<table>
<thead>
<tr>
<th>Title</th>
<th>Humans and chimpanzees attend differently to goal-directed actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Myowa-Yamakoshi, Masako; Scola, Céline; Hirata, Satoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Nature Communications (2012), 3: 693</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-02-21</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/153053</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 Macmillan Publishers Limited. All rights reserved.; 許諾条件により本文は2012-08-21に公開。; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Humans and Chimpanzees Attend Differently to Goal-Directed Actions

Masako Myowa-Yamakoshi1,2*, Céline Scola3, Satoshi Hirata4,5

1 Graduate School of Education, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan
2 ERATO, Japan Science and Technology Agency, 413, Main Research Bldg., RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
3 Research Center in the Psychology of Cognition, Language & Emotion, Aix-Marseille University, 29 Ave. Robert Schuman 13621 Aix-en-Provence, Cedex 1 France
4 Great Ape Research Institute, Hayashibara Biochemical Laboratories, Inc, 952-2 Nu, Tamano, Okayama, 706-0316 Japan
5 Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan

* To whom correspondence should be addressed. Email: myowa@educ.kyoto-u.ac.jp
Abstract

Humans comprehend others’ actions by making inferences about another's intentional mental states. However, little is known about how this capacity develops and whether this is shared with other animals. Here we show the ontogenetic and evolutionary foundations of this ability by comparing eye movements of 8- and 12-month-old human infants, adults, and chimpanzees as they watched videos presenting goal-directed and non-goal-directed actions by an actor. We find that chimpanzees anticipate action goals in the same way as do human adults. Humans and chimpanzees, however, scan goal-directed actions differently: Humans, particularly infants, refer to actors’ faces significantly more than do chimpanzees. In human adults, attentional allocation to an actor's face changes as the goal-directed actions proceed. In the case of non-goal-directed actions, human adults attend less often to faces relative to goal-directed actions. These findings indicate that humans have a predisposition to observe goal-directed actions by integrating information from the actor.

(150 words)
Humans have a strong tendency to view others' actions not simply as physical movements but rather as reflecting intentional mental states, e.g. beliefs about the world, desires for things. One of the ways to attribute intentional mental states to others from observing their action involves interpreting the action as goal-directed.

Understanding actions as goal-directed is crucial for predicting the effects or outcome of the actions. We make inferences about an individual’s action goals by assessing the end state that would be efficiently brought about by their actions, given particular situational constraints. If we observe an actor, holding books in both hands and turning on a light switch with his forehead, we interpret this action as goal-directed, given constraints on using his hands. However, if the same forehead-switch action occurs while both hands are free, it strikes us as less purposeful. Ontogenetically, this capacity emerges as early as 6.5 months of age. Recent studies have revealed the evolutionary roots of this capacity in other primates. Chimpanzees (Pan troglodytes) and macaque monkeys (Macaca nemestrina, M. fascicularis, and M. mulatta) also possess the ability to evaluate the efficacy of other individuals’ goal-related actions.

How do humans and other primates evaluate the adequacy of goal-directed actions? One possible explanation is that other individuals' actions are understood through a direct matching process of a mirror neuron system (MNS), where an observed action is
mapped onto the observers' own motor representation of that action8-10. According to the direct matching hypothesis, the prediction of another's action goals is closely related to observer's own action repertoire. Recent developmental studies support this view by suggesting that the onset age of infants' ability to predict goal-directedness is synchronized with the onset age of their own ability to perform that action11,12. At around 6 months of age, for example, human infants interpret grasping responses, which are actions within those possible at this age, as goal-directed13.

Other cues for understanding actions derive from attentional or emotional information such as the direction of gaze and facial expressions of other individuals. Such referential information directs an observer's attention to specific objects or to specific aspects of the environment on the basis of understanding particular relations that link these referential cues to their referents. Previous studies have shown that by 12-14 months of age infants begin to use information about others' gaze-direction and emotional expression to predict an action goal14-16. For example, a human infant watches an actress looking with gaze-direction and emotional expressions at an object A, and then is subsequently shown this actress holding the same object A or a different object B. Typically an infant will look longer at the event where the actress holds the object B than the event where the actress holds the object A14. This result can be
interpreted as suggesting that infants use referential information to predict the action goal of another individual.

