direction 

on the associated slip plane, which is one of the most important factors for the feasibility to 

slip, is represented by 

 

 = z lz l +  lz l + z (lz l + lz l)                                    (5) 

 

As illustrated in Fig. 4, the angle  of slip-band is defined counterclockwise against the  axis 

on the specimen surface, and is calculated as follows. 

 

 = arctan (–l / lz)                                                         (6) 

 

    In this model, a crack is assumed to be initiated along the slip band when the criterion, 

  c in which c is the critical shear stress to make a slip active, is satisfied, and also the 

number of stress cycles, Ni, which is required to make a slip band into a crack, has passed. 

The parameter Ni is identical to the crack initiation life, and is calculated by using a 

dislocation pile-up model (Ref 25) as 

 

Ni = 2

c

c

)()1(

2

   d

WG
                                                    (7) 

 

In Eq. (7), material constants G,  and Wc are respectively the shear elastic modulus, 

Poisson’s ratio and the fracture surface-energy, all of which are material constants. The 

parameter d is the slip band length in a grain to be considered in the slip analysis. 

3.3.2 Crack propagation analysis 

    The mode of crack propagation is analyzed presuming that the growth rate da/dN is 

expressed by a power function of the J-integral range, J, as follows. 

 

N

a

d

d
= C J 

m
                                                              (8) 

 



In Eq. (8), C and m are material constants. J-integral range is evaluated assuming that short 

suface-cracks are semi-circluar. The evaluation of J-integral range for short surface-cracks is 

given elsewhere (Ref 26, 27). The propagation life required for a given crack extension can be 

calculated by integrating Eq. (8) with respect to the crack length. The integral calculation is 

also employed in determining the time at which a subsequent crack linkage occurs, or the 

failure life which is calculated for a given crack length. 

3.3.3 Crack coalescence analyses 

    During the crack initiation and propagation stages, the coalescence growth is taken into 

account among distributed cracks, or propagating cracks. In the crack initiation stage, a newly 

initiated crack is assumed to link with one of previously initiated cracks, if the tip-to-tip 

distance between the cracks (see Fig. 5) is less than a specific length  do. The size do is the 

mean grain size for the modeled microstructure. The coalescence in the crack propagation 

stage is presumed to occur when the tip-to-tip distance between the main and the secondary 

cracks (see Fig. 6) becomes less than  do. The values of  and , which depend on the 

combination of material microstructure and loading mode, are determined according to 

experimental observations. Larger value of  or  implies that cracks can more easily coalesce 

together. When one of tips of a crack reaches a boundary of the analyzed area, the growth 

analysis for the crack is discontinued. 

 

4. Simulation and Discussion 

 

4.1 Simulation procedure 

Table 5 summarizes values of parameters used in the simulation for each material and 

respective loading mode. As for the fracture surface-energy Wc, the energy absorbed due to 

plastic deformation is employed in calculating Wc-value according to the energy criterions 

(Ref 28, 29). Plastic deformation energy is known to be about 10
3
 to 10

4
 times greater than 

the surface energy, which is given for each materials (Ref 30). In this work, 10
4
 as the 

multiplication factor to the surface energy is adopted for pure copper which has larger 

work-hardening, while 10
3
 is used as the multiplication factor for the other materials which 

have less work-hardening. The critical shear stress c is evaluated as the shear stress giving 

long-life data near the fatigue limit, which has been estimated from experimental results in 

pure torsional tests for pure copper and medium carbon steel and in rotating bending tests for 

Ti alloys (Ref 31). The parameters C and m in Eq. (8) are obtained based on the behavior of 

small crack growth, which have been observed in fatigue tests using smooth tubular 

specimens in axial, combined axial-torsional and torsional loading-modes under 

strain-controlled condition. The values of C and m in Table 5 are given for da/dN in m/cycle 

and J in J/m
2
. However, it is difficult to estimate the coalescence parameters  and  for lack 

of experimental observations concerning more various materials and loading modes. 

Therefore, the parameters  and  have been determined based on actual crack coalescence 

behavior observed in experiment (Ref 32). 

    By desktop computer, numerical simulations for the fatigue testing conditions as 

above-mentioned were executed by using a Monte Carlo type procedure. Employing forty 

series of uniform random numbers, forty distinct modeled microstructures are generated for a 

material. Such forty microstructures are respectively composed of different-shaped grains and 

have distinct combinations of directions of slip-lines and slip-planes in the individual grains. 

The crack growth under each condition of fatigue testing is analyzed in respective 

microstructure generated for the material. 

 

4.2 Comparison of simulated results with experimental ones 



    Forty distinct cracking patterns can be finally obtained for each material under a given 

condition of fatigue testing through Monte Carlo simulations. It is confirmed that the feature 

of the cracking morphology and its dependence on the stress state, which had been observed 

experimentally (Ref 17, 18, 22), are adequately simulated by using the proposed procedure. 