Several studies have reported that non-human primates also use referential information17-21. When young nursery-reared chimpanzees are exposed to a novel object, they exhibit gaze alternation between this object and the face of their primary caregiver, a phenomenon similar to human social referencing17. Recent eye-tracking studies have illustrated that chimpanzees and macaques are attracted to face and eye regions of both human and non-human animals22,23. Chimpanzees look at the face region longer than at other parts of a body when they are presented with various still photographs depicting human and non-human animals, although the degree to which they look at faces is somewhat lower than the case of human adults22. However, these findings on social referencing and saliency of the face region do not explain how non-human primates might use referential information for understanding others’ actions.

We have little knowledge about how humans and non-human primates look at sequential, dynamic actions of other individuals. Previous studies on human infants, for example, have mainly used habituation/dishabituation or preferential looking paradigms; however, these methodologies are limited in their potential for revealing extent to which infants actually track the observed actions or faces of others. An
eye-tracking technique enables us to investigate this issue by assessing eye movements as a sequence of observed actions unfolds. Exploring the extent to which humans and non-human primates are similar and different in their respective viewing of others' actions can contribute to discovering the evolutionary foundation of the human ability for intentional understanding of others’ actions.

The current series of experiments uses eye-tracking technology which has been rarely applied to non-human primates. One aim was to investigate styles of attending to others' goal-directed actions in humans and chimpanzees, humans’ closest living relatives. A second aim, which addresses issues of the human ontogeny of action understanding, involved a comparison of eye movements of 8- and 12-month-old human infants and adults. We investigated developmental changes in the visual patterns of eye movements associated with a goal-directed action as these relate to an hypothesized age-specific capacity to perform the same action themselves. According to the direct matching hypothesis, visual scanning patterns for an action should depend upon the observer's motor ability to perform this action. Also, if attentional referential information such as other’s gaze direction is processed along with the process of encoding goal-directedness of an action, then the behavior of looking at faces which can be quantified by eye-tracking should change as the goal-directed action proceeds.
We show that chimpanzees anticipate action goals in the same way as human adults. However, chimpanzees and humans, particularly human infants, differ in how they direct attention to others’ goal-directed actions.

Results

Visual scanning patterns for a goal-directed action. In Experiment 1, we investigated gaze behavior of human adults (n = 15), 8-month-old human infants (n = 15), 12-month-old human infants (n = 14), and chimpanzees (n = 6) during video presentations showing two identical trials in which a human demonstrator (actor) performed the goal-directed action of pouring juice into a cup. Adults and chimpanzees can produce this action by themselves. Twelve-month-old infants, but not 8-month-old infants, can perform similar, but simpler, versions of this action (i.e., placing one object in a container into another container). An eye-tracker was used to assess (1) whether participants expected (shown by anticipatory eye movements) the action goal before the goal was achieved\(^1\) (latency to fixate on the cup relative to the onset of pouring), and (2) whether participants referred to the actor’s face (ratio of looking time, number of fixations, and fixation duration among the four areas of interest (AOIs) combined (cup, trajectory (moving juice bottle), face, and other) while viewing the action (Fig. 1a,
Supplementary Movie 1).

Predictive eye movements. Latency data were tested against 0 ms (defined as the onset of pouring juice) to assess whether performance was significantly predictive (positive latencies, ms) or reactive (negative latencies, ms). Adults (mean = 787.37, $t_{14} = 4.71$, $P = 0.001$, Cohen's $d = 1.72$) and chimpanzees (mean = 843.33, $t_{5} = 5.71$, $P = 0.002$, Cohen's $d = 3.29$), on average, shifted their gaze to the goal before the juice was poured into the cup, whereas 12-month-olds did not (mean = 61.25, $t_{13} = 0.20$, $P = 0.84$). Eight-month-olds did so after the juice was poured into the cup (mean = -2,606.41, $t_{10} = -3.90$, $P = 0.003$, Cohen's $d = -1.66$; Fig. 2). Comparison across the four groups revealed a significant effect on predictive eye movements to the goal ($F_{3,45} = 16.60$, $P < 0.001$, $\eta^2 = 0.30$). Post-hoc testing (Bonferroni) showed that 8-month-olds differed from the other three groups ($Ps < 0.001$ in all cases), whereas differences among the latter three groups were not significant.

Spatial distribution and duration of fixations. The spatial distribution of fixations revealed a visual scanning pattern differed from that found in predictive eye movements. A 2 (phase: before goal, after goal) $\times 4$ (area: face, cup, trajectory, other) $\times 4$
mixed factorial ANOVA revealed a significant three-way interaction of phase, area, and group (F_{9,138} = 3.88, P < 0.001, \eta^2 = 0.20). The follow-up 4 (area) × 4 (group) mixed ANOVA for the before-goal phase revealed a significant interaction between area and group (F_{9,138} = 9.83, P < 0.001, \eta^2 = 0.39). During the before-goal phase, ratios of looking time toward the face and cup areas to total looking time toward the four areas combined differed among groups (face, F_{3,46} = 7.25, P < 0.001, \eta^2 = 0.32; cup, F_{3,46} = 34.43, P < 0.001, \eta^2 = 0.69). Post-hoc testing (Bonferroni) revealed no significant difference among the three human groups in looking toward the face area, whereas these groups differed from chimpanzees, whose ratio of looking time toward the face area was significantly lower (Ps < 0.01 in all cases). Conversely, the ratio of looking toward the cup area was significantly higher in chimpanzees than in all three human groups (Ps < 0.01 in all cases). Among the humans, this ratio was lower in 8-month-olds than in both 12-month-olds (P < 0.05) and adults (P < 0.01), and higher in adults than in 12-month-olds (P < 0.01). The follow-up 4 (area) × 4 (group) mixed ANOVA for the after-goal phase revealed a significant interaction between area and group (F_{9,138} = 14.62, P < 0.001; \eta^2 = 0.49). Also during the after-goal phase, the ratios of looking time toward the face and cup areas to total looking time toward the four areas combined were different among groups (face, F_{3,46} =
21.85, \(P < 0.001, \eta^2 = 0.59 \); cup, \(F_{3,46} = 22.24, P < 0.001, \eta^2 = 0.59 \). \textit{Post-hoc} testing (Bonferroni) showed that the ratio of looking time toward the face area in chimpanzees was lower than in both 8-month-olds and 12-month-olds (\(Ps < 0.001 \) in both cases), whereas chimpanzees were not lower in looking at the face than human adults. The ratios of looking time toward the cup area were significantly higher in both chimpanzees and adults compared to infants (\(Ps < 0.01 \) in all cases; Fig. 3a).

Second, we analyzed the number of fixations, which yielded findings similar to those of the ratios of looking time. A 4 (area) \(\times \) 4 (group) mixed ANOVA revealed a significant interaction between area and group (\(F_{9,138} = 9.51, P < 0.001, \eta^2 = 0.38 \)). Significant group differences were found in the face and cup areas, respectively (face, \(F_{3,46} = 7.51, P < 0.001, \eta^2 = 0.33 \); cup, \(F_{3,46} = 25.44, P < 0.001, \eta^2 = 0.62 \)). Chimpanzees made fewer fixations on the face area than did human infants (\(Ps < 0.01 \)) and adults (\(P < 0.05 \)), whereas chimpanzees and adults made more fixations on the cup area than did the infants (\(Ps < 0.01 \) in all cases).

The third analysis of the average duration of fixations revealed further differences among groups. In general, average fixation duration for the four areas combined was shorter in chimpanzees than in human infants and adults (489 ms in chimpanzees, 597 ms in 8-month-olds, 510 ms in 12-month-olds, 615 ms in human adults), although the
group main effect was not significant ($F_{3,46} = 1.39, P = 0.26$). When fixations on face and object (cup and trajectory) areas were considered, a 2 (area) \times 4 (group) mixed ANOVA revealed a significant interaction between area and group ($F_{3,45} = 5.52, P = 0.003, \eta^2 = 0.27$). Average fixation duration on the face area differed among groups ($F_{3,45} = 4.74, P = 0.006, \eta^2 = 0.24$), being shorter in chimpanzees than in human infants and adults ($Ps < 0.02$ in all cases); however, duration of fixations on the object area did not differ between chimpanzees and humans ($Ps > 0.05$ in all cases).

Viewing patterns for a chimpanzee’s action. One possible explanation for these species differences is that, for chimpanzees, the actor belonged to a different species24. To address this, in Experiment 2 we used a video showing a goal-directed action by a chimpanzee. The gaze behavior of human adults ($n = 13$) and chimpanzees ($n = 6$) was investigated during two identical presentations showing a chimpanzee inserting a rubber tube into a small hole in a honey container.