By monitoring cracking behavior during a simulation, a crack growth curve is given as the 

relation between the number of cycles and the length of main crack for a material subjected to 

a specified loading mode. Such a crack growth curve enables us to determine the failure life 

defined by a prescribed crack length. 

    The failure life Nf in experiments is defined as the number of cycles at which a dominant 

crack of a specific length is formed at the notched portion. The crack length is prescribed 

according to experimental observations (Ref 17, 18, 22). In simulations, the failure life is 

calculated as the formation cycles leading to the dominant crack with a specific length for 

consistency with the experiment of each material. The specific crack lengths are respectively 

2mm for pure copper, 1mm for medium carbon steel, 0.3mm for (+) Ti alloy, and 3mm for 

 Ti alloy. Figure 7 shows the comparison between the actual failure life observed in 

experiments and the simulated life. In the figure, each symbol presents a data point of the 

actual life correlated with the average of forty lives simulated for the corresponding material 

under one testing condition. Two dotted-straight lines in Fig. 7 present factors of two in the 

life dispersion. It is found that the predicted life-ranges almost cover actual failure lives in 

experiments. Although the data simulated for (+) Ti alloy under torsional loading appear to 

shift toward longer life region, such a deviation gives a conservative estimation. Considering 

a possible scatter of failure life to appear in experiments, it may be generally concluded that 

the proposed procedure gives a good estimation for the failure life in materials with various 

microstructures under biaxial fatigue. 

 

4.3 Statistical properties of simulated lives 

    It is difficult that a statistical distribution of failure life is investigated experimentally, 

because many experiments are required for a given condition of biaxial fatigue testing. It is 

clarified that a reasonable life prediction is possible by using the proposed procedure in a 

previous section. In this section, statistical properties of life distribution are discussed by 

using life-distributions simulated by using the proposed procedure. In this work, a distribution 

of simulated lives for respective fatigue condition is fitted to the three-parameter Weibull 

distribution function expressed as 
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The three parameters, , NS and NL, in the above equation are respectively the shape, scale 

and location parameters. 

    Simulations under the combinations of material, loading mode and notch root radius, 

result in 42 life-distributions in total. It is found that 36 distributions among them are well 

fitted to the three-parameter Weibull distribution function of Eq. (9), though we cannot see a 

good approximation for the remaining 6 life-distributions. The location parameter NL in the 

three-parameter Weibull distribution function implies the minimum life in the fitted 

life-distribution. Figure 8 presents the observed actual failure-life correlated with the location 

parameter NL in the 36 life-distributions, which can be approximated by Eq. (9). As seen in 

Fig. 8, the location parameter gives a conservative estimation for the failure life. 

    In the following, a life scatter is discussed in correlation with loading mode. The life 

scatter to be discussed is represented by the coefficient of variation COV, and the shape 



parameter  in the two-parameter Weibull distribution function. The parameter COV is 

defined as the standard deviation of simulated lives divided by the average life, and the 

two-parameter Weibull distribution function is given as the distribution function setting NL = 

0 in Eq. (9). Of course, a larger COV-value implies a larger scatter of life. The parameter  

corresponds to the inclination in the relation expressed by a straight line in Weibull 

probability paper. A larger -value means a steeper inclination in the approximated relation of 

life distribution, i.e., a smaller scatter. Figure 9 presents dependencies of the two parameters 

on the loading mode. Although values of COV and  themselves have large scatters, their 

dependencies on loading mode are seen somewhat. Such a dependency on loading mode, 

however, is quite different in the four materials. When a torsional component increases in 

loading mode, the life scatter becomes larger in pure copper and  Ti alloy as seen in Figs. 

9(a) and (d), but smaller in (+) Ti alloy as seen in Fig. 9(c). On the other hand, as for 

medium carbon steel, the largest scatter seems to appear in the combined loading mode as 

seen in Fig. 9(b). The difference in loading-mode dependency may be ascribed to the crack 

growth behavior affected by the combination of material microstructure and loading mode. In 

future, this issue should be clarified by more detailed investigation on the mutual 

correspondence among cracking behavior, material microstructure and loading mode. 

 

5. Conclusions 

    In the present work, a model of fatigue crack growth under biaxial stresses was 

developed to simulate cracking behavior and to evaluate failure life for notched components. 

In modeling, an aggregate of Voronoi-polygons was adopted to express microstructural 

features of a polycrystalline material adequately. An algorithm for the crack growth in the 

microstructure modeled by using Voronoi-polygons was established as a competition between 

the growth by crack coalescences and the propagation of a dominant crack as a single crack. 

The coalescence growth under the assumed criteria was taken into account among initiated 

and/or propagating cracks during the whole fatigue process. 

    The failure life was defined as the number of cycles required for the formation of crack, 

which had a specific length, and the life was estimated by using the proposed procedure 

combined with simulations of Monte Carlo type. Simulated results were compared with 

experimental observations in previous fatigue tests of circumferentially notched specimens, 

which had been carried out using pure copper, medium carbon steel, and (+) and  Ti 

alloys under axial, combined axial and torsional, torsional loading. Forty trials of simulations 

were conducted for each material under a given loading mode. Such simulations brought forty 

different failure lives, which were defined as the number of cycles to the formation of 

dominant crack with a specified length. Simulated life-ranges from the minimum to the 

maximum lives were found to cover the failure life observed in experiments. Statistics of 

simulated lives was also discussed based on a Weibull statistical analysis. It was clarified that 

the location parameter in fitted three-parameter Weibull distribution function gave 

conservative life assessment. 
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Table 1  Physical properties of materials to be analyzed 

Material 
Yield 

strength, y 

Elongation, 

 

Young’s 

modulus, E 

Poisson’s 

ratio,  

Mean grain 

size, do 

Pure copper 83MPa 80% 139GPa 0.37 55m 

Medium carbon 

steel 
410MPa 38% 206GPa 0.23 21m 

(+) Ti alloy 911MPa 19% 110GPa 0.35 8.5m 

 Ti alloy 849MPa 6.8% 127GPa 0.41 400m 

 

 

 

 

Table 2  Radius R and minimum diameter D of notch root 

Material Radius, R 
Minimum 

diameter, D 

Pure copper 

Medium carbon steel 

5mm 14mm 

3mm 15mm 

(+) Ti alloy 

 Ti alloy 
6mm 8mm 

 

 

 

 

Table 3  Fatigue testing conditions 

Material 
Range of equivalent 

stress, eq (MPa) 

Ratio of shear stress to 

axial stress, z/z 

Pure copper 388, 465 0, 1.5,  

Medium carbon steel 1000, 1200 0, 1.5,  

(+) Ti alloy 1800, 2000, 2200 0, 1.73,  

 Ti alloy 1700, 1900, 2100 0, 1.73,  

 

 

 

 

Table 4  Ranges in z- and -axes in analyzed area 

Material Pure copper 
Medium carbon 

steel 
(+) 

Ti alloy 

 Ti 

alloy 

Notch root radius R 3mm 5mm 3mm 5mm 6mm 6mm 

Area 

size 

z-axis 1.2mm 1.5mm 1.2mm 1.5mm 0.4mm 3mm 

-axis 3.2mm 3.2mm 1.5mm 1.5mm 0.4mm 6mm 

Number of grains, n 846 1034 1620 2025 2209 110 

 

 

 

 



 

 

 

Table 5  List of parameters used in simulations 

Parameter Pure copper 
Medium 

carbon steel 
(+) Ti 

alloy 
 Ti alloy 

Wc (kJ/m
2
) 6.25 2.0 2.0 2.0 

c (MPa) 26 108 288 296 

C 

Mode I 4.1810
13

 1.6110
13

 1.0710
10

 7.0310
12

 

Combined mode 4.1810
13

 1.6110
13

 1.1010
10

 1.8910
10

 

Mode II 4.1810
13

 8.6610
11

 3.9110
15

 3.8610
11

 

m 

Mode I 1.69 1.68 1.12 1.32 

Combined mode 1.69 1.68 0.96 0.84 

Mode II 1.69 0.88 1.74 0.82 

 

Axial mode 0.85 0.85 1.7 0.17 

Combined 0.85 0.17 1.7 0.09 

Torsional mode 0.85 0.17 1.7 0.09 

 

Axial mode 0.8 7.0 3.5 1.75 

Combined 0.8 4.0 3.5 0.88 

Torsional mode 0.7 4.0 3.5 0.88 

 



 
 

Fig. 1 Specimen used in fatigue tests 

 

 

 

 
 

 

Fig. 2 Example of (+) Ti alloy 

microstructure modeled by using 

Voronoi-polygons 

Fig. 3 Schematic illustration of grain-structure and 

stress state in i-th grain 

 

 

 

 
 

Fig. 4 Geometric relation of slip plane to specimen surface, and direction of slip-band crack 

 



 

 

 

 
 

Fig. 5 Coalescence analysis in initiation stage Fig. 6 Coalescence analysis in propagation 

stage 

 

 

 
Fig. 7 Comparison between simulated and experimental failure life 

 

 



 
 

Fig. 8 Correlation of failure life to location parameter 

 

 

  
 

  
 

Fig. 9 Coefficient of variation and shape parameter correlated with loading mode 