First, we investigated the spatial distribution of fixations on the actor’s face area in relation to total time looking toward the combined face and moving object areas (Fig. 1b, Supplementary Movie 2). The 2 (phase: before goal, after goal) \times 2 (area: face, object) \times 2 (group: adults, chimpanzees) mixed factorial ANOVA revealed significant
two-way interactions between phase and group ($F_{1,17} = 8.54, P < 0.01, \eta^2 = 0.33$) and between area and phase ($F_{1,17} = 6.80, P < 0.02, \eta^2 = 0.29$), but no three-way interaction ($F_{1,17} = 1.01, P = 0.33$). Follow-up two-way ANOVAs were conducted separately for each phase. In the before-goal phase, the ratio of looking time toward the face area was lower in chimpanzees than in humans ($F_{1,17} = 9.83, P = 0.006, \eta^2 = 0.37$). In contrast, after the goal was achieved, the ratio of time looking toward the face area did not differ between the two groups ($F_{1,17} = 2.62, P = 0.12$; Fig. 3b). Thus, compared to chimpanzee observers, human adults paid significantly more attention to the face of a chimpanzee actor prior to completion of an action goal than did chimpanzees.

Second, we analyzed the number of fixations, which yielded findings similar to those of the ratio of looking time. A 2×2 mixed ANOVA revealed a significant interaction between area and group ($F_{1,17} = 30.55, P < 0.001, \eta^2 = 0.64$). The number of fixations to face area was larger in human adults than in chimpanzees ($F_{1,17} = 13.05, P = 0.002, \eta^2 = 0.44$), whereas those to object area was larger in chimpanzees than in humans ($F_{1,17} = 28.18, P < 0.001, \eta^2 = 0.62$).

The third analysis concerns about fixation durations. Average fixation duration for the two areas, combined, was shorter in chimpanzees than in humans (318 ms in chimpanzees, 446 ms in human adults; $F_{1,17} = 17.90, P = 0.001, \eta^2 = 0.51$). A 2×2 mixed ANOVA revealed a significant interaction between area and group ($F_{1,17} = 30.55, P < 0.001, \eta^2 = 0.64$). The number of fixations to face area was larger in human adults than in chimpanzees ($F_{1,17} = 13.05, P = 0.002, \eta^2 = 0.44$), whereas those to object area was larger in chimpanzees than in humans ($F_{1,17} = 28.18, P < 0.001, \eta^2 = 0.62$).
\times 2 (group) mixed ANOVA revealed a significant interaction between area and group
($F_{1,17} = 13.06, P = 0.02, \eta^2 = 0.44$). Average fixation duration on the object area was
longer in humans than in chimpanzees ($F_{1,17} = 19.99, P < 0.001, \eta^2 = 0.54$).

Goal-directed versus non-goal-directed actions. To test the hypothesis that humans'
tendency to pay attention to the face might be related to making inferences about other
individuals' intentions or action goals, in Experiment 3 we investigated viewing patterns
for a non-goal-directed action. The gaze behavior of human adults ($n = 15$) and
chimpanzees ($n = 6$) was investigated during a video presentation showing a human
sitting at a table and reaching toward but not grasping four cups with palm facing
upwards, in four repetitions.

We analyzed the spatial distribution of fixations on the actor’s face area in relation
to total time looking toward the combined face and object areas (Fig. 1c, Supplementary
Movie 3). A 2 (area: face, object) \times 2 (group: adults, chimpanzees) mixed factorial
ANOVA revealed a significant interaction ($F_{1,19} = 4.85, P < 0.05, \eta^2 = 0.20$). The ratio
of looking time at the face area was lower in chimpanzees than in humans ($F_{1,19} = 13.39,
$P = 0.002, \eta^2 = 0.41$).

The spatial distribution of fixations on the face areas of human actors in relation to
total time looking toward the combined face and object areas for non-goal directed action in Experiment 3 was compared to that in the goal-directed action of Experiment 1. Human adults paid more attention to the face area during presentation of a goal-directed action than a non-goal-directed action ($t_{28} = 3.832$, $P = 0.001$, $d = 1.40$), whereas no such difference emerged for chimpanzees ($t_{5} = -1.07$, $P = 0.33$; Fig. 3c). Figure 4 additionally illustrates the result of comparison across Experiment 1, 2, and 3.

Viewing patterns for a non-food-related action. In Experiments 1 and 2 we used sequential goal-directed actions related to food as test stimuli. We chose these actions for two reasons. First, these stimuli are quite familiar in the everyday experiences of both the humans and the chimpanzees serving this study25. Second, most object-related actions observed in wild chimpanzees (tool-using behaviors) are aimed at obtaining food26. However, there remains a possibility that the results of the current experiments might be due to the chimpanzees simply paying special attention to the food in the videos. To eliminate this possibility we conducted another experiment (Experiment 4). Chimpanzees and human adults were shown another video of an adult female human sitting at a table and stacking cups; thus this video contained no food (Fig. 1d, Supplementary Movie 4). The spatial distribution of fixations differed between groups:
the ratio of looking time toward the face areas was lower for chimpanzees than for humans ($F_{1,17} = 9.59, P < 0.01, \eta^2 = 0.14$). Thus, we confirmed that chimpanzees look longer at moving objects and less at the actor’s face while observing object-related actions than human adults do, even when the actions are not food-related.

Discussion

This study obtained comparative eye-tracking data from observers' visual scanning of dynamic object-related actions of other individuals using both chimpanzees and humans as observers. We found that when observing actions, chimpanzees anticipate an action goal in the same way as do human adults. On the other hand, 8-month-old infants showed no evidence of goal anticipation. Twelve-month-old infants showed mixed evidence in that strong goal anticipation was not evident but these infants did show weak predictive tendencies that were statistically comparable to those of human adults and chimpanzees. This indicates that 12-month-old infants are not yet anticipating goal-directedness as fully as human adults and chimpanzees do. According to the direct matching hypothesis8-10, these results appear to be plausible. Adults and chimpanzees can perform this action by themselves. Twelve-month-old infants, but not 8-month-old infants, can perform similar, albeit simpler, versions of this action such as placing an
object in a container into another container. The results are also consistent with previous developmental studies showing that human adults and infants who are able to grasp and move an object to a container shift their gaze to the goal of the action before the hand arrives (anticipatory eye movements), whereas younger infants unable to perform the action do not shift their gaze11,12.

The current findings also demonstrate that, unlike anticipatory looking patterns, visual scanning patterns of observed actions differ for chimpanzees and humans; consistent differences emerged in ratios of looking time, number of fixations, and duration of fixations. In general, humans pay attention to other individuals’ faces longer (ratio of looking time and fixation duration) and more frequently (number of fixations) than do chimpanzees across all situations, irrespective of goal-directed or non-goal-directed actions. Previous eye-tracking studies have found that chimpanzees pay less attention, although significantly higher than random scanning of a whole picture, to photographed faces, and that chimpanzees move their eyes more rapidly than, human adults22,27.

The present results offer new species differences: first, the degree of species difference gauged by the proportion of fixation to faces is larger in our study than the previous study where participants looked at still photographs containing the whole body
of human and non-human animals, although strict comparison is not possible due to methodological differences22. But species differences in viewing faces may be more apparent in tasks using dynamic object-directed actions of others than in tasks that require observers to merely look at still images. Second, while our data on species difference are comparable in the grand average of fixation durations to those of a previous studies (200-300 ms in chimpanzees and 200-700 ms in human adults)22,27, our results showed that the fixation durations of chimpanzees differ according to the target of fixations. When fixations to faces were considered, the average fixation duration was shorter in chimpanzees than in humans (e.g., 229 ms in chimpanzees and 672 ms in human adults in Experiment 1), but duration fixations to the object did not differ between chimpanzees and humans (e.g., 490 ms in chimpanzees and 579 ms in human adults in Experiment 1). Such results contradict with the view that chimpanzees generally move their eyes more rapidly than humans22,27; instead, they suggest that chimpanzees change fixation durations according to contexts and that they particularly attend to the objects when they view object-directed actions of other individuals.

Our most important finding is that humans’ face scanning patterns differ depending on whether the target actions are goal-related or not. Human adults pay more attention to an actor's face while they observe a goal-direction action (versus a non-goal action)
whereas chimpanzees show no difference in face scanning patterns as a function of the
two types of actions. More noteworthy is that face scanning patterns in human adults
change as the goal-directed actions proceed. Our data indicate that after goal
achievement, adults look less at the actor’s face; that is, their allocation of attention to
faces is greater before than after the action goal is achieved. In fact, the latter attention
level is similar to that of chimpanzees. Human infants, on the other hand, continue to
pay attention to the face after the action goal is achieved. These different scanning
patterns cannot be attributed to the species-specific differences in general visual
scanning patterns or to differential interest in faces irrespective of goal-directedness of
the observed actions^{22,27}.

Why do humans view faces especially before the goal is achieved? Why do infants
continue to pay attention to the face after the goal is achieved, whereas adults do not?
Our data does not provide direct answers to these questions. However, these data do
suggest that attention to faces, which potentially conveys referential information such as
gaze direction or emotional expression toward target object, is involved in coding
process of goal-directed actions in the case of humans. Therefore, the coding process of
goal-directedness may facilitate humans’ attention to faces of an actor. Humans infer
goals of other individuals’ actions by scanning faces while predicting action goals. After
confirming the goals, human adults may reduce their attention to faces. Infants who are still developing the ability to infer the likely goals of observed actions in everyday life, especially actions which they cannot yet perform themselves, may seek additional referential information by continuing to pay attention to the actor’s face throughout. To verify these assumptions, further research is needed to confirm how and when humans’ face scanning patterns change depending on the sequential progressing of goal-directed actions in development.

In conclusion, our findings establish a quantitative difference in how humans and chimpanzees look at the goal-directed actions of others. Chimpanzees anticipate action goals in the same way as human adults do. However, these two groups differ significantly in areas to which they attend. Humans, particularly infants, attend to actors’ faces more than do chimpanzees. We assume that chimpanzees predict the action goal depending mainly on object-related information. On the other hand, humans have a strong predisposition to view goal-directed actions by integrating information of a distinctive directedness to specific objects and the actor’s referential information.

Further studies are also needed to investigate developmental trajectory of visual attentional patterns for goal-directed actions in chimpanzees, and to determine whether chimpanzee infants would pay attention to faces like humans28. Both phylogenetic and
ontogenetic comparisons will provide more insights into the evolutionary origins and underlying cognition of attention allocation while viewing goal-directed actions of other individuals.
Methods

Participants. Fifteen full-term 8-month-old infants (9 males, mean age = 8 months and 5 days, SD = 7 days), 14 full-term 12-month-old infants (8 males, mean age = 12 months and 4 days, SD = 8 days), and 15 adults (7 males, mean age = 22.4 years, SD = 2.3 years) participated in Experiment 1. An additional two 8-month-olds, two 12-month-olds, and one human adult were tested but excluded due to fussiness (n = 2) or inattentiveness (n = 3) during sessions. Thirteen human adults (7 males, mean age = 21.5 years, SD = 2.1 years), fifteen different adults (8 males, mean age = 22.5 years, SD = 2.0 years) and twelve different adults (6 males; mean age = 20.9 years, SD = 2.2 years) participated in Experiment 2, 3, and 4, respectively. The same six chimpanzees (*Pan troglodytes*: 2 males, 5-15 years) participated in Experiment 1, 2, 3, and 4. Infants' parents and adult participants provided written consent according to guidelines specified by the Ethical Committee of the Japan Science and Technology Agency; the study was conducted in accordance with the standards specified in the 1964 Declaration of Helsinki. Care and use of chimpanzees adhered to guidelines established by the Primate Society of Japan. The study was approved by the Animal Welfare and Animal Care Committee of the Hayashibara Biochemical Laboratories, Inc. The chimpanzees were cared for at the Great Ape Research Institute, Hayashibara Biomedical Laboratories, Inc.
The two males (both 15 years old) and four females (14, 14, 11, and 5 years old) lived as a group. All previously participated in several kinds of behavioral cognitive tasks including tool use, sequential learning using touch screens, and eye-tracking29. The chimpanzees spent a few hours each day interacting with humans indoors for study or husbandry purposes. They were not deprived of food for the testing.

Apparatus and stimuli. A Tobii (Stockholm, Sweden) T60 Eye Tracker, integrated with a 17-inch TFT monitor, was used to present stimuli and record eye movements by image processing algorithms (60 Hz; Tobii Studio 2.1.12, Tobii Technology). Participants were seated approximately 60 cm from the monitor. Stimulus presentation and recording were controlled via a computer (Dell T7500 for humans, Dell M4400 for chimpanzees) with Tobii’s Studio software. The video stimuli used experiments and AOIs for analysis are shown in Figure 1. The entire video subtended 21.6° x 16.2° of visual angle. Before the video presentation, small animation videos were shown to the participants in order to direct their attention to the monitor.

Procedure. When the infant participants arrived at the lab they were brought into the study room, which was softly illuminated to render the monitor screen the most salient
feature of the room. Infants were then placed on their parents’ lap and were seated centrally in front of the monitor. An initial calibration procedure was conducted; this was considered successful when measures from 5 calibration points were obtained. This procedure was repeated until the calibration criterion was met for each infant. For human adults the same procedure was followed, with the exception that they sat in a normal chair during the experiment. They were instructed simply to watch the video until it ended. In the case of the chimpanzees, familiar human experimenters remained in the study room during testing, and one of them stood beside the chimpanzee and positioned the participant’s face for the recordings while the chimpanzee sat in front of the monitor on which the eye tracker was mounted. Calibration for each chimpanzee was achieved at the beginning of the session by showing a small video clip at two calibration points (Supplementary Information). Participants were then shown a video of an actor performing an action. In Experiment 1, 2, and 4, human participants were then shown two repetitions of the video separated by an interval of approximately 4 - 20 sec. During the interval, animations or other video clips were shown. Chimpanzee participants were shown a single video demonstration in a session, with two sessions conducted on separate days. In Experiment 3, human and chimpanzee participants were shown four repetitions of the action. The experiment relied on voluntary participation.
by the chimpanzees, and during testing they showed no negative emotional expressions, such as screaming or grimacing.

Data analysis. Fixations were scored using a Tobii fixation filter with a threshold radius of 35 pixels; statistical tests were calculated using SPSS (SPSS Inc.). We have applied parametric tests after examining the normality of our data sample by graphical inspection of Q-Q plot for normality and by conducting Shapiro-Wilk test. Ratios of looking time data were analyzed with angular transformation. Both latency and looking time data were averaged across the trials, resulting in one aggregated data point per participant and analysis.

Experiment 1: We defined four areas of interest (AOI) of the same size covering respectively: most of the trajectory of the moving bottle (Trajectory AOI), the cup (Cup AOI), the actor's face during bottle manipulation (Face AOI), and the other (control region) area (Other AOI). The goal was defined as the onset of pouring juice into the cup. Data were analyzed for each of two phases, before and after goal achievement; the before-goal phase, defined from the frame at which manipulation of the bottle started to the frame showing the onset of pouring (2.6 s); and the after-goal phase, defined from the frame showing the onset of pouring until the frame showing the end of the pouring
action (6.7 s). The latency of the infants’ fixation shift to the Cup AOI was compared to the onset of pouring juice. If looking at the Cup AOI occurred before the onset of pouring (defined as a zero point), the trial was considered predictive. Using single-sample t-tests, latency data (in ms) were tested against the zero point to assess whether performance was significantly predictive or reactive. Latency of fixation shift to the Cup AOI was also compared across the four groups using one-way analyses of variance and subsequent post hoc tests (Bonferroni). For the analysis of the ratio of looking time to total looking time toward the four areas combined, we conducted $2 \times 4 \times 4$ mixed factorial ANOVAs with within-subjects factors of phase (before goal, after goal) and area (cup, face, trajectory, other), and the between-subjects factor, experimental group (8-, 12-month-olds, adults, chimpanzees), with follow-up two-way ANOVAs and subsequent post hoc tests (Bonferroni). Number of fixations was also examined using a 4×4 (group) mixed ANOVA. Furthermore, average fixation durations were examined using a 2×4 (group) mixed ANOVA. A two-tailed Student’s t-test using the Bonferroni correction was used for pairwise comparisons.

Experiment 2: We defined two areas of interest of the same size: one covering the moving tool (a rubber tube) and the honey container (Object AOI) and the other
covering the actor's face (Face AOI). The goal was defined as the rubber tube’s first contacting with the honey. Data were analyzed for each of two phases, before and after the goal was achieved: the before-goal phase, defined from the onset of the frame in which manipulation of the rubber tube began to the onset frame showing the rubber tube making contact with the honey (4.5 s); and the after-goal phase, defined from the frame showing the rubber tube’s first contact with the honey to the frame showing the tube being withdrawn (3.0 s). Data were analyzed using a $2 \times 2 \times 2$ mixed ANOVA with within-subjects factors of phase (before goal, after goal) and area (face, object), and the between-subjects factor of group (adults, chimpanzees) for the ratio of looking time to total looking time toward the two areas combined. The number of fixations and average fixation durations were examined using a $2 \times (area) \times 2$ (group) mixed ANOVA.

Experiment 3: We defined two areas of interests of the same size: one covering the trajectory of hand movements plus the four objects (Object AOI) and the other covering the actor's face (Face AOI). Gaze was measured from the time the demonstrator first started to reach for an object until she withdrawn her hand from the last reached object (14.1 s). To compare the ratio of looking at the face between the goal-directed action (including both phases) in Experiment 1 and the non-goal-directed action in Experiment 3, a paired t-test (two-tailed) was used for chimpanzees and an unpaired t-test
(two-tailed) was used for human adults.

Experiment 4: We defined two areas of interest: one covering the trajectory of the moving object (Object AOI), and the other covering the actor's face (Face AOI). Gaze was measured from the time the demonstrator first started to reach for a cup until she removed her hand from the last grasped cup (the six cups were successively stacked, taking 10.6 s). The ratio of looking time toward the face area to total looking time toward the two areas combined (face + object) were compared between humans and chimpanzees using one-way analyses of variance.

A note on calibration errors: In the case of chimpanzees, calibration error was estimated prior to testing, and the average error across participants was 0.40° (SD = 0.38°) of the visual angle of the chimpanzees29. We did not measure calibration errors precisely in the case of human infants and adults because of accumulated knowledge about the validity of data collection using exactly the same device11,12,25, but the errors can be estimated as within the range of 1 degree of visual angle at most for our participants, judging from their fixation data with the stimulus used for attention getting. One degree of visual angle is larger than the difference between the outline of each feature (i.e., face, cup, trajectory) and that of the respective AOI; thus it is unlikely
that calibration error affected the analysis of gaze behavior.

References

Acknowledgements

We thank K. Fuwa, N. Arita, and Y. Tanaka for their invaluable help in data collection and J. R. Anderson, T. Matsuzawa, and K. Fujita for helpful comments on earlier drafts of this paper. The research reported here was supported by Grants-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science and the Ministry of Education Culture, Sports, Science and Technology (19680013, 20220004, and 23300103) and ERATO, Okanoya Emotional Information Project, Japan Science and Technology Agency.

Author Contributions

M.M.-Y. and S.H. designed the experiments. M.M.-Y., S.C., and S.H. performed the experiments, S.C. and M.M.-Y. analyzed the data. M.M.-Y. and S.H. wrote the manuscript.

Competing financial interests: The authors declare no competing financial interests.
Figure legends

Figure 1. Selected scene from the video stimulus used in each experiment and areas of interest (AOIs) for analysis. (a) Experiment 1: an adult female human actor, sitting in front of a table, pouring some juice from a bottle into a clear glass cup. The video lasted 14.0 sec. (b) Experiment 2: a captive chimpanzee (male) inserting a rubber tube into a small hole in a transparent wall to fish for honey in a container attached to the opposite side of the wall. The chimpanzee actor was unfamiliar to human and chimpanzee participants. The video lasted 8.0 sec. (c) Experiment 3: an adult female human sitting at a table and reaching toward, but not grasping, four cups with palm facing upwards in a manner that appeared, from a human perspective, non-goal-directed. The video lasted 15.0 sec. (d) Experiment 4: an adult female sitting at a table and stacking six cups. The video lasted 13.0 sec.

Figure 2. Latency to fixate on the cup area (goal) relative to the onset of pouring juice into the cup (defined as a zero point). Positive values correspond to fixation shifts to the cup before the onset of pouring. Error bars represent SEM.

Figure 3. Comparison of ratios of looking time. (a) Ratios of looking time toward the face and cup areas to total time looking toward the four areas combined before and after goal achievement in Experiment 1. (b) Ratios of looking time toward the face area to
total looking time toward the combined face and object areas before and after goal achievement in Experiment 2. (c) Ratios of looking time toward the face area to total looking time toward the combined face and object areas in Experiment 1 (goal-directed action) and 3 (non-goal-directed action). Error bars represent SEM.

Figure 4. Ratios of looking time toward the face area to total looking time toward the combined face and object areas in human adults and chimpanzees. Goal-directed (Human actor): goal-directed action by a human (Experiment 1), Goal-directed (Chimpanzee actor): goal-directed action by a chimpanzee (Experiment 2), Non-goal-directed (Human actor): non-goal-directed action by a human (Experiment 3). Note that it is not appropriate in a strict sense to compare the data across all three conditions since the stimuli used in the three experiments were different. We used data from adults in the case of human participants because human infants did not participate in the Experiments 2 and 3. The ratio of looking time to face area by the chimpanzees was fairly constant across the three experiments. Error bars represent SEM.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Supplementary movie legends:

Supplementary Movie 1. Eye movements of a 12-month-old infant and a chimpanzee for the stimulus video used in Experiment 1. The resolution of the movie has been reduced for on-line presentation.

Supplementary Movie 2. Eye movements of a human adult and a chimpanzee for the stimulus video used in Experiment 2. The resolution of the movie has been reduced for on-line presentation.

Supplementary Movie 3. Eye movements of a human adult and a chimpanzee for the stimulus video used in Experiment 3. The resolution of the movie has been reduced for on-line presentation.

Supplementary Movie 4. Eye movements of a human adult and a chimpanzee for the stimulus video used in Experiment 4. The resolution of the movie has been reduced for on-line presentation.